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Outline

Preliminaries




m Let Q c R3 be an open connected polyhedral domain with Betti numbers b;
m We have by = 1 (number of connected components) and b3 = 0
m b, accounts for the number of tunnels crossing Q

o ; (bo. b1, by, b3) = (1,1,0,0)

e_
o'e

® b, is the number of voids encapsulated by Q




Setting Il

m Important PDE models that hinge on the vector calculus operators:

Oiq Orv3 — G312
gradq = 82q . curlv = 63\11 - (’)1V3 . divw = (91W1 + 32W2 + (93W3
33q 01vy — vy

for smooth enough functions
q:Q—>R, v:Q—>]R3, w:Q — R
m The corresponding L?-domain spaces are
H'(Q) ={q e [*(Q) : gradq € L*(Q) = L*(Q)*},

H(cur; Q) := {v € L*(Q) : curlv e L*(Q)},
H(div; Q) = {w e L*(Q) : divw € L*(Q)}




The de Rham complex

H'(©Q) % Hicur; Q) - H(div; Q) —4% 12(Q) —%3 {0)

m We have key properties depending on the topology of Q:

Im grad c Kercurl
Imcurl c Kerdiv

QcR?(b3=0) = Imdiv =L*(Q) (Darcy, magnetostatics)




The de Rham complex

H'(©Q) % Hicur; Q) - H(div; Q) —4% 12(Q) —%3 {0)

m We have key properties depending on the topology of Q:

no tunnels crossing Q (b; =0) = Imgrad = Kercurl (Stokes)
no voids contained in Q (b, =0) = Imcurl = Kerdiv (magnetostatics)

QcR?(b3=0) = Imdiv =L*(Q) (Darcy, magnetostatics)
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The de Rham complex

H'(©Q) % Hicur; Q) - H(div; Q) —4% 12(Q) —%3 {0)
m We have key properties depending on the topology of Q:

no tunnels crossing Q (b; =0) = Imgrad = Kercurl (Stokes)
no voids contained in Q (b, =0) = Imcurl = Kerdiv (magnetostatics)

QcR?(b3=0) = Imdiv =L*(Q) (Darcy, magnetostatics)
m When by # 0 or b # 0, de Rham’s cohomology characterizes

Kercurl /Imgrad and Kerdiv /Im curl




The de Rham complex

H'(Q) 2% H(curl;Q) - H(div;Q) %% 12(Q) —%3 {0}

m We have key properties depending on the topology of Q:

no tunnels crossing Q (b; =0) = Imgrad = Kercurl (Stokes)
no voids contained in Q (b, =0) = Imcurl = Kerdiv (magnetostatics)

QcR?(b3=0) = Imdiv =L*(Q) (Darcy, magnetostatics)
m When by # 0 or b # 0, de Rham’s cohomology characterizes
Kercurl /Imgrad and Kerdiv /Im curl

m Emulating these properties is key for stable discretizations




The Finite Element way

m Trimmed FE complexes! on a tetrahedron T: Forany r > 1,

=1 é grad é curl é div é
r=2 Q grad é‘ curl ‘é' div Q
! ! &

m On a conforming tetrahedral meshes 7, these spaces can be glued together

H'(Q) =% Hicurl: Q) % H(div: Q) —Y 12(Q)

) ) J )

grad curl

Pro(Th) ——s N(T) —2s RT(Th) -2 2 (Th)

![Raviart and Thomas, 1977, Nédélec, 1980]
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e
A

m Approach limited to conforming meshes with standard elements

— Local refinement requires to trade mesh size for mesh quality
= Complex geometries may require a large number of elements
= The element shape cannot be adapted to the solution

m Need for (global) basis functions

= Significant increase of DOFs on hexahedral elements
— Difficult extension to advanced complexes
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A higher-level view of vector calculus operators

m So far, we have treated grad, curl, and div as different operators
m A unified view is possible through exterior calculus
m This view can be exploited, e.g.:
m To devise unified analysis results for all space dimensions and
operators (consistency, Poincaré inequalities, etc.)
m To construct advanced complexes

= To work on manifolds (see J. Droniou’s presentation)
n ...




Alternating forms

m Let {e;}1<i<, denote the canonical basis of R" and {dx'}<;<, its dual s.t.
d¥i(e)) =6y 1<ij<n
m An alternating k-form w € Alt*(R) is, denoting by A the exterior product,

w= Z ag dx' A - Adx%*, a, €R,

1<o<---<oy<n
m The scalar product in R"” induces an inner product (-, -) on AlF(R?)

Example (Exterior product of 1-forms)
Given w, u € Alt'(R"), w A u € Al (R") is s.t., for all v, w € R”,

(@A) (,w) = wMuw) - ww)u).

