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QOutline

1. cutFEM, levelset geometries
2. cutFEM with hybridization,
polygonal grains

3. A Hybridized High Order (HHO)
method with cut cells

Figure: SEM image of sandstone, width ~ 1
mm. [Baud et al. J. of Struct. Geo. 2004].



Solving PDEs on meshes that are not fitted to the domain

Figure: Can we solve PDEs on embedded domains (left) or embedded surfaces (right)

> Imposition of boundary conditions: [Nitsche 1971], [Babuska 1973].

> Fictitious domain methods: [Girault, Glowinski 1995], [Angot 1998],
[Bertoluzza et al. 2005], [Haslinger, Renard 2009]

Unfitted FEM: [Barrett, Elliott 1987], [Hansbo, Hansbo 2002]
Trace finite elements: [Olshanskii et al. 2009]
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CutFEM - model problem

N

Consider Poisson’s equation: u : Q — R such that

—Au="f in Q
u=gp onlp
v-Vu=gpn on My

where v is the outward pointing normal of [
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Mesh and Finite Element Spaces.

Let

Uq be a polygonal domain such that Q C Uq

Th,o be a family of meshes on Uq with mesh parameter h € (0, ho]
77,:{7—677,’0 ﬁﬂ?#@}

Tr set of elements in T, that intersect the boundary '

Fp set of interior faces of elements in Tr

vV VvV vV VvV VY

Vu.n € HY(Uq) be a finite element space of order p on Tpo and Vi, = Vi al7;
Assume that
» [ is smooth (or a polygon with curved boundaries)

> [ “well resolved” by the mesh: any cut cell is divided in two parts, both
including a part of the triangle boundary



CutFEM |
Method. Find u, € V}, such that

An(un, vi) = Lp(vp) Vv, € V
where

An(un, vi) = an(un, vi) + sa(un, vi)

> ap(u,v) and Lp(v): weak forms over Q, with weak boundary conditions

» Nitsche's method:

ah(u,v)::/Vu-Vvdx— (v-Vuv +v-Vvu— %uv)ds
@ o consistency ~ symmetry ~~~
coercivity

» Right hand side:

Ln(v) = (f,v)a + (gn, V)ry — (80.v - VV)r, + Bh (8D, V)1,



CutFEM I

> sp(u, v): stabilization added to make A, coercive, independently of the cut!
lunl2 7y S Nunllbnay + sn(uns un) S an(Un, up) +sn(un, un)
——
only control of H*(£)
> s, must also have some weak consistency
s(ipu — v, ipu — u)% < kP
» Example: penalty on derivative jumps:
p .
sh(Un, vh) =g Z thl’l/ [D,’,Fuh][D,’,th] ds
FEF, I=1 F

Here D] v denotes the /th partial derivative in the normal direction, [x]|F the
jump of the quantity x over the face F.

» There is now a zoo of different ghost penalty terms, both for cutFEM and
TraceFEM. [Lehrenfeld 2018], [Larson et al. 2018]

LEB. Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1217-1220.



CutFEM: Main Results (no geometry approximation)
Let the energy norm be defined by

VI = [IvliF@) + IVIE, + A IVIE, + Alln- VvI?,

» Coercivity
VI[P S An(v,v)  veV,
> Continuity
An(v,w) SIIVIIIWIT - vow e HPFY(TR) + Va
> Interpolation estimate

» u® € HP™(T}) stable extension of u € HP!(T;) (Stein)
» 7 1 HPM(75) — V4 optimal interpolation operator

u® = maull] S APllullp4a

» A priori error estimates (Modified argument for H'*<(Q), ¢ > 0)

lu = unllne) < Mllu® = unlll S PPllullpss, llu—=unle < A7 ullpi

v

Estimate of the stiffness matrix condition number: | x(A) < h™2



Applications, two-phase flows shape optimization? 3 #

7

2EB, S. Claus, A. Massing, A Stabilized Cut Finite Element Method for the Three Field Stokes
Problem, SISC, vol 37 (7), 2015.

3S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, arXiv:1806.10156

4EB, D. Elfverson, P. Hansbo, M. Larson, K. Larsson, Shape optimization using the cut finite
element method. CMAME (2018).



