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A (not so simple) model problem |

m Let Q c R3 be an open connected polyhedral domain that does not
enclose any void

m Let a current density fecurl H(curl; Q) be given

m We consider the problem: Find the magnetic field o : Q — R3 and the
vector potential u : Q — R? s.t.

o—curlu=0 in Q, (vector potential)
curlo = f in Q, (Ampere's law)
diva =0 in Q, (Coulomb’s gauge)
uxn=0 on 4Q (boundary condition)

m The extension to variable magnetic permeability is straightforward
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A (not so simple) model problem Il

m In weak formulation: Find (o, u) € H(curl; Q) x H(div; Q) s.t.
/O'-T—/u-curlrz() V1 € H(curl; Q),
Q Q
/curla-v+/divudivv=/f-v Vv € H(div; Q)
Q Q Q

m Well-posedness hinges on the exactness of the following portion of the
de Rham sequence:

H(curl: Q) == g (div; Q) —2 12(Q) —23 (0}

m This exactness property is also needed at the discrete level!
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The Finite Element way

Local spaces

Key idea: define subspaces that form exact sequence

Let T ¢ R? be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T’}

m Fix k > 0 and write, denoting by x7 the barycenter of T,

PK(T)3 = grad P**(T) @ (x — x7) x PK1(T)?

Gk (r) Gk (T)
= curl P (T)3 @ (x — x7)PF1(T)

R (T) R (T)
m Define the trimmed spaces

NX(T) = GK(T) @ G (T)  [Nédélec, 1980]
RT*(T) = RX(T) ® R&*1(T)  [Raviart and Thomas, 1977]

6/34



The Finite Element way
Global FE sequence

Figure: Conforming tetrahedral mesh of the unit cube (clip)
m Let 7, = {T'} be a conforming tetrahedral mesh of Q and let k > 0
m Local spaces can be glued together to form the global FE sequence

R (7)) 5 N7 2 7T 5 PR(T) — (0)

m This procedure only works on conforming meshes!
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The Finite Element way

Shortcomings

Approach limited to conforming meshes with standard elements
= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

The implementation of high-order versions may be tricky
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The discrete de Rham (DDR) approach |

Figure: Examples of polytopal meshes supported by the DDR approach
m Key idea: replace spaces and operators by discrete counterparts:

k
Lgrad, h

Dy 0
R > X —grad h : —curl h : —d1v h : Pk(‘ﬁ’) 1 {O}
m Support of general polyhedral meshes and high-order (1)
m Exactness proved at the discrete level (directly usable for stability)

m (Relatively) simple implementation of high-order versions
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The discrete de Rham (DDR) approach Il

m The fully discrete spaces are spanned by vectors of polynomials

m Polynomial components attached to geometric objects to mimic
m full continuity for the approximation of H!(Q)
m continuity of tangential traces for the approximation of H(curl; Q)
m continuity of normal traces for the approximation of H(div; ()

m Selected so as to enable the reconstruction of consistent

m discrete vector calculus operators
m (scalar or vector) discrete potentials
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Introduction and motivation

Discrete de Rham (DDR) sequences

Application to magnetostatics
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The two-dimensional case

Continuous exact sequence

m Let F be a simply connected polygon embedded in R3
m let,forg: F >Randv:F — R2 smooth enough,

rotr g = 0_x,(gradg q) rotp v = divp (0-xv)
m We derive a discrete counterpart of the exact local sequence:

gradg, rotg

R —T5 HY(F) =25 H(rot; F) “55 12(F) — 5 {0}
m We will need the following decompositions of P*(F)?:

PX(F)? =roty PH*Y(F) @ (x —xp)P* 1 (F)

R/\(F) (le(t,l\(l;v)
=grad; P*"1(F) @ (x — xp) P 1(F)

GX(F) G (F)
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The two-dimensional case
A key remark

m Denote by 7% L the L?-orthogonal projector on P*~1(F)

m Let g € PX1(F). For any v € PX(F)?, we have

‘/Fgraqu'V=—/Fq divey + wFE/ECuaF(V'"FE)

Ee€&Ep
ePk-1(F)

k=1 3.
=—/F7T¢>,Ff/d1VFV+ Z wFE/Ef/mF(V'"FE)

EcEp

m Hence, grad; ¢ can be computed given n’;’,"}rq and g 5r

WFE =

tg nrE
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The two-dimensional case

Discrete H'(F) space

\_J
k=0 k=1 k=2

Figure: Number of degrees of freedom for Ké‘md g for k €{0,1,2}

m The discrete counterpart of H'(F) is

XS ar = {gF = (qr.qor) : qr € P*"'(F) and gor € 7’5“(&?)}

m The interpolator !{g‘rad‘F :CF) - X{g‘radf is s.t., Vg € C°(F),

Z{g(rad,Fq = (ﬂ-];;,[lwq’ an) with

”];’jé‘(QOF)\E :”?é‘q\E VE € Er and gor(xv) = q(xv) YV € Vi
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € EF, the edge gradient G . xk — PK(E) is s.t.

