# A velocity convection operator for unstructured staggered discretizations

#### J.-C. Latché<sup>3</sup>

joint work with T. Gallouët<sup>1</sup>, R. Herbin<sup>1</sup>, S. Minjeaud<sup>2</sup>

- Université d'Aix-Marseille
- Université Côte d'Azur
- <sup>3</sup> Institut de Radioprotection et de Sûreté Nucléaire (IRSN)

CALIF<sup>3</sup>S: https://gforge.irsn.fr/gf/project/califs

## Context: from incompressible to compressible flows

Objective – derive a scheme for Euler (or Navier-Stokes) equations:

 $\hookrightarrow$  which is a natural extension of an existing scheme for low Mach number flows: staggered discretization, upwinding with respect to the material velocity, solution of the internal energy balance  $\ldots$ 

 $\hookrightarrow$  to preserve the positivity of the internal energy: solution of the internal energy balance.

► Euler equations:

$$\begin{split} &\partial_t \varrho + \operatorname{div}(\varrho \boldsymbol{u}) = 0, \\ &\partial_t (\varrho \boldsymbol{u}) + \operatorname{div}(\varrho \boldsymbol{u} \otimes \boldsymbol{u}) + \boldsymbol{\nabla} \rho = 0, \\ &\partial_t (\varrho \boldsymbol{E}) + \operatorname{div}\left[(\varrho \boldsymbol{E} + \boldsymbol{p})\boldsymbol{u}\right] = 0, \\ &\rho = (\gamma - 1) \ \varrho e, \quad E = \frac{1}{2} |\boldsymbol{u}|^2 + e. \end{split}$$

► Formally, taking the scalar product of the momentum balance equation by **u** and using the mass balance equation yields the kinetic energy balance equation:

$$\partial_t (\varrho E_c) + \operatorname{div}(\varrho E_c \textbf{\textit{u}}) + \boldsymbol{\nabla} p \cdot \textbf{\textit{u}} = 0 \quad (\leq 0), \qquad E_c = \frac{1}{2} \, |\textbf{\textit{u}}|^2.$$

Subtracting to the total energy balance yields the internal energy balance:

$$\partial_t(\varrho e) + \operatorname{div}(\varrho e u) + p \operatorname{div} u = 0 \quad (\geq 0),$$

and, from this equation, we get  $e \ge 0$ .

### Context: from incompressible to compressible flows

Objective – derive a scheme for Euler (or Navier-Stokes) equations: staggered discretization, upwinding with respect to the material velocity, solution of the internal energy balance

- $\hookrightarrow$  but how to ensure the consistency ?
  - ▶ The scheme must be consistent with the conservative equations (so, the total energy balance), to compute the correct shock solutions.
  - so try to take the reverse course ?
    - take the inner product of the discrete momentum balance equation by u to obtain a kinetic energy balance,
    - add to the discrete internal energy balance.
  - Needs a discrete local kinetic energy balance.

In the incompressible case, a global kinetic energy balance is also an important feature of the scheme (stability, convergence analysis, dissipation properties for Large Eddy Simulation of turbulent flows. . .).

Staggered schemes for compressible flows: Harlow & Amsden, Wesseling and co-workers, Goudon and co-workers, Després and Dakin. . .

#### Outline

- Space discretization
- Derivation of a discrete kinetic energy balance
- Definition of the convection operator
- A derived convection operator on the primal mesh
- Weak consistency
  - The time-derivative term
  - The divergence term

# Space discretization (1/2)



 $\mathcal{E}$ ,  $\mathcal{E}(K)$ : faces of the primal mesh, faces of the control volume K.

 $ar{\mathcal{E}}$ ,  $ar{\mathcal{E}}(D_\sigma)$ : faces of the dual mesh, faces of the control volume  $D_\sigma$ .