Combining cutFEM and hybridization




cutFEM using hybridization

» Polyhedral boundaries (possibly curved faces)
> Introduce skeleton unknowns

» Motivation

Strongly varying diffusion between cells
» Strongly varying diffusion within a cell
> Inclusions

» Coupled PDEs on bulk and surfaces

v

» Hybridization allows elimination of bulk dofs
through static condensation

> The Q; and g« discretized on bulk mesh

» No requirement for the meshes to match

P
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Bulk and skeleton discretization (i = 3, k = 2)
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Figure: Ug, Tr(Ug;) Tha; = Thi
Qo’k I} g
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Figure: Uﬂo,k 77’(UQO,I<) ﬁ’,ﬂo,k = Th,o.k




Finite element spaces |

» For O € {Q;}!, let Vi, 0 be a finite dimensional space consisting of
continuous piecewise polynomial functions defined on 75, o

» we also use the simplified notation
Vhi=Vha,  Thi=The
No
and for O € {Qo «},21.
N
Vihok = Vi Tho,k = ThQos Tho = U2 170,k

» Define the finite element spaces

No N
Vho = @ Vh.0.k Vhin = @ Vi
k=1 i=1

and
Wp = Viho @ Vihin



The Poisson interface problem

We consider the following hybridized formulation of the Poisson problem: find
ug:Q — Randfori=1,...,N, uj: Q; — R such that

—V-.aVu =f in Q; (5)

[v-aVu] =0 on Qo (6)

[LI],' =0 on 092; N Qo (7)

u=0 on 99Q; N OQ (8)
Here a;, i = 1,..., N, are positive constants and the jumps operators are defined by
[u]loqna, = Ui — uo, [v - aVullanoq, = vi-aiVui +vj-ajVu  (9)

where v; is the exterior unit normal to ;.



The hybridized cutFEM method

» Find u, € W), such that

Ah(u;” V) = /h(V), Vv € W, (10)
where W, is defined in (4) and

N
An(v, w) = sho(vo, wo) + Z((QIVW Vwi)a, + sh,i(vi, w;)
-1
+ (Bh7 tai[v]i, W]i)eq, — (vi - aiVvi, [W])aa, — ([V]i Vi - aiVWi)aQ,)
N

h(v) = (fi,vi)a
i=1
» To ensure coercivity: stabilization both for the bulk and the skeleton variable.
» In each subdomain discretization equivalent to the fictitious domain case.

> In the fitted case this coincides with the hybridized Nitsche method proposed
in [Egger 2009].



Stabilization forms - bulk and surface ghost penalty

/

> Define set of faces in the interface zones, Fj; and Fp o«
» For each subdomain Q;, 1</ <N

spi(v, w) Zc“h” Y([DL V], [DE W) 7, (11)
> For each skeleton subdomain Qg x, 1 < k < Ny [Larson and Zahedi 2017]

sho.k(v,w) = ch e P (Dov, Diw)a,,  +([Dh, v, [P w]) 7,

normal stabilization jump stabilization

(12)



Main results, error estimates

>

v

v

v

v

energy norm (norm thanks to a Poincaré inequality):

N

VI = lIvollZ,, + > IV illd, o, + AV VillBe, o + h VI3, 0, + Vil

i=1

The following error estimates hold:

N

lu— unll5 S B2l wolZpsr2gg) + D PPl uillEs o
i=1

Also L2-norm error estimates.

Analysis: fictitious domain argument in each subdomain + Poincaré

Let S denote the stiffness matrix associated with the Schur complement, then

. —1
condition number: x(S) < h’1< min dQl.>
1<i<N

where h is the (uniform) mesh size and dq, is the diameter of domain ;.

(13)



Computional experiments
cutFEM and hybridization




Example 1: Three Subdomains. |
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Three subdomains
a=1i1=123.

Global Background Grid.

All meshes are extracted from the

same background grid of Q;
elements

Single Element Interfaces.

The mesh on each subdomain is
constructed independently, some as
quadrilateral meshes and some as
triangular, and we equip all
subdomain meshes with Q»/P
elements. On each skeleton
subdomain we use a single Q4
element.
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Example 1: Three Subdomains. |lI
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Example 2: Convergence study. |

0

20

Q,

Figure: Domain

Solution Gradient magnitude

Problem with known exact solution used in convergence studies.

