A hybrid finite volume generalization of the Crouzeix–Raviart element

D. A. Di Pietro, S. Lemaire

Université Montpellier 2, I3M, ACSIOM, Daniele.Di-Pietro@univ-montp2.fr

Marseille, October 16, 2012

Outline

- 1 Introduction
- 2 A generalization of the Crouzeix-Raviart element
 - Construction
 - Continuity of face-averaged values
 - Approximation
- 3 Applications
 - Linear elasticity
 - Stokes

Quasi-compressible materials and numerical locking I

- lacksquare Let $\Omega \subset \mathbb{R}^d$ denote a bounded polygonal or polyhedral domain
- We consider the linear elasticity equations

$$-\mathbf{\nabla}\cdot\underline{\underline{\sigma}}(\mathbf{u}) = \mathbf{f}$$
 in Ω , $\mathbf{u} = \mathbf{0}$ on $\partial\Omega$,

where, for μ , $\lambda \in \mathbb{R}$, $\underline{\underline{\sigma}}(u)$ is the Cauchy stress tensor,

$$\underline{\underline{\sigma}}(\boldsymbol{u}) := 2\mu\underline{\underline{\epsilon}}(\boldsymbol{u}) + \lambda \boldsymbol{\nabla} \cdot \boldsymbol{u}\underline{\underline{I}_d}, \qquad \underline{\underline{\epsilon}}(\boldsymbol{u}) := \frac{1}{2} \left(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^t \right)$$

- When $\lambda \to +\infty$, numerical locking can be observed
- To avoid locking: uniform convergence w.r.t. λ

Quasi-compressible materials and numerical locking II

 \blacksquare If Ω convex, in d=2 there holds [Brenner and Sung, 1992]

$$\mathcal{N}_{\mathrm{el}} \coloneqq \left(\| oldsymbol{u} \|_{H^2(\Omega)}^2 + | oldsymbol{\lambda} oldsymbol{
abla} \cdot oldsymbol{u} |_{H^1(\Omega)}^2
ight)^{1/2} \leqslant \| oldsymbol{f} \|_{L^2(\Omega)^d},$$

Locking-free methods satisfy an error estimate of the form

$$\|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathrm{el}} \leqslant C\mathcal{N}_{\mathrm{el}}h,$$

with C independent of λ , h, and \boldsymbol{u}

- Key point: approximation of non-trivial solenoidal fields
- Classical solution: Crouzeix—Raviart on matching triangular meshes
- What about general polygonal/polyhedral meshes?

Stokes flow with large irrotational body forces I

- \blacksquare Let again $\Omega \subset \mathbb{R}^d$ denote a bounded polygonal or polyhedral domain
- We consider the Stokes flow

$$\begin{aligned} -\triangle \boldsymbol{u} + \boldsymbol{\nabla} p &= \boldsymbol{\Psi} - \boldsymbol{\nabla} \varphi & & \text{in } \Omega, \\ \boldsymbol{\nabla} \cdot \boldsymbol{u} &= 0 & & \text{in } \Omega, \\ \boldsymbol{u} &= \boldsymbol{0} & & \text{on } \partial \Omega, \\ \langle p \rangle_{\Omega} &= 0 & & \end{aligned}$$

- Classical requirement: inf-sup stable discretization
- Avoid that large irrotational body forces affect the velocity approximation [Galvin et al., 2012]
- Can these requirements be met on general polyhedral meshes?

Stokes flow with large irrotational body forces II

- Let $(\boldsymbol{u}_{\Psi}, p_{\Psi})$ denote the exact solution with $\varphi \equiv 0$
- We note the following continuous property:

$$\boldsymbol{u} = \boldsymbol{u}_{\boldsymbol{\Psi}}, \qquad p = p_{\boldsymbol{\Psi}} - \varphi$$