# Space discretization (2/2)



## Derivation of a discrete kinetic energy balance

▶ Mass balance over  $D_{\sigma}$ ,  $C(z)_{\sigma}$ :

$$\begin{split} \mathcal{M}_{\sigma} &= \frac{|D_{\sigma}|}{\delta t} (\rho_{D_{\sigma}}^{n+1} - \rho_{D_{\sigma}}^{n}) + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma})} F_{\sigma,\epsilon} = 0, \\ \mathcal{C}_{\sigma} z &= \frac{|D_{\sigma}|}{\delta t} (\rho_{D_{\sigma}}^{n+1} z_{\sigma}^{n+1} - \rho_{D_{\sigma}}^{n} z_{\sigma}^{n}) + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma})} F_{\sigma,\epsilon} \ z_{\epsilon}^{n+1}. \end{split}$$

$$C_{\sigma}z = \frac{|D_{\sigma}|}{\delta t} \rho_{D_{\sigma}}^{n}(z_{\sigma}^{n+1} - z_{\sigma}^{n}) + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma})} F_{\sigma,\epsilon} \left(z_{\epsilon}^{n+1} - z_{\sigma}^{n+1}\right) + z_{\sigma}^{n+1} \mathcal{M}_{\sigma}.$$

$$z_{\sigma}^{n+1} \mathcal{C}_{\sigma} z = \frac{1}{2} \frac{|D_{\sigma}|}{\delta t} \rho_{D_{\sigma}}^{n} \left( (z_{\sigma}^{n+1})^{2} - (z_{\sigma}^{n})^{2} \right) + \frac{1}{2} \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\epsilon})} F_{\sigma,\epsilon} \left( (z_{\epsilon}^{n+1})^{2} - (z_{\sigma}^{n+1})^{2} \right) + \mathcal{R}.$$

with  $R \ge 0$  - Tool:  $2a(a - b) = a^2 - b^2 + (a - b)^2$ .

$$\frac{1}{2}\rho(\partial_t z^2 + \boldsymbol{u} \cdot \nabla z^2) = \frac{1}{2}\partial_t(\rho z^2) + \frac{1}{2}\mathrm{div}(\rho z^2 \boldsymbol{u}):$$

$$z_{\sigma}^{n+1}\mathcal{C}_{\sigma}z = \frac{1}{2}\frac{|D_{\sigma}|}{\delta t}(\rho_{D_{\sigma}}^{n+1}(z_{\sigma}^{n+1})^2 - \rho_{D_{\sigma}}^n(z_{\sigma}^n)^2) + \frac{1}{2}\sum_{\boldsymbol{c}\in \overline{\mathcal{C}}(D_{\sigma})} F_{\sigma,\epsilon}\left(z_{\epsilon}^{n+1}\right)^2 + \mathcal{R}.$$

## Definition of the convection operator

► From the mass balance over the primal cells:

$$\frac{|K|}{\delta t}(\rho_K^{n+1}-\rho_K^n)+\sum_{\sigma\in\mathcal{E}(K)}F_{K,\sigma}=0,$$

define

$$\rho_{D_{\sigma}}, F_{\sigma,\epsilon},$$

► such as the mass balance over the dual cells holds:

$$\frac{|D_{\sigma}|}{\delta t}(\rho_{D_{\sigma}}^{n+1}-\rho_{D_{\sigma}}^{n})+\sum_{\epsilon\in\tilde{\mathcal{E}}(D_{\sigma})}F_{\sigma,\epsilon}=0.$$

## Building a discrete mass balance over the dual cells (1/5)

Let:

$$\forall \sigma = K | L \in \mathcal{E}_{\text{int}}, \qquad \mathbf{D}_{\sigma} = \mathbf{D}_{K,\sigma} \cup \mathbf{D}_{L,\sigma}, \quad \rho_{\mathcal{D}_{\sigma}} = \underbrace{\frac{|D_{K,\sigma}|}{|D_{\sigma}|}}_{\xi_{K}^{\sigma}} \rho_{K} + \underbrace{\frac{|D_{L,\sigma}|}{|D_{\sigma}|}}_{\xi_{L}^{\sigma}} \rho_{L}.$$

$$\xi_K^{\sigma} \geq$$
 0, and  $\sum_{\sigma \in \mathcal{E}(K)} \xi_K^{\sigma} = 1$ .

