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Geomechanics’ challenges
Involves two physics
Ü Requires two spatial discretization methods
working on a single mesh
Highly deformed media
Ü Methods must work on poor quality meshes

Governing equations

Under the assumptions of quasistatic strains and slightly compressible single-phase flow, the mechanical
equilibrium and the fluid mass conservation are coupled through Biot’s equations.
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whereu is the solid displacement andp the fluid pres-
sure.
In this work, we assume that the solid has a linear
elastic behaviour described by the stiffness tensor C .

α Biot parameter
c0 Constrained specific storage coefficient
ρf fluid density
κ Mobility matrix

Spatial discretization

Working in a variationnal framework for the mechanics and in the finite
volume framework for the fluid flow,
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Given two bases for the discrete spaces, the equivalent matrix form is given by
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where

A depends only on the elasticity problem,
F depends only on flow problem,

B stores the coupling terms
∫

pnhdiv (vh).

We can now choose a discretization method for A and another for F . Indeed,
the scheme can be customized picking the following elements:

A) A Virtual Element Method
Key idea of vem[1]: on each element, substitute a
with an approximate discrete form ah

• consistent (ensures accuracy)
• stable (ensures coercivity)
• computable from the dofs.

To have the consistency and the stability, set

aKh (u, v) :=a
K (πKu,πKv)

+ hd−2K max |C |sK (u − πKu, v − πKv)

where πKu is a projection to the polynomial part of
u and where sK stabilizes the non polynomial part.
For the lowest order of accuracy, we can take
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which is computable from the dofs. With this ap-
proximate form, basis functions are virtually de-
fined over any general element.

B) A Finite Volume scheme
Choosing any fv scheme with cell-centered un-
knowns allows an easy treatment of the coupling
terms. From [2] we highlight:

BTwo-Point Flux Approximation
Use only two points to compute the fluxes
FKf = | f |κKLd

−1
KL(pK − pL).

f
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Low computational cost
High stability
Requires orthogonality

condition (KL) ⊥ f

BMulti-Point Flux Approximation
Compute half fluxes FKf v , then eliminate face un-
knowns using consistency FKf v + FLf v = 0 and
finally sum half fluxes to get FKf = FKf v + FKf v ′.
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Allowsmore general meshes
Larger stencil (more costly)
Sometimes unstable

C) A Solution Strategy
Use either a fully coupled (monolithic) or an itera-
tively coupled strategy.
BFully coupled resolution
Both equations are simultaneously solved.

Unconditionally stable
Huge matrix, no efficient solver available

BIteratively coupled resolution
Use a splitting [3] such as the fixed-stress split:

New time step

Solve flow with fixed
stress σv = Kdiv (u) − αp

Solve mechanics with computed p

Check convergence on σv
yes no

More iterations, needs a convergence criteria
Pick specialized solvers for each subproblem
Krylov-like methods can speed ud convergence

Numerical illustration
Layered 3D mesh including degenerated cells

p0 = 0 Pa

p0 = 107 Pa

p = 0

(productive well)

κ ϕ E ν α

Sandstone 10-9 0.2 5·109 0.3 1
Shale 10-15 0.1 5·109 0.3 1

Reservoir 10-9 0.3 109 0.3 1

Bottom and lateral faces: ∇p · n = 0,u · n = 0
Top face: p = 0 and free stress condition

ÜSolve ~300K dofs over 20 time steps (T=1 year)
with vem-mpfa and the fixed-stress strategy:
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Standard Fixed Point
Krylov accelerated
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Future works
Use domain decomposition methods as an efficient
preconditioner to solve u
More general mechanical laws