- Key point: mimick this property at the discrete level
- lacksquare With $\mathcal{N}_{m{\Psi}}:=\|m{u}_{m{\Psi}}\|_{H^2(\Omega)^d}+\|p_{m{\Psi}}\|_{H^1(\Omega)}$ we obtain the estimate

$$\begin{split} \| \boldsymbol{\nabla}_h (\boldsymbol{u} - \boldsymbol{u}_h) \|_{L^2(\Omega)^{d,d}} &\leq Ch \mathcal{N}_{\boldsymbol{\Psi}}, \\ \| p - p_h \|_{L^2(\Omega)} &\leq Ch \left(\mathcal{N}_{\boldsymbol{\Psi}} + \| \varphi \|_{H^1(\Omega)} \right), \end{split}$$

where C is independent of h, ${m u}$, and φ

Outline

- 1 Introduction
- 2 A generalization of the Crouzeix-Raviart element
 - Construction
 - Continuity of face-averaged values
 - Approximation
- 3 Applications
 - Linear elasticity
 - Stokes

Admissible mesh sequences I

Trace and inverse inequalities

- lacksquare Every \mathcal{T}_h admits a simplicial submesh \mathfrak{S}_h
- \bullet (\mathfrak{S}_h) $_{h\in\mathcal{H}}$ is shape-regular in the sense of Ciarlet
- $(\mathfrak{S}_h)_{h\in\mathcal{H}}$ is contact regular: every simplex $S\subset T$ is s.t. $h_S\approx h_T$

Optimal polynomial approximation (for error estimates)

Every element T is star-shaped w.r.t. a ball of diameter $\delta_T \approx h_T$

Figure: Admissible (left) and non-admissible (right) mesh elements

Admissible mesh sequences II

Cell centers

We fix a set of points $\{x_T\}_{T\in\mathcal{T}_h}$ s.t.

- all $T \in \mathcal{T}_h$ is star-shaped w.r.t. \boldsymbol{x}_T
- lacksquare for all $T \in \mathcal{T}_h$, and all $F \in \mathcal{F}_T$, $d_{T,F} := \operatorname{dist}(\boldsymbol{x}_T, F) \approx h_T$

Figure: Cell center and face-based pyramid $\mathcal{P}_{T,F}$

Admissible mesh sequences III

Figure: Pyramidal submesh $\mathcal{P}_h := \{\mathcal{P}_{T,F}\}_{T \in \mathcal{T}_h, F \in \mathcal{F}_T}$. $\Sigma_h := \{\text{faces of } \mathcal{P}_h\}$

Lemma (Shape- and contact-regularity of \mathcal{P}_h)

Let \mathcal{T}_h admit a set of cell centers. Then, if \mathcal{T}_h is shape- and contact-regular, the same holds for \mathcal{P}_h .

A generalization of the Crouzeix–Raviart space I

■ Following [Eymard et al., 2010], we consider the space of DOFs

$$\mathbb{V}_h := \mathbb{R}^{\mathcal{T}_h} \times \mathbb{R}^{\mathcal{F}_h}$$

■ Define the gradient reconstruction $\mathfrak{G}_h: \mathbb{V}_h \to \mathbb{P}^0_d(\mathcal{P}_h)^d$ s.t.

$$\forall \mathcal{P}_{T,F} \in \mathcal{P}_h, \qquad \mathfrak{G}_h(\mathbb{V}_h)_{|\mathcal{P}_{T,F}} = \boldsymbol{G}_T(\mathbb{V}_h) + \boldsymbol{R}_{T,F}(\mathbb{V}_h)$$

where

$$egin{aligned} oldsymbol{G}_T(\mathbb{V}_h) &:= \sum_{F \in \mathcal{F}_T} rac{|F|}{|T|} v_F oldsymbol{n}_{T,F}, \ oldsymbol{R}_{T,F}(\mathbb{V}_h) &:= rac{oldsymbol{\eta}}{d_{T,F}} \left[v_F - (v_T + oldsymbol{G}_T(\mathbb{V}_h) \cdot (\overline{oldsymbol{z}}_F - oldsymbol{x}_T))
ight] oldsymbol{n}_{T,F} \end{aligned}$$

■ Observe that $\boldsymbol{R}_{T,F}(\mathbb{V}_h) \in (\mathbb{P}_d^0(T)^d)^{\perp}$