#### Assume:

(H1) A discrete mass balance over the half-diamond cells is satisfied, in the following sense:

$$\forall \mathsf{K} \in \mathcal{M}, \ \forall \sigma \in \mathcal{E}(\mathsf{K}), \qquad F_{\sigma} + \sum_{\epsilon \in \tilde{\mathcal{E}}(D_{\sigma}), \ \epsilon \subset \mathsf{K}} F_{\epsilon} = \xi_{\mathsf{K}}^{\sigma} \ \Big[ \sum_{\sigma' \in \mathcal{E}(\mathsf{K})} F_{\sigma'} \Big],$$



edges of the half-diamond cell

edges of the primal cell

# Building a discrete mass balance over the dual cells (2/5)

lf:

$$\begin{split} \forall \sigma &= K | L \in \mathcal{E}_{\mathrm{int}}, & | D_{\sigma} | = \xi_K^{\sigma} | K | + \xi_L^{\sigma} | L |, & | D_{\sigma} | \rho_{D_{\sigma}} = \xi_K^{\sigma} | K | \rho_K + \xi_L^{\sigma} | K | \rho_L. \\ \forall K \in \mathcal{M}, \; \forall \sigma \in \mathcal{E}(K), & F_{\sigma} + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma}), \; \epsilon \subset K} F_{\epsilon} = \xi_K^{\sigma} \left[ \sum_{\sigma' \in \mathcal{E}(K)} F_{\sigma'} \right]. \end{split}$$

#### Then



# Building a discrete mass balance over the dual cells (3/5)

#### ... so we need:

$$\begin{split} \forall \sigma &= K \big| L \in \mathcal{E}_{\mathrm{int}}, & |D_{\sigma}| = \xi_{K}^{\sigma} \, |K| + \xi_{L}^{\sigma} \, |L|, & |D_{\sigma}| \, \rho_{D_{\sigma}} = \xi_{K}^{\sigma} \, |K| \, \rho_{K} + \xi_{L}^{\sigma} \, |K| \, \rho_{L}. \\ \forall K \in \mathcal{M}, \; \forall \sigma \in \mathcal{E}(K), & F_{\sigma} + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma}), \; \epsilon \subset K} F_{\epsilon} = \xi_{K}^{\sigma} \, \left[ \sum_{\sigma' \in \mathcal{E}(K)} F_{\sigma'} \right]. \end{split}$$

Let us choose  $\xi_{\kappa}^{\sigma} = 1/\text{number of faces}$ .

- The above system is independent of the cell (in other words, one may choose a unique expression of the dual mass fluxes as a function of the primal ones).
- The dual mesh is only viewed through ξ<sup>σ</sup><sub>K</sub> and the sub-cell connectivities, so is completely abstract, and sometimes necessarily non-polygonal.



# Building a discrete mass balance over the dual cells (4/5)



▶ Let w<sub>K</sub> be such that:

$$\operatorname{div}(\boldsymbol{w}_K) = cste, \quad \int_{\sigma} \boldsymbol{w}_K \cdot \boldsymbol{n}_{K,\sigma} = F_{K,\sigma}, \ \forall \sigma \in \mathcal{E}(K).$$

Example (1D, and on rectangular (2D and 3D) meshes):

$$\mathbf{w}_{K} = \frac{x_{\sigma'} - x}{x_{\sigma'} - x_{\sigma}} F_{K,\sigma} + \frac{x - x_{\sigma}}{x_{\sigma'} - x_{\sigma}} F_{K,\sigma'}.$$

Let:

$$F_{\sigma,\epsilon} = \int_{\epsilon} \mathbf{w}_{K} \cdot \mathbf{n}_{\sigma,\epsilon}, \ \forall \epsilon \in \bar{\mathcal{E}}(D_{K,\sigma}).$$

Then

$$\sum_{\epsilon \in \bar{\mathcal{E}}(D_{K,\sigma})} F_{\sigma,\epsilon} = \int_{D_{K,\sigma}} \operatorname{div} \mathbf{w}_K = \frac{|D_{K,\sigma}|}{|K|} \int_K \operatorname{div} \mathbf{w}_K = \frac{|D_{K,\sigma}|}{|K|} \sum_{\sigma \in \mathcal{E}(K)} F_{K,\sigma}.$$

# Building a discrete mass balance over the dual cells (4/5)



For Crouzeix-Raviart elements, and for Rannacher-Turek elements on rectangular (2D and 3D) meshes, the construction of mass fluxes uses a constant divergence momentum function having the primal mass fluxes as traces (previous computation). This yields expressions of the form:

$$F_{\epsilon} = \alpha_W^{\epsilon} F_W + \alpha_N^{\epsilon} F_N + \alpha_F^{\epsilon} F_E + \alpha_S^{\epsilon} F_S.$$

with constant coefficients  $\alpha_{\sigma}^{\epsilon}$  (bounded would be sufficient for consistency).