Notice, in particular, that w A w = 0.
MRS OV nwipen
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Hodge star |

m The Hodge star operator % : Alt (R") — Alt""¢(R") is s.t.
Yo € AltY (R"),  (xw,pu)vol =w A Yu € Alt"C(R")

where vol := dx! A --- A dx" is the volume form
m |t can be checked that x is an isomorphism

m In what follows, we will also need its inverse

*x L= (=)0




Hodge star Il

Example (Hodge star)

n=2 n=3
mdd A de *1 = dx! Adi® A dx?
*x] =
W = d? rdx! = do® A dx?
* =
02 | *dx? = —dx! A d’
*dx” = —dx 3_ 4.1 2
*dx’ = dx' A dx

Formulas for x applied to 2- and 3-forms (if n = 3) can be obtained taking the x~!
of the previous expressions, e.g.,

dr' = x T ade! = 271 (dx? A dd) = (=1)2C72) x (dn® A dx) = *(dx® A ).
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Vector proxies in dimension n =3

For n = 3, we can identify vector proxies for all form degrees:

m Alt°(R?) := R by definition
m Al (R3) = %Al°(R3) = R since « is an isomorphism
m Alt'(R?) = (R?) and, for all w € Alt' (R?),

w=adx! +bdx? +cdi® = (a,b,c) € R?
B Al (R?) = %Al (R%) = R” and, for all w € Al (R?),

w=ad?® AdS=b dx' Adi +c dx' Adx? = (a,b,c) €R3
N—— N——— N———
*dx! —*dx? *dx3




Differential forms |

m With M open set in an affine subspace of R”, a (differential) k-form on M is

w= Z adg dx' A - AdX9F, ay M — R

1<o|<---<oy<n
m The value of a k-form at x € M is denoted w,:

Wy = Z Ay () dx7T A -+ A dx%F € AlF(RY)

1<o|<---<oy<n

m A k-form can be integrated on a k-dimensional manifold




Differential forms Il

m The space of k-forms (without regularity requirements on a,) is A*(M)
m When regularity on the a,, is required, we prepend it to A¥(M), e.g.,

L>A¥(M) = space of k-forms with coefficients a,- square-integrable on M,

P,Ak(M) = space of k-forms with coefficients a in P,.(M)




Exterior derivative |

m The exterior derivative is the (unbounded) graded operator s.t.
d: L2AM(M) = L2AM (M)

n
0dy . -
——dx' Adxt A A dXOF
oYy

1<o<---<o<n i=1

which satisfies d* o d*~! = 0
m In what follows, we define the domain of the exterior derivative

HA (M) = {w € *A*(M) : dw € LPA™! (M)}




Exterior derivative Il

Example (Exterior derivative of a 1-form)

For a 1-form C'A'(Q) 3 w = a;1dx! + axdx? + a3dx® = v, we have

901 gl rdiT 4 9% g2 p gt 4 99

ax, 9 ox;
19612 2 aaz 8a2 >
t o —Zdx' Ad? + m 3 A dx

+de1/\dx3+g—3dx2mx3+%m
X2

dw = L3 At

6x1
aag (902 2 3 c")al c")a3 1 3 6612 c")al 1 9]
=|=— dx“ Adx” = | — dx' Adx —= — — |dx' Adx
( 0xy  Ox3 ) 0x3 c'?xl * dx;  O0xy
= curlv.
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The continuous de Rham complex

= In what follows, we will focus on the de Rham complex for a domain Q of R”

0 dO dk*] k dk dnfl
HA' Q) L .. L HARQ) L5 -0 L HAMQ) — {0}

m For n = 3, we have the following interpretation in terms of vector proxies:

HAY Q) —4 HAY(Q) —%— HA2(Q) —4 3 HA3(Q) — {0}

curl

H'(Q) % H(curl: Q) —2% H(div:Q) —%5 12(Q) —— {0}
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Outline

The Discrete de Rham construction




General ideas

m Discrete spaces with polynomial components attached to mesh entities
m For any form degree k, recursively on d-cells f, d =k, ..., n, construct
m A local discrete potential

Plr‘f :)—(]:J — P _AK(f)
m Ifd > k+ 1, a local discrete exterior derivative
iy X5, — PN ()

m Connect the spaces through a global discrete exterior derivative




Domain and polytopal mesh

m Assume Q c R” polytopal (polygon if n = 2, polyhedron if n = 3,...)
m We consider a polytopal mesh M, containing all (flat) d-cells,0 < d <n
m d-cells in My, are collected in Ay;(M},), so that, when n = 3,

m Ag(My) =V, is the set of vertices
m Aj(My) = & is the set of edges
m Ay(My,) = Fp is the set of faces
m A3;(My) = 75 is the set of elements




Local Koszul differential and complements |

m Letf e Ay(Mp), d € [0,n], and fixxs € f
m The Koszul differential « : A“*1(f) — A’(f) binds the first vector to x — x;:

