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Let us enjoy POEMS
With p-Laplace problems

• Ω is an open bounded connected subset of Rd (d ∈ N?)

• p ∈ (1,+∞)

• r ∈ Lp′(Ω) and R ∈ Lp′(Ω)d with p′ =
p

p − 1
.

Strong sense (homogeneous Dirichlet BC) :

Find u ∈W 1,p
0 (Ω) such that −div(|∇u|p−2∇u + R) = r

Weak sense :

Find u ∈W 1,p
0 (Ω) such that, for all v ∈W 1,p

0 (Ω),∫
Ω

|∇u(x)|p−2∇u(x) · ∇v(x)dx =

∫
Ω

r(x)v(x)dx −
∫

Ω

R(x) · ∇v(x)dx



Using the Gradient Discretisation,
Let us have schematisation

Gradient Discretisation for homogeneous Dirichlet BC :

XD,0 vector space of degrees of freedom
ΠD : XD,0 → Lp(Ω) linear function reconstruction

∇D : XD,0 → Lp(Ω)d linear gradient reconstruction
‖∇D · ‖Lp norm on XD,0

Then scheme :

Find u ∈ XD,0 such that, for any v ∈ XD,0,∫
Ω

|∇Du(x)|p−2∇Du(x) · ∇Dv(x)dx

=

∫
Ω

r(x)ΠDv(x)dx −
∫

Ω

R(x) · ∇Dv(x)dx

Three examples of space approximations
Which can be seen as Gradient Discretisations



Applying mass-lumping,
No longer conforming

On a triangular mesh, XD,0 = {(ui )i∈V ∈ RV , ui = 0 if xi ∈ ∂Ω}

ΠDu(x) = ui

∇Du(x) =
∑
i∈V

ui∇ϕi

ui

mass lumped P1 finite elements (CVFE)



The meshes are more regular,
When grid blocks are rectangular

On a rectangular mesh, XD,0 = {(uK )K∈M} × {(uσ)σ∈F , uσ = 0 if σ ⊂ ∂Ω}

∇Du(x) =

(
uσ − uK
d(xK , xσ)

,
uσ′ − uK
d(xK , xσ′)

)t

uL

ΠDu(x) = uL

uσuK

uσ′

Leads to 5-point finite difference scheme if p = 2

cannot be seen as non-conforming finite elements (∇Du cannot be deduced from
ΠDu)



For discontinuous Galerkin,
Put the stabilization therein.

Example of the Average Discontinuous Galerkin Gradient Discretisation (ADGGD)

Vh = { v ∈ L2(Ω) such that, for all K ∈M, v|K ∈ P1(Rd) }, (ψi )i∈I a basis of Vh

XD,0 = { (ui )i∈I } and ΠDu =
∑
i∈I

uiψi ∈ Vh

Let β ∈]0, 1[ given. For u ∈ XD,0, for K ∈M and for any σ ∈ Fσ :

∇Du =

 ∇(ΠDu|K ) in D
(β)
K ,σ

∇(ΠDu|K ) +
d

(1− β)

[u]aK ,σ
d(xK , σ)

nK ,σ in DK ,σ \ D(β)
K ,σ

if Mσ = {K , L}, [u]aK ,σ = (ua
L,σ − ua

K ,σ)/2

if Mσ = {K}, [u]aK ,σ = 0− ua
K ,σ

with ua
K ,σ =

1

|σ|

∫
σ

ΠDu|K (x)dγ(x)

ADGGD is pleasant :
Piecewise constant
Gradient approximations
Provide simple computations

K

σ

xK
DK ,σ

D
(β)
K ,σ1

0β



Comparison in two dimensions
With analytical solutions

d = 2, Ω = (0, 1)2, r(x) = 2 , R(x) = 0 u(x) =
p − 1

p

[(
1√
2

)p/(p−1)

− |x − xΩ|p/(p−1)

]

mesh1 1 p = 1.5

p = 2 p = 4

profiles along the diagonal for ADGGD with β = 0.8



In the case of the p-Laplace instance,
The GDM shows some convergence

there exists C1 > 0, depending on p, r , R and increasingly depending on CD, such

that (recalling that V := |∇u|p−2∇u + R ∈W p′

div(Ω) since divV = −r) :

If p ∈ (1, 2],
1

C1

(
WD(V )

1
p−1 + SD(u)

)
≤ ‖∇u −∇DuD‖Lp(Ω)d ≤ C1

(
WD(V ) + SD(u)p−1)

