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Motivations |

m Handling general polyhedral meshes comes in handy in many
situations

m Degenerate cells as a result of mesh deformation
m Nonconforming interfaces in adaptive mesh refining
m Adaptive mesh coarsening

m Extending the classical FE framework is not straightforward

m Recent works only consider lowest-order methods



Motivations |l
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Figure: Adaptive mesh coarsening [DP et al., 2011]




Some healthy design guidelines

m Consistency on general polyhedral meshes
m Stability and robustness with respect to the physical parameters

m Highly heterogeneous and anisotropic permeability in Darcy flow
m Numerical locking for quasi-incompressible elasticity

m Vanishing constrained specific storage coefficient in poroelasticity
m Inf-sup stability in incompressible flows

m Reduced cost (stencil, parallel communications, conditioning)



Admissible mesh sequences |

Definition (Mesh regularity)

A sequence (Tp)rep of poly{gonal,hedral} meshes is regular if
m every Ty admits a simplicial submesh Sy;
B (Sh)nen is shape-regular in the sense of Ciarlet;

B (Sp)nen is contact regular: every simplex S < T is s.t. hg ~ hy.

Definition (Cell centers)

We fix a family of points (x7)reT;, s-t.
m all T € T, is star-shaped w.r. to x7;
m for all T € Ty, and all F' € Fr, dp p = dist(xy, F) ~ hr.
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Setting |

m We consider the pure diffusion problem

Kl's+Vu=0 inQ
—Vs=f inQ

with K piecewise constant diffusion tensor with spectrum c [k, ky]

m The weak formulation reads: Find (s,u) € X x U such that

(K 's,t) + (u,V-t) =0 Vte X

—(V:s,v) = (f,v) YwelU (M)

with ¥ := H(div; Q) and U := L%(Q)

DP and Ern, preprint hal-00918482, 2014
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Setting I

m Designing a classical FE method requires to

m Devise a H (div; Q2)-conforming flux space
m Select a L2-conforming pressure space
m Make sure that the two are inf-sup compatible

m Finding a H(div; Q)-conforming space for arbitrary element shapes
and approximation orders can be challenging

m |dea: renounce conformity and build the method from the DOFs up



A FE example: The RTY — P element

0 . d
RTY := [PY]¢ @ xPY PY
Figure: An example of healthy FE approximation. Flux basis functions are
given by (15 () = gohr- (@ — @u(r) )

FeFr



Degrees of freedom |

m We need discrete counterparts of a flux and its divergence
m The discrete divergence D? must allow to prove inf-sup stability

m The flux reconstruction i)‘{% must be consistent and coercive

Remark (Virtualization)

The flux reconstruction need not be explicit provided we can approximate
the (K™'-,-)-product (leading to a virtual method)



Degrees of freedom II

m Let, for a fixed integer & > 0 and, with F% := P*_ (F),

T% .= KpVPEO(T), Fhi= X Fh VT eT,
FE]:T

m For all T € Ty, the local spaces of flux and potential DOFs are

sho=Th xFL,  UE:=PKT)

Figure: XX for k = 0,1,2



Degrees of freedom IlI

m The global flux DOFs space is obtained by patching interface values

Sh=Tf xFf, Th:= X Tk, Fp:= X F§
TE7-}L FeFp

m For all T € T}, we introduce the restriction operator Ly : 22 — 2?

m The global spaces of potential DOFs is

Uf:= X UF
TeTh




Discrete divergence |

m Local divergence: D& : Bk — Uk st., V1 = (77, {Tr} rer,) € T,

(Dkr,v)r = —(Vu,77)r + Z (v, 7rerp)r Vv e Uk
FG]'-T

m Correspondingly, the global divergence D’,j : Efl — U,ff is s.t.

Vrne By, (Dprn,vn) = Y. (DE(LrTa),vn)r VYou € UY
TeTh

where we have identified UF with P%(T;,)



Discrete divergence I

Definition (Fortin interpolator)
m For all T € T;, we define I¥ : S7(T) — X% sit., Vt e =H(T),
I,}c,t = (TT, {TF}FE]:T) with 77 = ’(Dl%t and 7p = ’/T?(t”nF)

with wéﬁ energy projector and 7r§7 L?-orthogonal projector.

= The corresponding global version I} : &% — X} issit., Vte BT,

I;]ft = ({TT}TE'Th){TF}FE]:) with 77 = ’(D;t and 7p = W?(t”ﬂp).



