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Let us enjoy POEMS
With p-Laplace problems

e Q is an open bounded connected subset of R (d € N¥)
e pc(1,+00)
e rel”(Q) and R e L”(Q)7 with p' = ﬁ,

Strong sense (homogeneous Dirichlet BC) :

Find @ € W, ?(Q) such that —div(|Va|" *Va+ R) = r

Weak sense :

Find @ € W, "?(Q) such that, for all v € W, ?(Q),
/ |Va(x)[P>Vi(x) - Vv(x)dx = / r(x)v(x)dx — / R(x) - Vv(x)dx
Q Q Q




Using the Gradient Discretisation,
Let us have schematisation

Gradient Discretisation for homogeneous Dirichlet BC :

Xp,o vector space of degrees of freedom
MNp : Xpo — LP(Q) linear function reconstruction

Vp : Xpo — LP(Q)? linear gradient reconstruction
[|Vp - ||e norm on Xp o

Then scheme :

Find u € Xp o such that, for any v € Xp o,
/ Vo u(x)[P2Vpu(x) - Vov(x)dx
Q

_ /Q AT )i — / R(x) - Vov(x)dx

Q

Three examples of space approximations
Which can be seen as Gradient Discretisations



Applying mass-lumping,
No longer conforming

On a triangular mesh, Xp o = {(ui)icy € RY, u; = 0 if x; € 9Q}

VDU(X) > uiVe;

mass lumped P; finite elements (CVFE) ey




The meshes are more reqular,
When grid blocks are rectangular

On a rectangular mesh, Xpo = {(ux)kem} X {(Us)ocr,us =0 if 0 C IQ}

B t
_ Uy — Uk Uy — Uk
Voula) = (d(xx,xa)’ d(xK,xa»)

Leads to 5-point finite difference scheme if p = 2

cannot be seen as non-conforming finite elements (Vpu cannot be deduced from
MNpu)



For discontinuous Galerkin,
Put the stabilization therein.

Example of the Average Discontinuous Galerkin Gradient Discretisation (ADGGD)
Vi = { v € L*(Q) such that, for all K € M, vjx € P'(R?) }, (41)ies a basis of V4

] XD,O = { (U,‘),'e/ } and Mpu = Zu,—d),— € Vy

icl
o Let B8 €]0,1] given. For u € Xp,o, for K € M and for any o € F, :
V(Noux) in D)
Vpu = d k.o . s
pU V(Npuk) + ) d[(l)l(],:,g) nko in Dio \ Df:zT

if Mo ={K,L}, [ulico = (0] —ui0)/2 .
! { } [au]K’ (UL; ukcq)/ with  uf, = i/I'IDU|K(x)d'y(x)
if Mo ={K}, [ulk,c =0 — ui,s 7ol Js

ADGGD is pleasant :
Piecewise constant

Gradient approximations
Provide simple computations




Comparison in two dimensions
With analytical solutions

_ _ 2 _ —ol oy PNV e
d=20=(01 r(x)=2, R(x)=0 ux)- {(ﬁ) Ix — xal

~analytic
|—ADGGD

meshl_1 p=15

—analytic —analytic
—ADGGD —ADGGD

profiles along the diagonal for ADGGD with g = 0.8



In the case of the p-Laplace instance,
The GDM shows some convergence

there exists C; > 0, depending on p, r, R and increasingly depending on Cp, such
that (recalling that V := |V °Vi+ R ¢ dlv(Q) since divV = —r) :

If pE (].7 2], (WD(V)ﬁ =+ SD(H)) < |IVH = VDUD”LP(Q)d < Cl(WD(V) + SD(H)pil)

G

1

If p € [2,+00), Wo(V) + Sp(@)) < IV — Voup|peye < G (WD(V) + sD(v)) =]

1
&l

HHDWHLP(Q)

= max ———
weXp\{0} HVDWHLP(Q)d

1, 0
with | for all ¢ € WG*(Q), So(e) = min (INow = &l + VoW = Vellry)

for all o € WZ.(Q) := {p € L7 ()%, dive € L7 ()},

1 .
Wpo(p) = R Vowllmay |/a (Vow(x) - ¢(x) + Npw(x) div p(x) dx)

shows that Wp(V) — 0 and Sp(u) — 0 mandatory. Optimal only if p = 2.
For the 3 previous examples : if p=2 and d < 3, T € W*?(Q) and

IVal?Vu+ R e W (Q)%, | order Rt if p e (1,2], and h" if p>2




To the three examples, applies a series
Of GDM core properties

For a sequence (Dm)men of such GDs with h, — 0 under a regularity property,

’ (Dm)men is coercive : Cp,, < Cp

(Dm)men is consistent : for all ¢ € WOI"’(Q), Sp.(p) — 0

(Dm)men is limit-conforming : for all ¢ € VI{;;L(Q), Wp,,(¢) =0

(Dm)men is compact :
for all (um)men, with um € Xp,, such that (||Vp,,um||;»(q)¢)men bounded,
exists subsequence of (Mp,, um),.c converging in L°(Q)