(kw)x (V15 ..., ve) = e (X = X7, V1,0, v¢)

forallx € f and vy, ..., v, tangent vectors to f
m We define the Koszul complement space

K (f) = kP, A ()




Local Koszul differential and complements II

Example (Vector proxies for K¢ (f,))

) 19 1 2 3
0 0y P(H) PR PH)
1 {0}  RI(H) G;(H)
2 {0} RI(f)
3 {0}

KO(fa) = PL(fa) = (x —xp) - P,_ () Vd e {1,2,3},
K (fa) = RE(fa) = (x —xp)P,_, (f))  Vd e {2,3},
K () = Gfs) = (x —xp) X P,_,(3).
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Trimmed local polynomial spaces |

m Letf e Ay(My), 1 <d < n,and integers £ € [0,d] and r > 0 be fixed
m The following direct decompositions hold:

PA(f) = PoA(F) @ KT (),

PA(f)=dP AT (HeK(f) ifL=>1

m Lowering the polynomial degree of the first component yields trimmed
polynomial spaces

PA(f) = PA(),
PN =dP AT (@K =1

m the L*-orthogonal projector onto P~ AX(f) is s.t.

Yw € L*AK(f), /n;fw A Kkt = /w Akp Yu € PTAK(F)
4 4 mas | Con et [ERR




Trimmed local polynomial spaces Il

Example (Trimmed spaces in dimensions 2 and 3)

Letn =3. For T = f3 € A3(My,) = T, the vector proxies for timmed spaces are
the Nédélec and Raviart—-Thomas spaces:

P-A(f;) = grad P.(T) + GS(T) = N(T),
P-A(f3) = curl P,(T) + RE(T) =t RT,(T).

For F = f, € Ay(M},), we have

P-A(f) = rot P.(F) + RE(F) =t RT,(F).
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Discrete spaces and interpolators |

m The discrete HA*(Q) space, 0 < k < n, is

n

X=X X PR

d=k feAq(Mpy)

m lts restrictions to f € Ay(My), k < d < n, and df are )—(I;J and X* o
m The components are interpreted as projection of traces on trimmed spaces:

Ly - CONG) = X
—d'—k
W (”rsz (x b7 @) preny (), arelia)

with trace operator try pullback of the inclusion f* < f

IMAG
prir——g \



Discrete spaces and interpolators |l

Example (Local polynomial spaces for n = 3)

d
B 0 1 2 3
0 |R=PA(Y) P, Alh) P,_ AR P, AR
1 PAf)  PrANR)  PrAR)
2 PANfD)  PIAL()
3 PrAO(]%)
d
i 0 1 2 3
0 R=P,(fp) P_ () P_ () P_(H)
1 Pr(f1) RT:(f2) RT+(f3)
2 Pr(fZ) Nr(f3)
3 Pr(f3)

IMAG (PN UvERSITE
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Discrete potential and exterior derivative |

m letdeNbes.t 0<d<n,feA;(M,),and notice that
trop : Ak(f) - Ak(af)

® The Stokes formula on f reads: For all (w, u) € C'A*(f) x C'AY*-1(f),

/dey=(—1)k+1/wAdy+/ traor w A tror p
f f of

m Local reconstructions are obtained emulating this formula




Discrete potential and exterior derivative Il

m Ifd =k,

P} o =% wp € PAY(S)

® Ifk+1<d<n,wefirstlet, for all o, € X[ - and all u € AT (),

'[dlrifgf Ap= (_1)k+1 J*—lwf Adu + ‘/afpl:’af%f Atryr p

then, for all (i, v) € KEF1(f) x K (f),

r+1

(- 1)k+1/fpk, f/\(d,u+v)—/ § @ A

_/prr,afgafAtrafﬂ+(_1)k+l [*_lwf/\v




Thecasen=3andk=11I

m ForT =f3 € As(My) = Tn,

X =x

=rf Zcurl, T = X

X #.(E)

Ee&r

X RT(F)

Fe¥r

X RT,(T)

m Let
vr = ((vE)Ecer, WF)Fess»vr) € Xeyn 1

m The edge tangential trace is simply

y{EgE =vg VEe€&Er




Thecasen=3and k=1 Il

m For all F € F7, the face curl is given by: For all g € P.(F),

/CZKFq=/vF-roth— Z sFE/%,Equ
F F

Ec&Er E

m The face tangential trace is such that, for all (¢,w) € PfH (F) X Ri(F),
/yf,sz-(roth+W)=/C;zpq+ Z 8FE/7{,EEEq+/vF-w
F F Ecér E F
m The element curl satisfies, for allw € P .(T),
/C’TKT-W = /vT-curlw+ Z 5TF/7’{,FKF - (wxnp)
T T FeFr F