Discrete divergence Il

Proposition (Commuting property for discrete divergence operator)

Denoting by 7T§:~ and W,’j the L2-orthogonal projectors on IF”; (T) and
P (Ty), respectively, the following commuting diagrams hold:

=H(T) o L2(T) stV .y

k k k k
17 Ly Iy Th

Dy Dy,
2 ——— Uf =k Uy




Flux reconstruction: Consistency |

m Goal: reproduce exactly the fluxes of potentials in ]P";“(T)

m ForallteTh = KTVIP’(S“"O(T), integration by parts yields

(t,VU)T = —('U, v't)T + Z (v,t~nTF)F Yo e PZ+1’O(T)
FeFr

m With 7 = (TT, {TF}FE}"',v) = [;‘—t one has

(t, V’U)T = —(U, Dé;T)T + Z (’U, TFETF)F Yv e PS-‘FLO(T),
FE.FT

that is to say, we can express (¢, Vo)r in terms of the DOFs 7



Flux reconstruction: Consistency Il

m Consistent part: €& : 3% Tk st Vr=(1r, {rr}rer,) € ZH,

(CI;WT, VU)T = —(’07 D]%T)T + 2 (U,TFGTF)F Yv e PZ+17O(T)
FE]'-T

m Recalling that ¢%7 = K1Vz with z € PSH’O(T), this can be
reformulated as the (well-posed) Neumann problem in z

(KTVZ7 VU)T = 7(,07 DIJC“T)T + Z (’U,TFGTF)F Yov e P§+1’O(T)
FeFr

m This trivially parallel task can benefit from GPU linear solvers



Flux reconstruction: Consistency Il

Lemma (Properties of €%.)

The following consistency condition holds:
(¢k o IX)(K7Vv) = KrVo  Yuve PETH(T).

Additionally, there is 7, > 0 independent of h and K s.t., for all T € E?,
Kprlreld < [K7 Sl < ik pllwlE

where we have defined on the space % the norm

k . k
vre =k, |IrllF = IrrlF + 2IDETIE + ), helrelE-
FeFr



Flux reconstruction: Consistency IV

m Let, for all F' € F}, xp denote the face barycenter

m Explicit formula for €%: For all T = (7¢)rer, € B,

Z |Flg—1(zp — 1)Trerr
FE]:T

1
eor = —
T




Flux reconstruction: Stability |

m €% does not control all the DOFs in T

m For all F' € Fr, we define the pyramidal residual
kg Sh s Thp = Ko VPO (Prp)

s.t., for all 7 = (7'T7 {TF}FE}_T> € 2][} and all v e PZ+1’O(PTF)

(3?1?7', V’U)PTF = ((V@? - DIIC‘)T»U)PTF - ETF(Q:IIC“T'nF —TF, U)F ‘

m J7 can be computed solving a Neumann problem inside Prp

m Virtualizing the method this step can be avoided



Flux reconstruction: Stability I

m We can find an explicit formula for 3% 1.
m For all T € T, and all F' € F},, rr denotes the barycenter of Prp

m We have for all T € El},

IppT = MTGTF(TF — & rnp)(xr — TrF)
TF

m For = degl we recover the reconstruction of [Codecasa et al., 2010]

m For = 4517 with /i > 0 that of [Droniou et al., 2010]



Flux reconstruction: Stability Il

~k .
Jr =

> e

FeFr

Lemma (Properties of J%)

The following consistency and orthogonality conditions hold:

(Fh o IF)(K7Vv) =0 YuvePATY(T),

(K;lﬁl;ﬂ-’ w)T =

0 Y(r,w)e Xk x Th.



Flux reconstruction: Stability 1V

R = ¢k + 3k

Lemma (Properties of 9:3%.)

The following consistency property holds:
(R o IE)(K7Vv) =0 VYoePEHY(T).
Additionally, there is n > 0 independent of h and K s.t. for all T € Ty,

|73z = kgl Tll7 VT € ker(DF),

—17.= k
ITl3rr <n 'k plTl7 V7e =g



What about Raviart—-Thomas? |

m Let 7, be a simplicial mesh

m We define the high-order residuals supported on T For all x € T,
Q7r7)(@) = |Fla-rerr(tr — (€T) nr)@rp(T)

m Then, the stabilization

~0 L _ ~0
Jr = Z JTF
FE}‘T

can be shown to matches the consistency and stability requirements



What about Raviart—-Thomas? |l

= To prove orthogonality, observe that, for all (7,w) € 2% x T'%,,
(K139, w)r = { ) |Fla—ierp(te — (€47)np)(@r — mT)} K'w,
FeFr

since §,.prp = xp — 7

m The term between braces is equal to

T|d€(7)~‘l'—{ Z ‘F|d_1($F—IBT)®nTF}Q:g~T—O
FG]'-T

since ZFE}.T |Flg—1(xp — 1) @ nyp = |T|qldg



Mixed approximation |

m Let Hr be the local bilinear form s.t., for all o, 7 € E?,

Hr(o,7):= (K;l?}{’%a, ,‘RI%T)T

m The global bilinear form H on X x X is s.t. that, Vo, 7, € 3F,

H(on,m1h) = Y, Hr(Lron, LrTs)
TeTh

m The discrete problem reads: Find (o, up) € Z’,ﬁ X Uf’f such that

H(O’h,Th)-‘r(uh,D}’iTh):O V‘rheEfL'
_( (Mp)

