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Context: from incompressible to compressible flows

Objective — derive a scheme for Euler (or Navier-Stokes) equations:

— which is a natural extension of an existing scheme for low Mach number flows: staggered
discretization, upwinding with respect to the material velocity, solution of the internal energy

balance ...

— to preserve the positivity of the internal energy: solution of the internal energy balance.

» Euler equations:
Oro + div(eu) = 0,

Ot (ou) + div(ou @ u) + Vp =0,
0:(0E) + div[(¢E + p)u] =0,

1
p=(y—1)ce, E=_luf+e

» Formally, taking the scalar product of the momentum balance equation by u and using

the mass balance equation yields the kinetic energy balance equation:
. 1
Ot (0Ec) + div(eEcu) + Vp-u=0 (<0), Ec. = > lul?.
Subtracting to the total energy balance yields the internal energy balance:
Ot(0e) + div(peu) + pdivu =0 (> 0),

and, from this equation, we get e > 0.
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Context: from incompressible to compressible flows

Objective — derive a scheme for Euler (or Navier-Stokes) equations: staggered discretization,
upwinding with respect to the material velocity, solution of the internal energy balance ...

< but how to ensure the consistency ?

» The scheme must be consistent with the conservative equations (so, the total energy
balance), to compute the correct shock solutions.

> so try to take the reverse course ?
take the inner product of the discrete momentum balance equation by u to obtain
a kinetic energy balance,
add to the discrete internal energy balance.

> Needs a discrete local kinetic energy balance.

In the incompressible case, a global kinetic energy balance is also an important feature of the
scheme (stability, convergence analysis, dissipation properties for Large Eddy Simulation of
turbulent flows. . .).

Staggered schemes for compressible flows: Harlow & Amsden, Wesseling and co-workers,
Goudon and co-workers, Després and Dakin. ..
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Space discretization

Space discretization (1/2)

/

§47<

&, E(K): faces of the primal mesh, faces of the control volume K.

&, £(Dy): faces of the dual mesh, faces of the control volume D, .
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Space discretization

Space discretization (2/2)

}\
Y,
£
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Derivation of a discrete kinetic energy balance

Derivation of a discrete kinetic energy balance

» Mass balance over Dy, C(z)o:

D
Mo = | U|(Pn+1 Pp.) + Z Fo,e =0,
e€&(Do)
|Do|
Coz = 5: pgjl g+1 ng z") + Z Foc zn+1
ec&(Dy)
> 0:(pz) + div(pzu) = p(8rz + u - Vz):
D,
Coz = |5:| Bt =z 4+ > Foe (22T =z 4 20 M,

ec€(Dy)
zp(atz +u- Vz) = %p((?tzz +u- sz):

1|D,
2 1Coz = 2107 g (g2~ 22?)

Z Fo . n+1)2 _ (zg+1)2)

ec&(Dy)
— b)2.
%p((?tzz +u-Vz?) = %at(pzz) + %div(pzzu):
1 |Do|
2oz =550

NM—‘

+R.
with R >0 — Tool: 2a(a — b) = a®> — b2 + (a

1
(B = ) + 5 S R (R4 R.
ec€(Dy)
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Definition of the ion op:

Definition of the convection operator

» From the mass balance over the primal cells:

K
|6|(an+1 o) + Z Fk.o =0,
cc&(K)
> define
PD, 5 Fo’,ea

» such as the mass balance over the dual cells holds:

D
-y 3 Fecmo
ec&(Dy)
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Definition of the convection operator

Building a discrete mass balance over the dual cells (1/5)

Let:
|Dk o | |Dp,o|
Dy =Dk, UDL 5, po, = —— PK — pL-
7 7 7 |Ds | |Do|
3% 3

£ >0,and > =1
ce&(K)
Assume:

(H1) A discrete mass balance over the half-diamond cells is satisfied, in the following
sense:

Fot > Fo=k| Forl,

e€€(Dy), eCK o/ €E(K)

edges of the half-diamond cell

edges of the primal cell

I

(IRSN/I2M-AMU /UCA) Weak i of F. V. sch Luminy, may 2019 9/ 28




Definition of the ion op:

Building a discrete mass balance over the dual cells (2/5)

If:
|Do| =&k K|+ €7 LI, IDo| po, = &k |K|pk + &7 IK] L
Fotr > F=tk[ X Fi
e€€(Dy), eCK o’ €E(K)
Then:
D
e A R S
ec&(Dy)
(e} ‘K * o
sy k=Pl +Fa+ > Fe 4 & —Fot =
e€€(Dy), eCK

K
' -l + X R o+ a] |0
ce&(K)

h Luminy, may 2019 10 / 28

ST \eak consistancy of EI V]



Definition of the convection operator
Building a discrete mass balance over the dual cells (3/5)

..s0 we need:
[Do| = &k |KI + &7 ILI,  |Do| po, = &k |K| pK + &7 |K| pL-
Fr Y R ¥ Rl
e€€(Ds), eCK o/ €E(K)

Let us choose £ = 1/number of faces.

> The above system is independent of the cell (in other words, one may choose a unique
expression of the dual mass fluxes as a function of the primal ones).