- For general quadrangles, keep the same expression (leads to  $\xi_K^\sigma=1/4$  for d=2 and  $\xi_K^\sigma=1/6$  for  $d=3)\dots$ 
  - even if the diamond cells may no longer be chosen as cones (it is not possible to split a general quadrangle in four cones of equal volume having the edges as basis).

# Building a discrete mass balance over the dual cells (5/5)



▶ For locally refined mesh, find a solution to the system (H1):

$$\forall \mathsf{K} \in \mathcal{M}, \ \forall \sigma \in \mathcal{E}(\mathsf{K}), \qquad F_{\sigma} + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma}), \ \epsilon \subset \mathsf{K}} F_{\epsilon} = \xi_{\mathsf{K}}^{\sigma} \ \Big[ \sum_{\sigma' \in \mathcal{E}(\mathsf{K})} F_{\sigma'} \Big].$$

which will lead to the same type of relation, still with constant (for each "topology") coefficients.

## Returning to the primal mesh

A new mass flux through primal cells:



## Returning to the primal mesh

For  $K \in \mathcal{M}$ , let us sum the convection terms over the faces of K and divide by 2 the resulting equation, to get:

$$C_K^{n+1}z = \frac{1}{\delta t} \sum_{\sigma \in \mathcal{E}(K)} \frac{|D_{\sigma}|}{2} (\rho_{D_{\sigma}}^{n+1} z_{\sigma}^{n+1} - \rho_{D_{\sigma}}^{n} z_{\sigma}^{n}) + \frac{1}{2} \sum_{\sigma \in \mathcal{E}(K)} \sum_{\epsilon \in \mathcal{E}(D_{\sigma})} F_{\sigma,\epsilon}^{n} z_{\epsilon}^{n+1}.$$

Defi ne:

$$|K| (\rho z)_K^n = \sum_{\sigma \in \mathcal{E}(K)} \frac{|D_{\sigma}|}{2} \rho_{D_{\sigma}}^n z_{\sigma}^n, \tag{1}$$

$$G_{K,\sigma}^{n+1} = -\frac{1}{2} \sum_{\epsilon \in \mathcal{E}(D_{\sigma}), \epsilon \subset K} F_{\sigma,\epsilon}^{n} \ z_{\epsilon}^{n+1} + \frac{1}{2} \sum_{\epsilon \in \mathcal{E}(D_{\sigma}), \epsilon \not\subset K} F_{\sigma,\epsilon}^{n} \ z_{\epsilon}^{n+1}. \tag{2}$$

Reordering of the summations:

$$C_K^{n+1}z = \frac{|K|}{\delta t} \left( (\rho z)_K^{n+1} - (\rho z)_K^n \right) + \sum_{\sigma \in \mathcal{E}(K)} G_{K,\sigma}^{n+1}.$$

## Returning to the primal mesh



## Weak consistency

We now suppose given a sequence of meshes  $(\mathcal{M}^{(m)})_{m\in\mathbb{N}}$  and time discretizations  $(\mathcal{T}^{(m)})_{m\in\mathbb{N}}$ , with  $h_{\mathcal{M}^{(m)}}$  and  $\delta t_{\mathcal{T}^{(m)}}$  tending to zero as m tends to  $+\infty$ .