,Uh) V’Uh € U;f

—(Djon,vn)




Mixed approximation Il

Lemma (Basic error estimate)

Let &y, := I}'s and @y, := whu. Then, the following estimate holds:

ma (380rk) P~ wnll 150~ onlw) < sup  Enlra),
Thezﬁ,H’ThHH=1

with consistency error E,(T1) := H(Gh, T1) + (Gn, DET4).



Mixed approximation Ill

Theorem (Convergence rate)

Assuming the regularity u € H} () n H**2(T},), we have

1/2
lon —onla < < > PK,T/fu,Th2T<kH)uﬁﬂmm) :
TeTy,

with local anisotropy ratio px 1 := kg1 /ky 1.

Theorem (Supercloseness of the potential)

Under the above assumptions, and assuming elliptic regularity, the
following holds:
Hﬁh - uh” < ChkjLZHUHHkJrQ(Q).



A virtual variation

m Assume K7 = Arldg and let for all T € Tj, and all o, 7 € E?,
Hy(o,7) = (K;'€o,&4r)r + J) (0, 7),

with stabilization bilinear form

h .
Jy(o,7) = Z A*F(Q:?U'HF —op, &g —TR)p
Ferr T

m The discrete problem reads: Find (o, up) € Eﬁ X Uf’f such that

HY (o), 1) + (up, D¥1) =0 V1, € BF
( hs i,) (}, h I,)_( h h (MVh,)

7(DZU‘h,’Uh) ,Uh) V’Uh € U}]f

m Analogous convergence results hold for (MV},)



Numerical example |

NSSSSSS=S

al example

re: Triangular, Kershaw, and hexagonal meshes for the numeri

Figu



Numerical example |l

’+k:0+k:1+k:2+k:3+k:4

(a) |orn —on|H vs. h (b) |un — un| vs. h

Figure: Triangular mesh, Dirichlet problem with u = sin(7z1) sin(7wzs)



Numerical example |lI

’+k:0+k:1+k:2+k:3+k:4

I I
10722 10-2 10-18

I I
10-22 10-2 10-18

(a) |orn —on|H vs. h (b) |un — un| vs. h

Figure: Kershaw mesh, Dirichlet problem with u = sin(7z1) sin(7z2)



Numerical example [V

’+k:0+k:1+k:2+k:3+k:4
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(a) |orn —on|H vs. b (b) |un — un| vs. h

Figure: Hexagonal mesh, Dirichlet problem with u = sin(7z1) sin(7z2)



Implementation in primal form |

m Some paper work allows a primal implementation

m Lagrange multipliers to enforce uniqueness of interface unknowns:

A= AR YT eT,, A= XAk,
FE]:T FE]:h

where
v . [PE(F) ifFeF,
F {0} if FeFP

m Lagrange multipliers can be interpreted as traces of the potential

Aghili, Boyaval, DP, in preparation 2014



Implementation in primal form [l

k=0 k=1 k=2

m We define local and global hybrid DOF spaces for the potential as
WE:=Urx Ay VYT eT,, — WF:=U;xA},

and we denote by Ly : W} — WE the restriction operator

m Let the discrete gradient G% be s.t., Vz = (vr, (ur) pery) € WE,

(G§27m§7)T = —(vr, D7) + Z (up,7rr)r YTE E?
FE]“T




Implementation in primal form |ll

Lemma (Primal hybrid version)

Let GY : W} — L2(Q)? be s.t., for all z, € W,
GZZ}”T = GI%ZTZ}L VT € 77“

and let wy, € (up, An) € W} solve: For all zy, = (vp, n) € WF,

(K Glwn, Grzn) = (f,vn) (PH»)

Then, uy, coincides with the potential in (M) and

ER?LTah = KTG]%ET(uh, )\h> VT € 771



Implementation in primal form IV

m The equivalent formulation (PH}) yields a SPD rather than a
saddle-point matrix

m Cell DOFs can be locally eliminated leading to a global system of size

. . k+d—1
card(Fl) x dim(P%_,) = card(F}) x ( * )

k

m The method of [Di Pietro and Lemaire, 2013] can be recovered as a
special case when k =0
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