> The dual mesh is only viewed through £ and the sub-cell connectivities, so is
completely abstract, and sometimes necessarily non-polygonal.

=

edges of the half-diamond cell

edges of the primal cell

I
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Definition of the convection operator

Building a discrete mass balance over the dual cells (4/5)

[Fi

> Let wy be such that:

diV(WK) = cste, WK NK ;= FK’(77 Vo € S(K)

T

Example (1D, and on rectangular (2D and 3D) meshes):

Xgr — X — X,

wk = FK o T+ Z Fi,or-

X! — Xo Xg! — Xo
Let:
Foe = / WK - Ngc, Ve € S_(DK,U).
€
Then
D D
ST Foe= divwy = | 2"' /d _ [Px.q] S Fkeo-
e€€(Dk o) Do K] K] c€E(K)
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Definition of the convection operator

Building a discrete mass balance over the dual cells (4/5)

Fw Fe

» For Crouzeix-Raviart elements, and for Rannacher-Turek elements on rectangular (2D
and 3D) meshes, the construction of mass fluxes uses a constant divergence momentum
function having the primal mass fluxes as traces (previous computation).

This yields expressions of the form:

Fe :aT/VFW‘Fai\IFN—FCM{EFE-Faest.

with constant coefficients & (bounded would be sufficient for consistency).
> For general quadrangles, keep the same expression (leads to £ = 1/4 for d = 2 and
g =1/6ford=3) ...
...even if the diamond cells may no longer be chosen as cones (it is not possible to split
a general quadrangle in four cones of equal volume having the edges as basis).
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Definition of the convection operator

Building a discrete mass balance over the dual cells (5/5)

> For locally refined mesh, find a solution to the system (H1):
Fo + Z Fe = 5? |: Z Fo":| .
e€€(Dy), eCK o’ €E(K)

which will lead to the same type of relation, still with constant (for each "topology")
coefficients.
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A derived ion op. on the primal mesh

Returning to the primal mesh

> A new mass flux through primal cells:
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A derived ion op. on the primal mesh

Returning to the primal mesh

For K € M, let us sum the convection terms over the faces of K and divide by 2 the
resulting equation, to get:

Z |Do'|( n+1 n+1 angzg)_’_% Z Z Fn n+1

c€E(K) c€E(K)e€&(Dy)

C;'('Hz -1

Define:

|Ds |
Kk = > 2o 2.
ce&(K)

1 1
1 1 1
Glg=—5 > Flatt+s > Rt
e€&(Dy),eCK e€&(Dy),eZ K

Reordering of the summations:

n K n n n
CK+IZ = % ((p2)f L (pz)g) + Z GKT;.
oce&(K)
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A derived ion op. on the primal mesh

Returning to the primal mesh

_(F51+F€2+F€3+F€4)
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Weak consistency

Weak consistency

We now suppose given a sequence of meshes (./\/l("’)),,,eN and time discretizations
(T(™) men, with A (m) and St (m) tending to zero as m tends to +oo.

For me N, let p(™, u(™ and z(™) be discrete functions corresponding to the approximation
on the mesh M(™ and with the time discretization 7(™) of the density, the velocity and z
respectively, defined by:

Nm) g

(x,t) = Z Z Pk Xk Xty tni1)>

n=0 e p(m)
n(m)

—1
M= 3 D ul Ap, Xyt ia):
n=0 ,cg(m)
N(m) _q
™(x, t) = Z Z 25 XDy Nty tni1)s
n=0 ,cg(m

with Xy, Xp, and A, +,.,) the characteristic function of K, D, and the interval [tn, th+1).

We suppose that

p(m)

in L1(Q x (0, T)), and that these sequences are uniformly bounded in L>°(Q x (0, T)).

—p, o™ @ Mz
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Weak consistency

Weak consistency

Let o € C°(Q2 x [0, T)) and let us define pj by
Pk = p(xk, ta), for K € M™ and 0 < n < N(™),

where x i stands for an arbitrary point of K.

Let
N(m) g
Z ot Z C;'('Hz <pK7T( )+T(gw),
n=0 KeM( )
m)_y
T = Z > \K| ((p2)i™* = (p2))
n=| 0 KeM
le - Z ot Z SaK Z Gn+1
KeM(m) o€&(K)
Then

m)—>—/ /pz Gtgodxdt—/po(x)zo(x) »(x,0)dx, T —>—/ /ﬁEE-chdxdt.
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Weak consistency  The time-derivative term

Weak consistency of the time derivative term

Lemma (Consistency of the time derivative term)

-
Té()':) — —/ /ﬁ? Btcpdxdt—/ po(x) zo(x) p(x,0)dx.
0 Q Q

Sketch of proof
(pz) = —1 E —l | PD, Z
K K 2 Dy 205

| | ce&(K)

Since Z |Dg|7é|K

ce&(K) 2

, the function (pz) oscillates, and don’t converge (strongly) to pz.

However, (pz) weakly converges to 5z in L. Indeed:

> (p2)ktk = Y _ (DKol px + DL ol pL) 2o

Kem eg<r

Y + UL
2 K

and, with vk , the mean value of ¥ over Dk .,

Z(lDK,Jl Pk YK,o + DLl pL VL0) 20 = / plmMz(m)y dx,

oce€ Q

so, by regularity of ¢ ...