If p ∈ [2,+∞),
1

C1

(
WD(V ) + SD(u)

)
≤ ‖∇u −∇DuD‖Lp(Ω)d ≤ C1

(
WD(V ) + SD(u)

) 1
p−1

with

CD = max
w∈XD\{0}

‖ΠDw‖Lp(Ω)

‖∇Dw‖Lp(Ω)d

for all ϕ ∈W 1,p
0 (Ω), SD(ϕ) = min

w∈XD

(
‖ΠDw − ϕ‖Lp(Ω) + ‖∇Dw −∇ϕ‖Lp(Ω)d

)
for all ϕ ∈W p′

div(Ω) := {ϕ ∈ Lp′(Ω)d ,divϕ ∈ Lp′(Ω)},

WD(ϕ) = max
w∈XD\{0}

1

‖∇Dw‖Lp(Ω)d

∣∣∣∣∫
Ω

(∇Dw(x) ·ϕ(x) + ΠDw(x) divϕ(x) dx)

∣∣∣∣
shows that WD(V )→ 0 and SD(u)→ 0 mandatory. Optimal only if p = 2.

For the 3 previous examples : if p = 2 and d ≤ 3, u ∈W 2,p(Ω) and

|∇u|p−2∇u + R ∈W 1,p′(Ω)d , order hp−1
D if p ∈ (1, 2], and h

1
p−1

D if p ≥ 2



To the three examples, applies a series
Of GDM core properties

For a sequence (Dm)m∈N of such GDs with hm → 0 under a regularity property,

(Dm)m∈N is coercive : CDm ≤ CP

(Dm)m∈N is consistent : for all ϕ ∈W 1,p
0 (Ω), SDm (ϕ)→ 0

(Dm)m∈N is limit-conforming : for all ϕ ∈W p′

div(Ω), WDm (ϕ)→ 0

(Dm)m∈N is compact :
for all (um)m∈N, with um ∈ XDm such that (‖∇Dmum‖Lp(Ω)d )m∈N bounded,

exists subsequence of (ΠDmum)m∈N converging in Lp(Ω)



Need of different GD definitions
For other boundary conditions

Example of non-homogeneous Neumann BC

let r ∈ Lp′(Ω), R ∈ Lp′(Ω)d and g ∈ Lp′(∂Ω) s.t.

∫
Ω

rdx +

∫
∂Ω

gds = 0

find u ∈W 1,p(Ω) with

∫
Ω

udx = 0 and −div(|∇u|p−2∇u + divR) = r

with non-hom. Neumann BC (|∇u|p−2∇u + R) · n = g on ∂Ω

weak solution u

u ∈W 1,p(Ω) and, for all v ∈W 1,p(Ω),∫
Ω

|∇u|p−2∇u · ∇vdx +
∣∣ ∫

Ω

udx
∣∣p−2

∫
Ω

udx
∫

Ω

vdx

=

∫
Ω

rvdx −
∫

Ω

R · ∇vdx +

∫
∂Ω

gγvds

Scheme with GD : D = (XD,ΠD,∇D,TD)

u ∈ XD and, for all v ∈ XD,∫
Ω

|∇Du|p−2∇Du · ∇Dvdx +
∣∣ ∫

Ω

ΠDudx
∣∣p−2

∫
Ω

ΠDudx
∫

Ω

ΠDvdx

=

∫
Ω

rΠDvdx −
∫

Ω

R · ∇Dvdx +

∫
∂Ω

gTDvds

How should we define coercivity, consistency,
Limit-conformity, compactness for all types of BC ?



Look for a common formulation
Which provides a generalization

Continuous functional setting

1 L and L separable reflexive Banach spaces

2 V closed subspace of L′ (V = {0} possible)

3 WG ⊂ L dense subspace and G : WG → L linear operator with closed graph

4 ‖u‖WG
= sup
µ∈V\{0}

|〈µ, u〉L′,L|
‖µ‖L′

+ ‖Gu‖L

5 WD = {v ∈ L′ : ∃w ∈ L′, ∀u ∈WG, 〈v ,Gu〉L′,L + 〈w , u〉L′,L = 0}
denote Dv := w

6 ∀u ∈WG, ∀v ∈WD, 〈v ,Gu〉L′,L + 〈Dv , u〉L′,L = 0

Remark : ‖u‖L ≤ C ‖u‖WG
⇔ Im(D) + V = L′

Discrete functional setting D = (XD,PD,GD)