A generalization of the Crouzeix–Raviart space II

■ In the spirit of ccG methods, define $\mathfrak{R}_h : \mathbb{V}_h \to \mathbb{P}^1_d(\mathcal{T}_h)$ s.t.

$$\forall \mathcal{P}_{T,F} \in \mathcal{P}_h, \qquad \mathfrak{R}_h(\mathbb{V}_h)_{|\mathcal{P}_{T,F}}(\boldsymbol{x}) = \frac{\boldsymbol{v_F}}{} + \mathfrak{G}_h(\mathbb{V}_h)_{|\mathcal{P}_{T,F}} \cdot (\boldsymbol{x} - \overline{\boldsymbol{x}}_F)$$

■ Following [DP, 2012] we introduce the discrete space

$$\mathfrak{CR}(\mathcal{T}_h) := \mathfrak{R}_h(\mathbb{V}_h) \subset \mathbb{P}^1_d(\mathcal{P}_h)$$

Continuity of face-averaged values I

Figure: Primal mesh faces (thick lines) and lateral pyramidal faces (thin lines)

Lemma (Continuity of face-averaged values)

Assume $\eta = d$. There holds for all $v_h \in \mathfrak{CR}(\mathcal{T}_h)$ and all $\sigma \in \Sigma_h$,

$$\langle \llbracket v_h \rrbracket \rangle_{\sigma} = 0.$$

Continuity of face-averaged values II

- Choice of the starting point: $\langle \llbracket v_h \rrbracket \rangle_F = v_F = 0$ for all $F \in \mathcal{F}_h$
- For $\sigma \in \Sigma_h \backslash \mathcal{F}_h$, there holds with $\mathbb{V}_h \in \mathbb{V}_h$ s.t. $\mathfrak{R}_h(\mathbb{V}_h) = v_h$,

$$\langle \llbracket v_h \rrbracket \rangle_{\sigma} = v_{h|\mathcal{P}_{T,F_1}}(\overline{\boldsymbol{x}}_{\sigma}) - v_{h|\mathcal{P}_{T,F_2}}(\overline{\boldsymbol{x}}_{\sigma})$$
$$= v_{F_1} - v_{F_2} - \boldsymbol{G}_T(\nabla_h) \cdot (\overline{\boldsymbol{x}}_{F_1} - \overline{\boldsymbol{x}}_{F_2}) + \alpha_1 - \alpha_2,$$

$$\text{with } \alpha_i \!\!:=\!\! \boldsymbol{R}_{T,F_i}(\mathbb{V}_h) \cdot (\overline{\boldsymbol{x}}_{\sigma} - \overline{\boldsymbol{x}}_i) \! = \! -\frac{\eta}{d} \left(v_{F_i} \! - \! v_T \! - \! \boldsymbol{G}_T(\mathbb{V}_h) \cdot (\overline{\boldsymbol{x}}_i \! - \! \boldsymbol{x}_T) \right) \! \underbrace{\text{Uniquestity of the Limit Solid Properties of the properties of t$$

Continuity of face-averaged values III

■ Hence, taking $\eta = d$,

$$\langle \llbracket v_h
rbracket
angle_{\sigma} = \left(1 - rac{\eta}{d}\right) \left(v_{F_1} - v_{F_2} - \boldsymbol{G}_T(\mathbb{V}_h) \cdot (\overline{\boldsymbol{x}}_{F_1} - \overline{\boldsymbol{x}}_{F_2})\right) = 0$$

since

$$\alpha_1 - \frac{\alpha_2}{d} = -\frac{\eta}{d} \left(v_{F_1} - v_{F_2} - \boldsymbol{G}_T(\boldsymbol{v}_h) \cdot (\overline{\boldsymbol{x}}_1 - \overline{\boldsymbol{x}}_2) \right)$$

Approximation properties I

Lemma (Approximation in $\mathfrak{CR}(\mathcal{T}_h)$)

For $v \in H^1(\Omega)$ let $\mathcal{I}_h v \in \mathfrak{CR}(\mathcal{T}_h)$ be s.t.