Then, integrating by parts in time make a discrete time derivative of ¢ appear which
converges to Orp in L*(Q2 x (0, T)) ...
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Weak consistency  The time-derivative term

Q

over Dk o, p = pK, 2 = z5
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Weak consistency  The divergence term

A weakly convergent gradient (1/2)

Define
NOm)
lo|
Vg = D51 (Pl —ekInk.or Vero(t)= > > Vol Xp, Xy )
n=0 o.eg(m)

(Eymard & Gallouét, SINUM, 2000))
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Weak consistency  The divergence term

A weakly convergent gradient (2/2)

‘9/Vv1 defined by
lol Ixe — xk]

oY, = m
M 0€Eins, o=K|L |Deo|

(characterization of the regularity of the mesh)

Lemma

(M™) L cn sequence of meshes, QL(M) <0V formeN.

Then the sequence (V g(m) 1(m) P)men is bounded in L (Q x (0, T))9 uniformly with
respect to m and converges to YV in L>(Q x (0, T))9 weak .
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Weak consistency  The divergence term

How to use this weakly convergent gradient. ..

> Let
Gk

+
D] * 7 Dy |

,o

‘DK,O" ‘DL,O"
= \U\ [ pl_] Zo Ug " NK -

Then

g
S ok Y e = 3 [IDkol okt IDeoloc] 2o o A7 ok — 1) mxco
KeM ce&(K) gEE e

:/pzu-Vgapdx.
Q
» Unfortunately Gk, # éK,cr-
14

over Dk 5, p = pK, Z =20, U = Ug
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Weak consistency  The divergence term

Convergence to zero of "discrete jumps"

For u € L*(Q x (0, T)), u;'<+1 mean value of u over K X (tn, tot1), [U"]o = |ufk — u]|,
[uk]™ = lue"™ — ufel.

T am,7u defined by:

N—1

N—-1
Trzu= 3 (tar—ta) > [Dallt" ™o+ 3 (tner —ta) S [K|[ux]".
n=0 n=1

= oc€Eint,0=K]|L KeM

O defined by
|Ds |

max max .
KeMoctk |K]|

Opr =

Lemma
(M("’))meN a sequence of meshes such that 6, ,m) < 6 for all m € N. We suppose that the
number of faces of a cell K € M(™) s pounded by N¢, for all m € N.

(up)pen a sequence of functions of L*(Q x (0, T)) such that up, — u in L1(Q x (0, T)) as
p — +00.
Then T, (m) (m)Up tends to zero when m tends to +oo uniformly with respect to p € N.
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Weak consistency  The divergence term

Weak consistency of the divergence term
Lemma (Consistency of the divergence term)

dw / / pzu-Vepdxdt.

Sketch of proof — By a discrete integration by parts with respect to the space, we get
something of the form:

Nim) g

(m) _ 1

Td'i,:/ - Z ot Z |D‘7‘ ;?ro |D |(90K QDZ)
=0 seelm o—kL
N(m) g

@DZ) "K,o'~

= > & > D GIt- |“"|

oeel™ s—K|L

int ’

The last term weakly converge to V. Then, struggle with uniform boudedness and the fact
that the space translates tend to zero to show that

N(m) 1
m)(x7 t)= Z Z GZ-H XD, Xty tni1)
n=0 ,cg(m)

converges to pzu in LY(Q2 x (0, T)).
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Weak consistency  The divergence term
Weak consistency of the divergence term
Sketch of proof (continued)

To this purpose, exploit the linear system defining the dual mass fluxes.

Fot > Fe=t | Y Rl

c€&(D o)\ (o} o/ CE(K)

A simple subcase, the steady case — In this specific situation,
Z Fo,ez_FK,a:_|0'| Pols - NK &,
e€&(Dk,o)\{o}
S0

GK,a:|0'| Pols - NK (Za_ Z 26_20)7
ec&(Dy)

Gy = pous (zaf Z Ze — za).

/ c&(Do)

and

e edges of the half-diamond cell

/ e edges of the primal cell
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Weak consistency  The divergence term

Conclusion

» \We derived a consistent velocity convection operator which yields a local kinetic energy
balance, for staggered discretizations based on (rather) general meshes.

» To obtain a consistent scheme for Euler equations:
collect the dissipation terms appearing in the kinetic energy balance,

ICT - i,o 1,o

DU n ul n DU n n n n
Pl it —upyupr = 2 [y — w7 4 i — o, 7]

(when refining the mesh, these dissipation terms act as measure born by shocks)
compensate them in the internal energy balance.

v

Provided that these dissipation terms are non-negative (implicit discretization or explicit
discretization under a CFL condition), the scheme preserves the positivity of the internal
energy (the density is positive by a simple upwinding of the mass balance).

Even if solving the internal energy balance, the scheme yields a "conservation equation"
for the total energy on the primal mesh.

v

» Pressure correction or explicit variants.

v

Entropy estimates are satisfied by these schemes.
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