Need of different GD definitions
For other boundary conditions

Example of non-homogeneous Neumann BC

let r € L”/(Q), R e Lp/(Q)d and g € L"'(asz) s.t. / rdx +/ gds=0
Q o9
find @ € W"P(Q) with /de =0 and —div(|Vd|’ >V@ + divR) = r
Q
with non-hom. Neumann BC (|V@|? V@ + R) - n = g on 9Q

T e WP(Q) and, for all v € W"P(Q),

weak solution T /|Vﬁ|p72Vﬁ~Vvdx+‘/de’p_2/ﬂdx/ vdx
Q Q Q Q

:/rvdx—/R~Vvdx+/ gyvds
Q Q aQ

Scheme with GD : D = (XD, HD,VD,TD)
U € Xp and, for all v € Xp,

/|VDu|p72VDu.VDvdx+’/I'Ipudx|p72/|'lpudx/I'IDvdx
Q Q Q

— rMpvdx — R-vadx—|—/
Q Q )

How should we define coercivity, consistency,
Limit-conformity, compactness for all types of BC?

gTpvds
Q




Look for a common formulation
Which provides a generalization

Continuous functional setting

@ L and L separable reflexive Banach spaces
@ V closed subspace of L' (V = {0} possible)
@ Wi C L dense subspace and G : Wi — L linear operator with closed graph

[ {12, U)o |
Q| luly, = sup ————
Yo o Lewqoy Nl

@ Wp={vel :3wel Vue W {v,Gu)p+ {w,u) =0}
denote Dv := w

Q Yu e Wag, Vv € Wh, <V,GU>LI7L + <DV, U>L’,L =0
Remark : [lul|, < Cllully,, < Im(D)+V = L

+ |Gull,

Discrete functional setting D = (Xp, Pp, Gp)
@ Xp finite dimensional vector space on R
@ Pp : Xp — L alinear mapping
@ Gp : Xp — L linear mapping

|(s, Pou)ys i
Q| llullp:= sup —rm

+ [|Gpul|, |assumed to be a norm on Xp
peV\{0} el




Properties in the abstract setting
For the schemes converging

[Povll,

m 1= D7
vexp\{0} ||v|p

coercive if there exists Cp € Ry such that Cp,, < Cp forall me N

Sp : We — [0,400) be given by
Vo e Wo, Sp(e)= min (IPov - ¢l + [Gov - Gell,)

consistent if Vo € We, lim Sp, (¢) =0
m— oo

Wp: Wp — [0, —|—OO)

,G / De, P ,
Ve € Wh, WD(LP) = sup |<‘P 'DU>L L +< ¥ Du)’- L|
ueXp\{0} llullp

limit-conforming if Vo € Wy, |lim Wp, () =0
m— o0

(Dm)men compact if, for any sequence um € Xp,, such that (||um||p,,)men bounded,
(Pp,,um)men is relatively compact in L



An abstract Leray-Lions problem
Enabling a convergence theorem

’ a: L — L' continuous, monotonous, coercive, bounded in some sense ‘

’ a: L — V weakly continuous, monotonous, coercive, bounded in some sense ‘

Strong formulation of the problem

’ Find @ € Wo ‘such that’ —D(a(GT) + F) + a(q@) = f ‘

Weak formulation of the problem

Find u € Wg such that, Vv € W,
(a(G1), Gv)p o +(a(@), viv e = (f,v)re — (F,Gv)

GDM approximation

Find u € Xp such that, Vv € Xp,
(a(Gpu), G'DV>L/,L + <a(PDu)7 PDV>L/,L = <f, PDV>L/,L — <F, GDV>L/,L

Convergence theorem under consistency and limit-conformity



Application of the abstract environment

In order the BC to be in agreement

homogeneous non-homogeneous
Dirichlet Neumann

L LP(Q)? LP(Q)?

L LP(Q) LP(Q) x LP(0Q2)
vcl {0} R(1q,0)
WeClL W, P(Q) {(u,vu) : ue WP(Q)}
0, Vel IVuls +1 [

G:Wg—1L u— Yu (u,w) — Vu

Wy C L W, (9) Ve, o(2)

D: Wp — L v — divv v — (divv, —yv)
Pp: u— Npu u— (Mpu, Tpu)
Gp: u— Vopu u— Vopu
ol IVouly | IVouls+] [ Mol




Abstract Gradient Discretisation
Applies to mechanics approzimation

e QCR?

o L=1%(0)° sothat L' =1*(Q)° =1L
o L=1%(2)*3 sothat L' = [*(Q)**
o Wh = Haiv(Q)*, and V = {0}

o Wi = Hy(Q)?

G HY(Q) — L2(Q)*° defined by (Gu)i; = %(a,-uw + ou)

3
D : Haiv(Q)* — L*(Q)* defined by (Do); = > 90"

Jj=1

3
a(Gu),-,j = AZ(GU)k,k(;i,j P 2u(Gu),-,j

k=1
with A > 0, 1 > 0 (Lamé coefficients)

Hooke's law :

Equilibrium of a solid : ’ find u € W s.t. —D(a(Gu)) = f with f € L




It’s now time to conclude
Such that no results elude

The abstract Gradient Discretisation setting
Helps, in a variety of boundary conditions,
For easily formulating

General approximations.