—grad,F

G]\EQF = (an)fE

m The full face gradient G XgmdF

/FGprgF-v=—‘/FquiVFv+ Z wFE/ECIaF(V'nFE)

EESF

m By construction, we have polynomial consistency:
Gk (Igrad rq)=gradpq Vg e P*(F)

m We reconstruct similarly a face potential in P¥*1(F)

— PK(F)?iss.t., Vv € PK(F)?,

15 /34



The two-dimensional case
Discrete H(rot; F) space

AN AN
O

Figure: Number of degrees of freedom for Xr'ot p for k €{0,1,2}

m We reason starting from: Vv € N*(F) = gk(F) @Qc’k”(F)

/rothq=/v‘ rotrp g — Z wFE/(v E) qE VqESDk(F)
F F

—— Eec&p ——
eRFL(F) Pk (E)

m This leads to the following discrete counterpart of H(rot; F):

k . .
Xt F = {KF = (VR,F’V:;?,F’ (VE)Eegp) :

vr.p € RAU(E), v, o € ROK(F), vg € PX(E) VE € &F }

16 /34



The two-dimensional case

Reconstructions in Xrot e

m The face curl operator C Xrot F PK(F) is s.t.,
‘/CJI';K[? q:/VR,F'YOth_ Z wFE/VE q Yqe€PHF)
F F E<ér E

m Define the interpolator I¥ . : H'(F)? — XX . st., Wv € H'(F)?,
=rot,F ot,F

Irot FY = (”R FY "(;ekF (”I;J,E("IE ‘tE))EesF)~

Cllf_ is polynomially consistent by construction:
CF(Irot FV) =rotp v vy € NX(F)

m By similar principles, we reconstruct a vector potential in P*(F)?
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The two-dimensional case
Exact local sequence

Theorem (Exactness of the two-dimensional local DDR sequence)

If F is simply connected, the following local sequence is exact:

Agrad F,

,F Cfé k 0
R > X gradF : rotF 7 P (F) ? {0}7

where G s Xfot F Is the discrete gradient s.t., Vq e X¥

“—grad, F —grad,F’

Gha, = (mh 1 (Gha, ) 75" (Gha,). (Ghd,) pesy )
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The two-dimensional case
Summary

grad E

Ck
R grad F 7F 1 rot F - 7 pk(F) 4 ? {O}

Space ‘ V (vertex) E (edge)

F (polygon)
Xtar | R PL(E) PEL(F)
Xt PEE)  R¥HF) x ROK(F)
PE(F) PE(F)

Table: Polynomial components for the two-dimensional spaces

m Interpolators = component-wise L2-projections

m Discrete operators = L2-projections of full operator reconstructions
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The three-dimensional case |
Exact sequence

—grad, T,

Ly L xk Q§} k Qé} k DF ok 0
R Xgrad,T Xcurl,T X — P (T) — {0}

=div,T
Space |V E F (face) T (polyhedron)
Xérad,T R Pk_l(E) Pk_l(F) pk—l(T)
X PEE)  RLF) x REE(F) REN(T) x REH(T)
Xﬁiv,T PE(F) G U(T) x 6K (T)
Pk(T) pk(T)

Table: Polynomial components for the three-dimensional spaces

Theorem (Exactness of the three-dimensional local DDR sequence)

If the polyhedron T has a trivial topology, this sequence is exact.
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The three-dimensional case |l
Exact sequence

Lemma (Commutative diagram with the sequence of trimmed spaces)

The following commutative diagram holds, expressing the polynomial
consistency of the discrete vector calculus operators:

phal () By k() _cwly pak oy _divy pk(T)

k k k 9
ligrad,T J/Lcurl,T J/Idiv,T LT
G k k k

C D
Xk =1 \ Xk =T \ lgiv’r _T> Pk (T)

“—grad,T curl,T

21/34



The three-dimensional case
Local discrete L2-products

m Emulating integration by part formulas, define the local potentials

k+1 . vk k+1
Pgrad,T . Kgrad,T - P (T)’

Pty XA o PR,

curl,7 * Zcurl,T

P<kliv,T : Lﬁiv,T — PX(T)?

m Based on these potentials, we construct local discrete L2-products

()_CT,}’T).,T = / Perxp -P.,TyT +SeT ()_CT,yT) Ve € {grad, curl, div}
2 - Y b

consistency stability

m The L?-products are polynomially exact
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The three-dimensional case
Global sequence