For  $m \in \mathbb{N}$ , let  $\rho^{(m)}$ ,  $u^{(m)}$  and  $z^{(m)}$  be discrete functions corresponding to the approximation on the mesh  $\mathcal{M}^{(m)}$  and with the time discretization  $\mathcal{T}^{(m)}$  of the density, the velocity and z respectively, defined by:

$$\rho^{(m)}(\mathbf{x},t) = \sum_{n=0}^{N^{(m)}-1} \sum_{K \in \mathcal{M}^{(m)}} \rho_K^n \ \mathcal{X}_K \ \mathcal{X}_{[t_n,t_{n+1})},$$

$$\mathbf{u}^{(m)}(\mathbf{x},t) = \sum_{n=0}^{N^{(m)}-1} \sum_{\sigma \in \mathcal{E}^{(m)}} \mathbf{u}_{\sigma}^n \ \mathcal{X}_{D_{\sigma}} \ \mathcal{X}_{[t_n,t_{n+1})},$$

$$\mathbf{z}^{(m)}(\mathbf{x},t) = \sum_{n=0}^{N^{(m)}-1} \sum_{\sigma \in \mathcal{E}^{(m)}} \mathbf{z}_{\sigma}^n \ \mathcal{X}_{D_{\sigma}} \ \mathcal{X}_{[t_n,t_{n+1})},$$

with  $\mathcal{X}_K$ ,  $\mathcal{X}_{D_{\sigma}}$  and  $\mathcal{X}_{[t_n,t_{n+1})}$  the characteristic function of K,  $D_{\sigma}$  and the interval  $[t_n,t_{n+1})$ .

We suppose that

$$ho^{(m)}
ightarrowar
ho, \quad oldsymbol{u}^{(m)}
ightarrowar{oldsymbol{u}}, \quad z^{(m)}
ightarrowar{ar{z}}$$

in  $L^1(\Omega \times (0,T))$ , and that these sequences are uniformly bounded in  $L^\infty(\Omega \times (0,T))$ .

## Weak consistency

Let  $arphi \in \mathit{C}^{\infty}_{c}(\Omega imes [0, \mathit{T}))$  and let us define  $arphi_{\mathit{K}}^{\mathit{n}}$  by

$$\varphi_{K}^{\textit{n}} = \varphi(\textit{\textbf{x}}_{\textit{K}},t_{\textit{\textbf{n}}}), \text{ for } \textit{K} \in \mathcal{M}^{(\textit{\textbf{m}})} \text{ and } 0 \leq \textit{\textbf{n}} \leq \textit{\textbf{N}}^{(\textit{\textbf{m}})},$$

where  $x_K$  stands for an arbitrary point of K.

Let

$$\begin{split} &\sum_{n=0}^{N^{(m)}-1} \delta t \sum_{K \in \mathcal{M}^{(m)}} C_K^{n+1} z \ \varphi_K^n = T_{\partial t}^{(m)} + T_{\mathrm{div}}^{(m)}, \\ &T_{\partial t}^{(m)} = \sum_{n=0}^{N^{(m)}-1} \sum_{K \in \mathcal{M}^{(m)}} |K| \left( (\rho z)_K^{n+1} - (\rho z)_K^n \right) \ \varphi_K^n \\ &T_{\mathrm{div}}^{(m)} = \sum_{n=0}^{N^{(m)}-1} \delta t \sum_{K \in \mathcal{M}^{(m)}} \varphi_K^n \sum_{\sigma \in \mathcal{E}(K)} G_{K,\sigma}^{n+1}. \end{split}$$

Then

$$T_{\partial t}^{(m)} \to -\int_0^T \int_{\Omega} \bar{\rho} \, \bar{\mathbf{z}} \, \, \partial_t \varphi \, \mathrm{d}\mathbf{x} \, \mathrm{d}t - \int_{\Omega} \rho_0(\mathbf{x}) \, z_0(\mathbf{x}) \, \varphi(\mathbf{x}, 0) \, \mathrm{d}\mathbf{x}, \ T_{\mathrm{div}}^{(m)} \to -\int_0^T \int_{\Omega} \bar{\rho} \, \bar{\mathbf{z}} \, \bar{\mathbf{u}} \cdot \boldsymbol{\nabla} \varphi \, \mathrm{d}\mathbf{x} \, \mathrm{d}t.$$