$$\mathcal{I}_h v = \mathfrak{R}_h(\mathbb{V}_h) \text{ with } \mathbb{V}_h = \left((\pi_h^1 v(\boldsymbol{x}_T))_{T \in \mathcal{T}_h}, (\langle v \rangle_F)_{F \in \mathcal{F}_h} \right)$$

Then there holds

$$\Pi_h^0(\boldsymbol{\nabla}_h \mathcal{I}_h v) = \Pi_h^0(\boldsymbol{\nabla} v).$$

Moreover, if $v \in H^1(\Omega) \cap H^2(\mathcal{T}_h)$, there holds for all $T \in \mathcal{T}_h$,

$$||v - \mathcal{I}_h v||_{L^2(T)} + h_T ||\nabla (v - \mathcal{I}_h v)||_{L^2(T)^d} \le C h_T^2 ||v||_{H^2(T)}.$$

Approximation properties II

Proof.

Let $T\in\mathcal{T}_h$. Using Green's Theorem and since $m{R}_{T,F}(\mathbb{V}_h)\in(\mathbb{P}^0_d(T)^d)^\perp$,

$$\Pi_h^0(\boldsymbol{\nabla}_h \mathcal{I}_h v)_{|T} = \boldsymbol{G}_T(\boldsymbol{v}_h) = \sum_{F \in \mathcal{F}_T} \frac{|F|}{|T|} \langle v \rangle_F \boldsymbol{n}_{T,F}
= \frac{1}{|T|} \sum_{F \in \mathcal{F}_T} \int_F v \boldsymbol{n}_{T,F} = \frac{1}{|T|} \int_T \boldsymbol{\nabla} v = \langle \boldsymbol{\nabla} v \rangle_T.$$

The second point can be proved as in [DP, 2012].

Approximation properties III

Corollary (Divergence approximation)

For $v \in H^1(\Omega)^d \cap \mathbf{H}^1(\mathrm{div};\Omega)$ let $v_h := \mathcal{I}_h v$ and $D_h(v_h) := \Pi_h^0(\nabla_h \cdot v_h)$, i.e.,

$$\forall T \in \mathcal{T}_h, \quad \frac{D_h(\boldsymbol{v}_h)|_T}{|T|} = \frac{1}{|T|} \sum_{F \in \mathcal{F}_T} |F| \boldsymbol{v}_F \cdot \boldsymbol{n}_{T,F}.$$

As a consequence, for all $T \in \mathcal{T}_h$, there holds

$$\|\nabla \cdot \boldsymbol{v} - D_h(\boldsymbol{v}_h)\|_{L^2(T)} + h_T |\nabla \cdot \boldsymbol{v} - D_h(\boldsymbol{v}_h)|_{H^1(T)} \leqslant Ch_T |\nabla \cdot \boldsymbol{v}|_{H^1(T)}.$$

Outline

- 1 Introduction
- 2 A generalization of the Crouzeix-Raviart element
 - Construction
 - Continuity of face-averaged values
 - Approximation
- 3 Applications
 - Linear elasticity
 - Stokes

A locking-free method on general meshes I

$$egin{aligned} -oldsymbol{
abla} \cdot \underline{\underline{\sigma}}(oldsymbol{u}) &= oldsymbol{f} & ext{ in } \Omega, \ oldsymbol{u} &= oldsymbol{0} & ext{ on } \partial \Omega \end{aligned}$$

lacktriangle We seek an approximation of the displacement u in the space

$$\boldsymbol{U}_h := \mathfrak{CR}_0(\mathcal{T}_h)^d$$

The discrete problem reads

Find
$$\boldsymbol{u}_h \in \boldsymbol{U}_h$$
 s.t. $a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) = \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v}_h$ for all $\boldsymbol{v}_h \in \boldsymbol{U}_h$

with

$$a_h(\boldsymbol{w},\boldsymbol{v}) := \int_{\Omega} 2\mu \underline{\underline{\epsilon_h}}(\boldsymbol{w}) : \underline{\underline{\epsilon_h}}(\boldsymbol{v}) + \int_{\Omega} \lambda D_h(\boldsymbol{w}) D_h(\boldsymbol{v}) + \sum_{\sigma \in \Sigma_h} \int_{\sigma} \frac{\mu}{h_{\sigma}} [\![\boldsymbol{w}]\!] \cdot [\![\boldsymbol{v}]\!]$$