» The domain is the unit square [0, 1]? partitioned into two subdomains

» material coefficients a; = 1 and a, = 27 — 1.



Example 2: Convergence study. |l

log [[|u — unllln

——Q,

log [[u — uy|
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Figure: Convergence studies using meshes all from the same background grid. In all
meshes the same elements are used (Q:1—Q3). Left: energy norm. Right: [%-norm.




Example 2: Convergence study. |lI

log [[lu = un[|n
S
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N R
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N
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A
(491 o
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Figure: Convergence studies using non-matching meshes for the subdomains and a single
polynomial for each skeleton subdomain. On the subdomains Q. elements are used and on
the skeleton subdomains Q:—Qs polynomials are used. Left: energy norm. Right: L?-norm.



Example 3: Voronoi Diagram. |

/ )

=

Figure: Subdivisions of the unit square [0, 1] generated from Voronoi diagrams featuring
varying material coefficients. Left: Domain with a randomly oriented mesh in each
subdomain and a material coefficient a which alternates between 1 and 1000 row-wise in
the mesh. Right: Domain with material coefficient a € [0.01, 1] which is constant within
each subdomain and chosen using a uniformly distributed random variable.

==




Example 3: Voronoi Diagram. I

Figure: Numerical solution us and gradient magnitude |V u,| on a Voronoi diagram
subdivision with a fine scale material coefficient pattern. On each subdomain a mesh
fitted the row-wise alternating material coefficient is set-up. The numerical solution is
approximated using Q. elements in the bulk. On each skeleton subdomain is approximated

by a single Q4 element.



Example 3: Voronoi Diagram. Ill

Figure: Numerical solution us and gradient magnitude |Vus| on a Voronoi diagram
subdivision with subdomain-wise constant material coefficient. Left: Q. elements on
meshes generated from one fine grid. Middle: @, elements on meshes generated from one
coarse grid with a mesh size in the same order as the subdomain sizes. Right: A single @
element on each subdomain and skeleton subdomain.



Hybrid High Order method and cut cells




Hybrid High-Order methods on unfitted meshes

v

Introduced in [Di Pietro, Ern 15]
k polynomial degree
mesh k=0 k=1 k=2

Py Py Py o—0—©
@ @ @ *—0—@

v

» in the case of unfitted meshes, we consider k on the faces and k + 1 on the

mesh k=0 k=1 k=2

[ ] °

Py Py o—o ' oo 00000
@ @ —0—0—0 9-0-0—0-00

v

The discrete problem is assembled cell-wise



Interest of unfitted meshes
» Enables the use of simpler meshes to mesh intricate geometries
» Fitted HHO is not adapted to treat curvilinear boundaries
» Moving interfaces and boundaries handled without mesh modification
> A first work on elliptic interface problems [B., Ern 18]

» Keypoint: robustness with respect to bad cuts by agglomeration of cells
[Johansson, Larson 13] (using polyhedral meshes)

» Other works on discontinuous Galerkin with unfitted interfaces [Bastian,
Engwer 09], [Massjung 12], [Giirkan, Massing 18] also related [Cangiani,
Georgoulis, Sabawi 2018]

» Hybridized dG and unfitted interfaces [Cockburn, Qiu, Solano 14], [Giirkan et
al. 16]



Model problem
and its HHO discretization




Model problem

vV v v Yy

92

nr

domain Q ¢ R
interface [

subdomains 4, 2, C Q

define the jump:
Iylr = Yior — Y|

k1Au="fin
KoAu = fin Qs
[ulr =gponT,

[«Vulr-nr =gyonT,

u=0on9dQ,



The local discretization: uncut cells (1/3)

> Let T a cell of 7,
k=0 k=1 k=2

» nt outward normal to T

» The local unknowns are 1/ € PX*1(7) on the and the polynomials
ur € PX(F) on every face F composing the boundary of T

> U7 = (ur,usT) With ugT = (Ur)Fer,



The local discretization: uncut cells (2/3)

Two important elements:

> A gradient reconstruction operator G4 (i17) € P¥(T;1R9) such that for every
q € PX(T;RY),

(G5 (ir), @) = =(ur,div Q)7 + (uaT, Q- n7)oT

» A stabilization operator

sr(bir, or) = h7t Z (ME(ur — 1), vF = vi)F

(if cell unknowns in P¥¥1(T))