1 XD finite dimensional vector space on R
2 PD : XD → L a linear mapping

3 GD : XD → L linear mapping

4 ‖u‖D := sup
µ∈V\{0}

|〈µ,PDu〉L′,L|
‖µ‖L′

+ ‖GDu‖L assumed to be a norm on XD



Properties in the abstract setting
For the schemes converging

CD = max
v∈XD\{0}

‖PDv‖L
‖v‖D

coercive if there exists CP ∈ R+ such that CDm ≤ CP for all m ∈ N

SD : WG → [0,+∞) be given by

∀ϕ ∈WG , SD(ϕ) = min
v∈XD

(
‖PDv − ϕ‖L + ‖GDv −Gϕ‖L

)
consistent if ∀ϕ ∈WG , lim

m→∞
SDm (ϕ) = 0

WD : WD → [0,+∞)

∀ϕ ∈WD , WD(ϕ) = sup
u∈XD\{0}

|〈ϕ,GDu〉L′,L + 〈Dϕ,PDu〉L′,L|
‖u‖D

.

limit-conforming if ∀ϕ ∈WD , lim
m→∞

WDm (ϕ) = 0

(Dm)m∈N compact if, for any sequence um ∈ XDm such that (‖um‖Dm )m∈N bounded,
(PDmum)m∈N is relatively compact in L



An abstract Leray-Lions problem
Enabling a convergence theorem

a : L→ L′ continuous, monotonous, coercive, bounded in some sense

a : L→ V weakly continuous, monotonous, coercive, bounded in some sense

Strong formulation of the problem

Find u ∈WG such that −D(a(Gu) + F ) + a(u) = f

Weak formulation of the problem

Find u ∈WG such that, ∀v ∈WG,

〈a(Gu),Gv〉L′,L + 〈a(u), v〉L′,L = 〈f , v〉L′,L − 〈F ,Gv〉L′,L

GDM approximation

Find u ∈ XD such that, ∀v ∈ XD,

〈a(GDu),GDv〉L′,L + 〈a(PDu),PDv〉L′,L = 〈f ,PDv〉L′,L − 〈F ,GDv〉L′,L

Convergence theorem under consistency and limit-conformity



Application of the abstract environment
In order the BC to be in agreement

homogeneous
Dirichlet

non-homogeneous
Neumann

L Lp(Ω)d Lp(Ω)d

L Lp(Ω) Lp(Ω)× Lp(∂Ω)
V ⊂ L′ {0} R(1Ω, 0)

WG ⊂ L W 1,p
0 (Ω) {(u, γu) : u ∈W 1,p(Ω)}

‖u‖WG
‖∇u‖Lp ‖∇u‖Lp + |

∫
Ω

u|

G : WG → L u 7→ ∇u (u,w) 7→ ∇u
WD ⊂ L′ W p′

div(Ω) W p′

div,∂(Ω)

D : WD → L′ v 7→ divv v 7→ (divv ,−γnv)

PD : u 7→ ΠDu u 7→ (ΠDu,TDu)
GD : u 7→ ∇Du u 7→ ∇Du

‖u‖D ‖∇Du‖Lp ‖∇Du‖Lp + |
∫

Ω

ΠDu|



Abstract Gradient Discretisation
Applies to mechanics approximation

Ω ⊂ R3

L = L2(Ω)3, so that L′ = L2(Ω)3 = L

L = L2(Ω)3×3, so that L′ = L2(Ω)3×3

WD = Hdiv(Ω)3, and V = {0}
WG = H1

0 (Ω)3

G : H1
0 (Ω)3 → L2(Ω)3×3 defined by (Gu)i,j =

1

2
(∂iu

(j) + ∂ju
(i))

D : Hdiv(Ω)3 → L2(Ω)3 defined by (Dσ)i =
3∑

j=1

∂jσ
(i,j)

Hooke’s law :
a(Gu)i,j = λ

3∑
k=1

(Gu)k,kδi,j + 2µ(Gu)i,j

with λ ≥ 0, µ > 0 (Lamé coefficients)

Equilibrium of a solid : find u ∈WG s.t. −D(a(Gu)) = f with f ∈ L′



It’s now time to conclude
Such that no results elude

The abstract Gradient Discretisation setting
Helps, in a variety of boundary conditions,
For easily formulating
General approximations.