A locking-free method on general meshes II

Lemma (Coercivity of a_h)

There holds for all $v_h \in U_h$ with C_{sta} independent of h and of λ ,

$$a_h(\boldsymbol{v}_h, \boldsymbol{v}_h) =: \|\boldsymbol{v}_h\|_{\mathrm{el}}^2 \geqslant C_{\mathrm{sta}} \|\boldsymbol{\nabla}_h \boldsymbol{v}_h\|_{L^2(\Omega)^{d,d}}^2.$$

Proof.

- lacksquare Continuity of face-averaged values: $\|oldsymbol{
 abla}_h v\|_{L^2(\Omega)^{d,d}}$ is a norm on $oldsymbol{U}_h$
- Discrete Korn's inequality [Brenner, 2004],

$$\forall oldsymbol{v}_h \in oldsymbol{U}_h, \quad \|oldsymbol{
abla}_h oldsymbol{v}_h\|_{L^2(\Omega)^{d,d}} \leqslant C_{\mathrm{K}} \left(\|\underline{\underline{\epsilon_h}}(oldsymbol{v}_h)\|_{L^2(\Omega)^{d,d}}^2 + |oldsymbol{v}_h|_{\mathrm{J}}^2
ight)^{1/2}$$

A locking-free method on general meshes III

Lemma (Weak consistency)

Assume $u \in U_* := (H_0^1(\Omega) \cap H^2(\Omega))^d$. Then

$$orall oldsymbol{v}_h \in oldsymbol{U}_h, \quad a_h(oldsymbol{u}, oldsymbol{v}_h) = \int_{\Omega} oldsymbol{f} \cdot oldsymbol{v}_h + \mathcal{E}_h(oldsymbol{v}_h),$$

with consistency error

$$\mathcal{E}_h(\boldsymbol{v}_h) := \sum_{\sigma \in \Sigma_h} \int_{\sigma} \underline{\underline{\sigma}}(\boldsymbol{u}) : \llbracket \boldsymbol{v}_h \rrbracket \otimes \boldsymbol{n}_F + \int_{\Omega} \lambda (D_h(\boldsymbol{u}) - \boldsymbol{\nabla} \cdot \boldsymbol{u}) \boldsymbol{\nabla}_h \cdot \boldsymbol{v}_h.$$

Proof.

Integrate by parts the volumic terms and use $-\nabla \cdot \underline{\underline{\sigma}}(u) = f$ a.e. in Ω .

A locking-free method on general meshes IV

Theorem (Convergence)

Assume $u \in U_*$. Then the method satisfies the locking-free estimate

$$\|\boldsymbol{u} - \boldsymbol{u}_h\|_{\mathrm{el}} \leqslant C\mathcal{N}_{\mathrm{el}}h.$$

Proof.

Strang's Second Lemma yields

$$\|\|oldsymbol{u} - oldsymbol{u}_h\|\|_{ ext{el}} \lesssim \inf_{oldsymbol{v}_h \in oldsymbol{U}_h} \|oldsymbol{u} - oldsymbol{v}_h\|_{ ext{el}} + \sup_{oldsymbol{v}_h \in oldsymbol{U}_h \setminus \{oldsymbol{0}\}} rac{|\mathcal{E}_h(oldsymbol{v}_h)|}{\|oldsymbol{v}_h\|_{ ext{el}}} \coloneqq \mathfrak{T}_1 + \mathfrak{T}_2.$$

- \mathfrak{T}_1 : approximation properties of \mathcal{I}_h ;
- \blacksquare \mathfrak{T}_2 : continuity of face-averaged values.