Goal: to enforce matching of cells and faces unknowns



The local discretization: uncut cells (3/3)

» The local operator

~ ~

aT(uT, VT) = K(Glfl—(aT), Gl-(,—(VT))T + IiST(l/)T, VT)

» The local right—hand side

Lr(07)

(f, VT)T



The local discretization: cut cells (1/4)

T

» Decomposition of the cut cells

» Decomposition of the cut faces

ATH)=ONuT" A )=(T)uT"



The local discretization: cut cells (2/4)

|
cut cell uncut cell

v

We double the unknowns on cut cells/faces in the spirit of
[Hansbo, Hansbo 02] for cut FEM

EIF’k'H( )’ EIP)I<+1( )

v

v

Uty € IP”‘((&T)I), uory € Pk((i)T)2)
> DT = ( 7u(67—)1a ) U(\z)T)*‘)

No dof on 7"

v



The local discretization: cut cells (3/4)

» For i = 1,2, a gradient reconstruction operator G (ii7) € P¥(T;;IR“) such
that for every q € PX(T;; IRY),

(G5.(i7),a) 1, = —(vr,diva) 7, + (uory,a-n7)@T)
+( ,q - "T)Tr

Can also use Nitsche's method on the interface [B., Ern 18]

» Lehrenfeld-Schoberl stabilization operator

st(ir,0r) =h7t Y mi Y (ME(up — 7). ve = v

ie{12} FeFr,



The local discretization: cut cells (4/4)

» Assumption : K1 > Ky

» The local operator
ar(ir,or) = Y (G, (a7), G (07))7, + (moVur, - ne [vrle) e
ie{1,2}
+ 7]:‘{2/7 ([[UTHI' [[VT]] )Tr + Ko UTﬂr. VVT, . nr)T\
+ sr(br, 1)
> The local right—hand side
lr(0r) = Z (f,vr)T + (gn.vr) 7
ie{1,2}

+ nrah7(go, [vrlr) e + ka(gp, Vv, - nr) 7

» Several variants are possible by modifying the reconstruction.



The global discretized problem

Oy
0-0-0-+-+-+-|-u-0 [ )
0.0 .00 ‘.. ®
0_._0 Lo el 0l © u/
* ¢ 50;0;0; i U
o S0l e e e b b
0:0 &030303 0:0 J_
0:0:0:+_o-+:o: ® ®

L

> 0, = {07} 71eT,: the global set of dofs.
» The problem is assembled cell-wise

» find 0, such that
an(lp, Un) = Lp(0p) for every ¥,

v

with ah(l\lh, \7/7) = ZTETh aT(ﬁT, VT) and Z,,(Oh) = ZTGT;, gT(VT)



Numerical analysis, unfitted HHO method




Stability

» Two assumptions :

» interface well resolved

» no bad cuts of volume cells thanks to
agglomeration

» Energy norm (local/cut cells):

2

108112 = D (il v 15, + web 1y (v = vy Gomy ) + rambz el
i=1

Lemma

“Cut-robust” trace inequality implies coercivity, i.e. for n large enough, for every v,
we have [|04]|2 < an(On, Un)



Approximation

» Consider E; : Q; — IR stable extension operator

> If the mesh is fine enough, for every T, there exists TJr Cc RY, with Te T*
such that the L2-projections, 4! E; (1)), and N4t E>(u))7, is an optimal
approximation [Burman, Ern 18]

» In the analysis, face approximation I'Ié‘aT)lu and I'IE‘BT)QU, handled through
orthogonality /stability

> define 75 (u) = (M4 Ex(u) 7,5 M o (M Ex(u) 73 My 7y )

Lemma

For every v € H*"2(Q), we have

”G (IT( )) - VV”TI hk+1|E( )|Hk+2 (T1)



Consistency

» Consider the discrete error &, = 1¥(u) — fi,, with 1}(u) defined through the

local approximation operator 1%(u).