## Weak consistency of the time derivative term

#### Lemma (Consistency of the time derivative term)

$$T_{\partial t}^{(m)} \to -\int_0^T \int_{\Omega} \bar{\rho} \, \bar{z} \, \partial_t \varphi \, \mathrm{d}\mathbf{x} \, \mathrm{d}t - \int_{\Omega} \rho_0(\mathbf{x}) \, z_0(\mathbf{x}) \, \varphi(\mathbf{x}, 0) \, \mathrm{d}\mathbf{x}.$$

#### Sketch of proof

$$(\rho z)_{K} = \frac{1}{|K|} \sum_{\sigma \in \mathcal{E}(K)} \frac{|D_{\sigma}|}{2} \rho_{D_{\sigma}} z_{\sigma},$$

Since  $\sum \frac{|D_{\sigma}|}{2} \neq |K|$ , the function  $(\rho z)$  oscillates, and don't converge (strongly) to  $\bar{\rho}\bar{z}$ .

However,  $(\rho z)$  weakly converges to  $\bar{\rho}\bar{z}$  in  $L^1$ . Indeed:

$$\sum_{K \in \mathcal{M}} (\rho z)_K \psi_K = \sum_{\sigma \in \mathcal{E}} (|D_{K,\sigma}| \ \rho_K + |D_{L,\sigma}| \ \rho_L) \ z_\sigma \ \frac{\psi_K + \psi_L}{2},$$

and, with  $\psi_{K,\sigma}$  the mean value of  $\psi$  over  $D_{K,\sigma}$ ,

$$\sum_{\sigma \in \mathcal{E}} (|D_{K,\sigma}| \ \rho_K \ \psi_{K,\sigma} + |D_{L,\sigma}| \ \rho_L \ \psi_{L,\sigma}) \ z_{\sigma} = \int_{\Omega} \rho^{(m)} z^{(m)} \psi \, \mathrm{d} x,$$

Weak consistency of F. V. schemes

so, by regularity of  $\psi$  ....

Then, integrating by parts in time make a discrete time derivative of arphi appear which converges to  $\partial_t \varphi$  in  $L^{\infty}(\Omega \times (0, T))$ 



over  $D_{K,\sigma}$ ,  $\rho=
ho_K$ ,  $z=z_\sigma$ 

### Defi ne

$$\boldsymbol{\nabla} \varphi_{\sigma}^{n} = \frac{|\sigma|}{|D_{\sigma}|} \; (\varphi_{L}^{n} - \varphi_{K}^{n}) \boldsymbol{n}_{K,\sigma}, \quad \boldsymbol{\nabla}_{\mathcal{E},\mathcal{T}} \; \varphi(\mathbf{x},t) = \sum_{n=0}^{N^{(m)}-1} \sum_{\sigma \in \mathcal{E}^{(m)}} \boldsymbol{\nabla} \varphi_{\sigma}^{n} \; \mathcal{X}_{D_{\sigma}} \; \mathcal{X}_{[t_{n},t_{n+1})}$$

(Eymard & Gallouët, SINUM, 2000))



# A weakly convergent gradient (2/2)



 $\theta_{\mathcal{M}}^{\nabla}$  defined by

$$\theta_{\mathcal{M}}^{\nabla} = \max_{\sigma \in \mathcal{E}_{\mathrm{int}}, \, \sigma = K \mid L} \frac{|\sigma| \, |\mathbf{x}_L - \mathbf{x}_K|}{|D_{\sigma}|}$$

(characterization of the regularity of the mesh)

#### Lemma

 $(\mathcal{M}^{(m)})_{m\in\mathbb{N}}$  sequence of meshes,  $\theta^{\nabla}_{\mathcal{M}^{(m)}}\leq \theta^{\nabla}$  for  $m\in\mathbb{N}$ .

Then the sequence  $(\nabla_{\mathcal{E}^{(m)},\mathcal{T}^{(m)}}\varphi)_{m\in\mathbb{N}}$  is bounded in  $L^{\infty}(\Omega\times(0,T))^d$  uniformly with respect to m and converges to  $\nabla \varphi$  in  $L^{\infty}(\Omega \times (0,T))^d$  weak  $\star$ .