Numerical example I

Figure: Closed cavity [Hansbo and Larson, 2003] ($\lambda \approx 1.666 \cdot 10^6$, $\mu \approx 333$)

Numerical example II

Figure: Meshes for the closed cavity

Numerical example III

Figure: Closed cavity problem, coarse meshes

Numerical example IV

Figure: Closed cavity problem, fine meshes

Inf-sup stable discretization I

$$-\triangle \boldsymbol{u} + \boldsymbol{\nabla} p = \boldsymbol{\Psi} - \boldsymbol{\nabla} \varphi \qquad \text{in } \Omega,$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{u} = 0 \qquad \qquad \text{in } \Omega,$$

$$\boldsymbol{u} = \boldsymbol{0} \qquad \qquad \text{on } \partial \Omega,$$

$$\langle p \rangle_{\Omega} = 0$$

■ We consider the following discrete spaces:

$$\boldsymbol{U}_h := \mathfrak{C}\mathfrak{R}_0(\mathcal{T}_h)^d, \quad P_h := \mathbb{P}_d^0(\mathcal{T}_h) \cap L_0^2(\Omega), \quad \boldsymbol{X}_h := \boldsymbol{U}_h \times P_h$$

■ The discretization of the diffusion term is based on the bilinear form

$$a_h(\boldsymbol{w}, \boldsymbol{v}) \coloneqq \int_{\Omega} \boldsymbol{\nabla}_h \boldsymbol{w} : \boldsymbol{\nabla}_h \boldsymbol{v}$$

■ The velocity-pressure coupling is based on the bilinear form

$$b_h(oldsymbol{v},q) \coloneqq -\int_{\Omega} (oldsymbol{
abla}_h \cdot oldsymbol{v}) q$$

Inf-sup stable discretization II

Lemma (Stability)

There exist a reals $\beta > 0$ independent of h s.t., for all $q_h \in P_h$,

$$\beta \|q_h\|_{L^2(\Omega)} \leqslant \$:= \sup_{\boldsymbol{w}_h \in \boldsymbol{U}_h \setminus \{\boldsymbol{0}\}} \frac{b_h(\boldsymbol{w}_h, q_h)}{\|\boldsymbol{\nabla}_h \boldsymbol{w}_h\|_{L^2(\Omega)^{d,d}}}.$$

Proof.

With $oldsymbol{v}_{q_h}$ velocity lifting of q_h , $oldsymbol{\xi}_h \coloneqq \mathcal{I}_h oldsymbol{v}_{q_h}$, there holds

$$\begin{aligned} \|q_h\|_P^2 &= \int_{\Omega} \boldsymbol{\nabla} \cdot \boldsymbol{v}_{q_h} q_h = \int_{\Omega} \Pi_h^0(\boldsymbol{\nabla} \cdot \boldsymbol{v}_{q_h}) q_h = -b_h(\boldsymbol{\xi}_h, q_h) \\ &\leq \$ \|\boldsymbol{\nabla}_h \boldsymbol{\xi}_h\|_{L^2(\Omega)^{d,d}} \lesssim \$ \|\boldsymbol{v}_{q_h}\|_{H^1(\Omega)^d} \lesssim \$ \|q_h\|_{L^2(\Omega)}. \end{aligned}$$

Forcing term I

lacksquare At the continuous level there holds for all $oldsymbol{v}\in H^1_0(\Omega)^d$,

$$\int_{\Omega} (\boldsymbol{\Psi} - \boldsymbol{\nabla} \varphi) \cdot \boldsymbol{v} = \int_{\Omega} \boldsymbol{\Psi} \cdot \boldsymbol{v} + \int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{v}) \varphi$$

We discretize the source term accordingly,

$$l_h(\boldsymbol{v}) := \int_{\Omega} \boldsymbol{\Psi} \cdot \boldsymbol{v} - b_h(\boldsymbol{v}, \Pi_h^0 \varphi)_{L^2(\Omega)}$$

■ The discrete problem reads: Find $(\boldsymbol{u}_h, p_h) \in \boldsymbol{X}_h$ s.t.

$$a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + b_h(\boldsymbol{v}_h, p_h) - b_h(\boldsymbol{u}_h, q_h) = l_h(\boldsymbol{v}_h), \quad \forall (\boldsymbol{v}_h, q_h) \in \boldsymbol{X}_h$$

Forcing term II

Proposition

Denote by $(u_{\Psi,h},p_{\Psi,h})$ the solution with $\varphi\equiv 0$. There holds

$$\boldsymbol{u}_h = \boldsymbol{u}_{\boldsymbol{\Psi},h}, \qquad p_h = p_{\boldsymbol{\Psi},h} - \Pi_h^0 \varphi.$$

Proof.