Lemma

For &, = I}(u) — i1, we define
‘/_'.(\7;,) = ah(éh, \7;,)

and we have

1/2
Fn)] S (Z |V — G ()13 + ) o]

TETh




Error estimate

Theorem
We have

N A A 1/2
lu = anll. <lla = K@+ (Y 1V = GE()IE+...)
TeTh

Then when u € H**2(Q), we have

Ju— )l S HF ull gz

> || - ||« energy norm
> proof :
18411 < an(@n, &)

R 12
S (X IVu= G5+ ) el

TeTh

and triangular inequality



Computational experiments
HHO with cut cells




Geometry

> Developments in the DiSk++ library (available on github)
» Q= (Oa 1)2
> [ circle, radius R = 0.33

» Homogeneous cartesian mesh




A contrast problem

>

>

v

From [Burman, Guzmén, Sanchez, Sarkis 16]

k1 =1,

ko =10% gp =gn =0

Exact solution

2
U(X) = ,‘<;_1 in Q]
r? 1 1.,
u(x) = - + ,‘?Z(K—1 - H—2) in

r? = (x3 — 0.5)2 + (x2 — 0.5)?

ot

k=0 ——
slope = 1 —+—

energy error

02

—

102

0.0125

0.025 0.05 0.1



A problem with a jump in the solution
» From [Huynh, Nguyen, Peraire, Khoo 13]
» Exact solution

u(x) = sin(mxy) sin(mx2) in Q;

u(x) = e cos(xz) in 2,

P[{]_:K/z:]_

Bxx~
o
RO

fHH

slop

107

|

energy error
5

o

10°
00125 0025 005 01



Concluding remarks

» Hybridized cutFEM

> an unfitted hybridized method for polytopal
geometries

> requires stabilization in the interface zone

> mesh resolve local cell small scale features
+ static condensation

> a flexible tool for the coupling of pdes on
the bulk and on surfaces (see figure).

» HHO method with cut elements

> allows for (relatively) straightforward
discretization of curved boundaries

> interface coupling - cell model

> requires cell agglomeration for stability

> extension to Stokes’ problem under way




Main results, error estimates
> energy norm:
N
IVIE = vl + D IV Vil o + AV Vill3a, o + B I VIi3g, 00 + 1Vill2,
i=1

> ||| - |||» is @ norm thanks to a Poincaré inequality

> The following error estimates hold (assuming regularity)

N

|||u “hm% S h2p||“0||2,‘-/p+1/2 Qo) ~ h2p||“i||2Hp+1(Q,-)
()
i=1

and, with s € [1,2] depending on the regularity of the dual problem,

N N

D i = unilld, S PP ol Fpinaqy) + D P il )
i—1 i—1

» Analysis: fictitious domain argument in each subdomain + Poincaré



Main results, the Schur complement |
> Define the operator Ty : Vho — Vhin = @,N:1 Vi, such that
Ah(VO =+ ThVO, 0 W) = O, Yw € Vh717N (14)

where the notation 0 @ w indicates that the component in V} g is zero.

> Define the Schur complement form on V} ¢ by
Sh(vo, wo) = An(vo + Thvo, wo + Tpwo), vo, wo € Vo (15)

» Solution using the Schur complement:
we have the Aj-orthogonal splitting Wy, = (I + Tj) Vo L ({0} @ Vh1,n). Thus
up = (I'+ Th)uno + (0 ® un1,n) Where upg € Vi is the solution to

Sh(un0, wo) = I((1 + Th)wo), Ywo € Vo (16)
and up 1w is the solution to
Ah(O (&) uh71,N70 (&) W) = /h(W), Yw € Vh,l,N (17)

We note that (17) decouples and can be solved subdomain wise.



Main results, the Schur complement Il

> Let {(;}2, be the basis in V} ¢ and denote the expansion by

D
vV = Z/\;,'QD,' (18)
i=1
» The stiffness matrix associated with the Schur complement is defined by
(5, W)go = Sp(v, w) (19)

Theorem (Condition Number Estimate)

The condition number k(S) satisfies the estimate

H(§)§h—1( min dQ,)fl (20)

1<i<N

where h is the (uniform) mesh size and dq, is the diameter of domain Q;.



Local Schur complement

> Close to the Hybrid Discontinuous Galerkin (HDG) method

» Polyhedral method
> Primal point of view
» The dof attached to the
complement

mesh k=0

can be eliminated by a local Schur

®
® ||
[ ]

» The global problem to solve comprises only the dof attached to the faces

» We recover the polynomials of the using post—processing