Let Q c R3 as before and let 75, be a polyhedral mesh

Global DDR spaces are defined gluing boundary components:

k k k
Xgrad, h’ Xcurl, h’ Xdiv, h

Global operators are obtained collecting local components:

k k k
G, Cn Dy

Global L?-products (-, ). s are obtained assembling element-wise
The global DDR sequence is

Ik k k k
—grad,h k Qh & Qh X Dh k 0
Xgrad,h > X 7 Xdiv,h — P (7;1) — {O}

—curl,h
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Introduction and motivation

Discrete de Rham (DDR) sequences

Application to magnetostatics
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A DDR scheme for magnetostatics
Discrete problem |

m Continuous problem: Find (o, u) € H(curl; Q) x H(div; Q) s.t.

/O-.T_/u.curl‘rzo VTEH(CHI'];Q),
Q Q

/curla-v+/divudivv:/f-v Vv € H(div; Q)
Q Q Q

m The global bilinear forms are approximated substituting
(Zhazh)curl,h — / -7
(C WY h)dlvh — / curlt - v

/D,’;Eh <—/d1vw divv
Q

m The current density linear form is [, defined similarly
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A DDR scheme for magnetostatics
Discrete problem I

x Xk

m The DDR problem reads: Find (¢, u,) € XX | x XA st

(Zh, Ih)curl,h - (!hagﬁzh)div,h =0 Vzh € Xk

Zcurl,h’

k k k., _ k
(€L, v )div,h +/QDhEh Dyv, =1ly(v,) Vv, € Xiiv.n

m Stability hinges on the exactness of the portion

Ck Dk
k =h k h k 0
X —> ldiv,h —> P (771) —> {O}

“curl,h
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A DDR scheme for magnetostatics
Global exactness |

Theorem (Exactness properties of the global DDR sequence)

Let Q c R? be an open connected polyhedral domain. Then, it holds
Im D% = PX(73).

If Q does not enclose any void, we additionally have

Img];l = Ker DZ.

m Im D’h< = P*(7;,) follows from the classical Fortin's argument
m The inclusion Imgﬁ C Keerl results from local exactness

m We prove Ker D/;l c Imgﬁ in two steps. Lety, € KerD/;l. Then:

H k — Ck
m Local exactness gives T, € Xcurl,T st. vy =Crap forall T €7,

m The local vectors are then glued together
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A DDR scheme for magnetostatics

Global exactness Il

To glue together local vectors, we use the fact that the mesh can be
topologically assembled by a succession of the following operations:

Add a new element by gluing one ot its faces to an element in the mesh

5

Glue together two faces of elements in the mesh s.t. the edges along which
the faces are already glued together form a connected path

This is only possible since Q does not enclose any void!
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A DDR scheme for magnetostatics
Stability and well-posedness

Theorem (Well-posedness)

Let Q c R3 be an open simply connected polyhedral domain that does
not enclose any void. Then, (o,.u,) € lfml n X lﬁiv , is unique and
there exists C > 0 independent of h s.t.

k k
loy lecurrn + 1€ 0 aiv.n + 1, llaiv.n + [1Du, |l 2@) < Cllfllo-

Proof.

Analogous to the continuous case since all the relevant properties have
been reproduced at the discrete level. O
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Numerical examples
Setting

m Let (73)nen be a regular polyhedral mesh sequence

m We consider a known solution (o, u) to assess convergence rate r s.t.
approximation error oc i”

m The error
. k k
(e,.8,) = (o), — Ly po 1y, — Iy, )
is measured in the natural energy norm s.t.
1
”(Eh»gh)”en,h = [(£h7 gh)curl,h + (Qh, Qh)div,h] ?

m The implementation is based on the HArDCore3D C++ library!

1See https://tinyurl.com/HarDCore3D
30/34


https://tinyurl.com/HarDCore3D

Numerical examples
Meshes

D

Vo ———

-

(a) Cubic-Cells

(c) Voro-small-0 (d) Voro-small-1

Figure: Mesh families used in the numerical tests
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Numerical examples

Convergence in the energy norm

’+k:0+k:1+k:2—*—k:3 ‘
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Figure: Energy error versus mesh size h. We have ||(¢,,.&),) llen.n o h
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Conclusions and perspectives

m A novel approach for the numerical solution of PDE problems

m Key features: support of general polyhedral meshes and high-order
m Novel computational strategies made possible

m Natural extensions to variable coefficients and nonlinearities

m Applications (electromagnetism, incompressible fluid mechanics,.. .)
m Formalization using differential forms (ongoing)

m Development of novel sequences (e.g., elasticity)

m .
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