Owing to the choice of the right-hand side there holds

$$a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + b_h(\boldsymbol{v}_h, p_h + \Pi_h^0 \varphi) - b_h(\boldsymbol{u}_h, q_h) = \int_{\Omega} \boldsymbol{\Psi} \cdot \boldsymbol{v}_h.$$

The conclusion follows since the discrete problem is well-posed.

Error estimate

Theorem (Error estimate for the problem with $\varphi \equiv 0$)

Assume $(\boldsymbol{u}_{\Psi,h},p_{\Psi,h}) \in \boldsymbol{X}_*$ with $\boldsymbol{X}_* := \boldsymbol{X} \cap H^2(\Omega)^d \times H^1(\Omega)$. There holds with $\mathcal{N}_{\Psi} := \|\boldsymbol{u}_{\Psi}\|_{H^2(\Omega)^d} + \|p_{\Psi}\|_{H^1(\Omega)}$

$$\|\boldsymbol{\nabla}_h(\boldsymbol{u}_{\boldsymbol{\Psi}}-\boldsymbol{u}_{\boldsymbol{\Psi},h})\|_{L^2(\Omega)^{d,d}}+\|p-p_{\boldsymbol{\Psi},h}\|_{L^2(\Omega)}\leqslant C\mathcal{N}_{\boldsymbol{\Psi}}h.$$

Corollary (Error estimate)

There holds

$$\|\nabla_{h}(\boldsymbol{u}-\boldsymbol{u}_{h})\|_{L^{2}(\Omega)^{d,d}} \leq C\mathcal{N}_{\Psi}h,$$

$$\|p-p_{h}\|_{L^{2}(\Omega)} \leq C\left(\mathcal{N}_{\Psi} + \|\varphi\|_{H^{1}(\Omega)}\right)h.$$

Numerical example I

■ We consider the following exact solution:

$$u_1=-e^x(y\cos(y)+\sin(y)),\ u_2=e^xy\sin(y),\ p_{\Psi}=2e^x\sin(y)-C,$$
 with $\Psi\equiv 0$ and potential

$$\varphi = \chi \sin(2\pi x) \sin(2\pi y), \qquad \chi > 0$$

 \blacksquare The parameter χ allows to vary the magnitude of the irrotational body force

Numerical example II

Figure: Depedence of the velocity and pressure approximations on the magnitude of the irrotational body force

References

Brenner, S. and Sung, L.-Y. (1992).

Linear finite element methods for planar linear elasticity. Math. Comp., 49(200):321-338.

Brenner, S. C. (2004).

Korn's inequalities for piecewise H^1 vector fields. Math. Comp., 73(247):1067-1087.

Di Pietro, D. A. (2012).

Cell centered Galerkin methods for diffusive problems.

M2AN Math. Model. Numer. Anal., 46:111-144.

Droniou, J., Eymard, R., Gallouët, T., and Herbin, R. (2010).

A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, M3AS, Math. Models Methods Appl. Sci., 20(2):265-295.

Evmard, R., Gallouët, T., and Herbin, R. (2010).

Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. 30(4):1009-1043.

Galvin, K., Linke, A., Rebholz, L., and Wilson, N. (2012).

Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection.

Comput. Methods Appl. Mech. Engrg., (237-240):166-176.

Hansbo, P. and Larson, M. G. (2002).

Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg., 191:1895-1908.

Hansbo, P. and Larson, M. G. (2003).

Discontinuous Galerkin and the Crouzeix-Raviart element: Application to elasticity.