## How to use this weakly convergent gradient...

▶ Let

$$\tilde{\mathbf{G}}_{K,\sigma} = |\sigma| \left[ \frac{|D_{K,\sigma}|}{|D_{\sigma}|} \rho_{K} + \frac{|D_{L,\sigma}|}{|D_{\sigma}|} \rho_{L} \right] \mathbf{z}_{\sigma} \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K,\sigma}.$$

Then

$$\begin{split} \sum_{K \in \mathcal{M}} \varphi_K \sum_{\sigma \in \mathcal{E}(K)} \tilde{G}_{K,\sigma} &= \sum_{\sigma \in \mathcal{E}} \Big[ |D_{K,\sigma}| \; \rho_K + |D_{L,\sigma}| \rho_L \Big] \; z_\sigma \; \boldsymbol{u}_\sigma \cdot \frac{|\sigma|}{|D_\sigma|} (\varphi_K - \varphi_L) \; \boldsymbol{n}_{K,\sigma} \\ &= \int_{\Omega} \rho \, \boldsymbol{z} \, \boldsymbol{u} \cdot \boldsymbol{\nabla}_{\mathcal{E}} \varphi \, \mathrm{d} \boldsymbol{x}. \end{split}$$

lacksquare Unfortunately  $G_{K,\sigma}
eq ilde{G}_{K,\sigma}$ 



over  $D_{K,\sigma}$ ,  $\rho = \rho_K$ ,  $z = z_\sigma$ ,  $\boldsymbol{u} = \boldsymbol{u}_\sigma$ 

## Convergence to zero of "discrete jumps"

For  $u \in L^1(\Omega \times (0,T))$ ,  $u_K^{n+1}$  mean value of u over  $K \times (t_n,t_{n+1})$ ,  $[u^n]_{\sigma} = |u_K^n - u_I^n|$ ,  $[u_K]^n = |u_K^{n+1} - u_K^n|$ 

 $T_{\mathcal{M}} \tau u$  defined by:

$$T_{\mathcal{M},\mathcal{T}}u = \sum_{n=0}^{N-1} (t_{n+1} - t_n) \sum_{\sigma \in \mathcal{E}_{int}, \sigma = K|L} |D_{\sigma}|[u^{n+1}]_{\sigma} + \sum_{n=1}^{N-1} (t_{n+1} - t_n) \sum_{K \in \mathcal{M}} |K|[u_K]^n.$$

 $\theta_{\mathcal{M}}$  defined by

$$\theta_{\mathcal{M}} = \max_{K \in \mathcal{M}} \max_{\sigma \in \mathcal{E}_K} \frac{|D_{\sigma}|}{|K|}.$$

#### Lemma

 $(\mathcal{M}^{(m)})_{m\in\mathbb{N}}$  a sequence of meshes such that  $\theta_{\mathcal{M}^{(m)}}\leq \theta$  for all  $m\in\mathbb{N}$ . We suppose that the number of faces of a cell  $K \in \mathcal{M}^{(m)}$  is bounded by  $\mathcal{N}_{\mathcal{E}}$ , for all  $m \in \mathbb{N}$ .

 $(u_p)_{p\in\mathbb{N}}$  a sequence of functions of  $L^1(\Omega\times(0,T))$  such that  $u_p\to u$  in  $L^1(\Omega\times(0,T))$  as  $p \to +\infty$ .

Then  $T_{\mathcal{M}(m)}|_{\mathcal{T}(m)}u_p$  tends to zero when m tends to  $+\infty$  uniformly with respect to  $p \in \mathbb{N}$ .

### Weak consistency of the divergence term

#### Lemma (Consistency of the divergence term)

$$T_{\mathrm{div}}^{(m)} \to -\int_0^T \int_{\Omega} \bar{\rho} \, \bar{z} \, \bar{\boldsymbol{u}} \cdot \boldsymbol{\nabla} \varphi \, \mathrm{d}\boldsymbol{x} \, \mathrm{d}t.$$