. . e . v
m Finally, by similar principles, we can construct P, , : X(,y




Global discrete exterior derivative and DDR complex

m The spaces )_(’j , are connected by the global discrete exterior derivative

k k k+1
gr th X +
d—k=1, 3k
w, = (ﬂrj (5} 1 90) reny( My, de kst n]
m The DDR sequence then reads

0 n—1

&, d
Tty oyl N v oyn=1 =y oy \
)—(B,h 4 )—(r,h 4 4 Xr,h 4 )—(r,h 4 {0}

m Specifically, for n = 3, we recover the complex of [DP and Droniou, 2023]:

c Dr
Xorad.h ) Xour > Xiiv 5 P.(Th) — {0}




Complex property

Theorem (Complex property)
Forall0 <k <d <nandallf e Ay(Mp), it holds,

k k-1 _ k-1
Prpody =dy,

and, ifd > k+1,

dipody! =0,

so that the DDR sequence defines a complex.
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Polynomial consistency

Theorem (Polynomial consistency)

For all integers 0 < k < d < nand allf € Ay(My), it holds
Pl w)=w  YoePAKp),

77

and, ifd > k+1,
&y (I} w) =dw Yo € PN

Example (The case (n,d, k) = (3,3, 1))

The above properties translate as follows for (n,d, k) = (3,3, 1):

qurl T(lZurl,Tv) =v Yy € Pr(T),
CrLomv) =curly Vv e N (7).

curl,

IMAG M  UNIVERSITE - erc
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Cohomology |

Theorem (Cohomology of the Discrete de Rham complex)

The cohomology of the DDR complex is isomorphic to that of the continuous de
Rham complex.

Example (The case n = 3)

For n = 3, in terms of vector proxies, this implies, in particular,

No “tunnels” crossing Q (b; = 0) = Im G, = Ker C},
No “voids” contained in Q (b, = 0) = ImC} = Ker D),
Qc R} (b3=0) = ImD| =P ()
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Cohomology Il

o
e ALME) — A (M) —

Kk Kkt 1
don
\ k B \ k+1 \
4 X(),h 4 Xo,h 7
Rk Ei El;l+l E’l?‘l
kh
\ k = \ k+1 N L.
’ Xr,h 4 Xr,h 4
Key point: design of the extension cochain map E, O
mas Gk g e
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Poincaré inequalities

Theorem (Poincaré inequalities)

For any k, denote by || - |lx.» the L*-like discrete component norm on )_(’r‘ »
Let, additionally, {-, -)r.» be a scalar product on )_(’j » inducing a norm = ||| - |-
Then, denoting by (e)* the orthogonal complement of e for (-, )., it holds:

k k
ey llen < Ndy @ llisrn Ve, € (Kerd; )™
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Discrete L2-product

m Forall0 <k <n welet (-, ), X*, xX*, — Rbest.

(@ 1, e = Z (@ps 1 ks

fer(Mp)

with
(b iy = /f gy AP g (g ) VT € (M)
m Above, sy is a stabilization contribution s.t., with iy diameter of f,

skf(wp, H, )

Z By oy P -

=k freng (f)




Outline

Application to magnetostatics




Discrete problem

m With, for simplicity, b; = b, = 0 and u € R, consider the problem:
Find (H,A) € H(curl; Q) x H(div; Q) s.t.

//JH-T—/A-CUI’]T=O V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv = /J-v Vv € H(div; Q)
Q Q Q
m Its DDR discretization reads: Find (H,,A,) € X{,4 ), X Xj;, j, St

(uH azh)curl,h - (éh» g;,zh)div,h =0 VTh e X,

Zcurl,h

(gzl_{h"_’h)div,h + -/s;DZéh Dzvh I (Vh) Vv, € )—(:hv h

m For b, # 0, we need to add orthogonality to harmonic forms




Stability

Theorem (Stability)

Define the bilinear form Ay, : [)_(:uﬂ, n X )_(:ﬁv,h]z — Rs.t.

An((@) 1), (T),9) =

(Zh, Ih)curl,h - (l_‘h, szh)div,h + (Q;,Zh’ Kh)div,h + / D;zlih DZK;,-
Q

Then, the following inf-sup condition holds: ¥(a,,u,) € Xty , X X4i, 1

An((a),uy), (7))
(@ w )i < sup ShD b
(@24 K Xy MO0 1T )l

with 11y )IZ = 12120+ NG 5+ 2035, + 1D, 12,

Analogous to the continuous case! or
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Error estimate

Theorem (Error estimate for the magnetostatics problem)

Assume H € C°(Q)> n H™2(7;)? and A € C°(Q)? N H™*2(T;)3. Then, we have
the following error estimate:

(B~ Ly HL A — L, Al < 10

—curl h




Convergence: Energy error vs. meshsize

—m— k=1
—@— k=2
4 —%— k=3

E L L L ] £ L L
10708 10706 10704 10702 10705 10704 10-03
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