Sketch of proof - By a discrete integration by parts with respect to the space, we get something of the form:

$$\begin{split} \mathcal{T}_{\mathrm{div}}^{(m)} &= \sum_{n=0}^{N^{(m)}-1} \delta t \sum_{\sigma \in \mathcal{E}_{\mathrm{int}}^{(m)}, \, \sigma = K|L} |D_{\sigma}| \, G_{K,\sigma}^{n+1} \, \frac{1}{|D_{\sigma}|} (\varphi_{K}^{n} - \varphi_{L}^{n}) \\ &= \sum_{n=0}^{N^{(m)}-1} \delta t \sum_{\sigma \in \mathcal{E}_{\mathrm{int}}^{(m)}, \, \sigma = K|L} |D_{\sigma}| \, G_{\sigma}^{n+1} \cdot \, \frac{|\sigma|}{|D_{\sigma}|} (\varphi_{K}^{n} - \varphi_{L}^{n}) \, \mathbf{n}_{K,\sigma}. \end{split}$$

The last term weakly converge to ablaarphi . Then, struggle with uniform boudedness and the fact that the space translates tend to zero to show that

$$\boldsymbol{G}^{(m)}(\boldsymbol{x},t) = \sum_{n=0}^{N^{(m)}-1} \sum_{\sigma \in \mathcal{E}^{(m)}} \boldsymbol{G}_{\sigma}^{n+1} \mathcal{X}_{D_{\sigma}} \mathcal{X}_{[t_{n},t_{n+1})},$$

converges to  $\bar{\rho} \bar{z} \bar{u}$  in  $L^1(\Omega \times (0, T))$ .

#### Sketch of proof (continued)

To this purpose, exploit the linear system defining the dual mass fluxes.

$$\forall \mathsf{K} \in \mathcal{M}, \ \forall \sigma \in \mathcal{E}(\mathsf{K}), \qquad F_{\sigma} + \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\mathbf{K},\sigma}) \setminus \{\sigma\}} F_{\epsilon} = \xi_{\mathsf{K}}^{\sigma} \ \Big[ \sum_{\sigma' \in \mathcal{E}(\mathsf{K})} F_{\sigma'} \Big].$$

A simple subcase, the steady case - In this specific situation,

$$\sum_{\epsilon \in \bar{\mathcal{E}}(D_{K,\sigma}) \setminus \{\sigma\}} F_{\sigma,\epsilon} = -F_{K,\sigma} = -|\sigma| \ \rho_{\sigma} \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K,\sigma},$$

so

$$G_{K,\sigma} = |\sigma| \ \rho_{\sigma} \mathbf{u}_{\sigma} \cdot \mathbf{n}_{K,\sigma} \ \Big( z_{\sigma} - \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma})} z_{\epsilon} - z_{\sigma} \Big),$$

and

$$\mathbf{G}_{\sigma} = \rho_{\sigma} \mathbf{u}_{\sigma} \Big( \mathbf{z}_{\sigma} - \sum_{\epsilon \in \bar{\mathcal{E}}(D_{\sigma})} \mathbf{z}_{\epsilon} - \mathbf{z}_{\sigma} \Big).$$



edges of the half-diamond cell

### Conclusion

- ▶ We derived a consistent velocity convection operator which yields a local kinetic energy balance, for staggered discretizations based on (rather) general meshes.
- To obtain a consistent scheme for Euler equations:
  - collect the dissipation terms appearing in the kinetic energy balance,

$$\frac{|D_{\sigma}|}{\delta t} (u_{i,\sigma}^{n+1} - u_{i,\sigma}^{n}) u_{i,\sigma}^{n+1} = \frac{|D_{\sigma}|}{\delta t} \left[ (u_{i,\sigma}^{n+1})^{2} - (u_{i,\sigma}^{n})^{2} + (u_{i,\sigma}^{n+1} - u_{i,\sigma}^{n})^{2} \right]$$

(when refining the mesh, these dissipation terms act as measure born by shocks)

- compensate them in the internal energy balance.
- Provided that these dissipation terms are non-negative (implicit discretization or explicit discretization under a CFL condition), the scheme preserves the positivity of the internal energy (the density is positive by a simple upwinding of the mass balance).
- Even if solving the internal energy balance, the scheme yields a "conservation equation" for the total energy on the primal mesh.
- Pressure correction or explicit variants.
- Entropy estimates are satisfied by these schemes.