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Introduction

A generalization of the Crouzeix—Raviart element
m Construction

m Continuity of face-averaged values
m Approximation

Applications
m Linear elasticity
m Stokes
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Quasi-compressible materials and numerical locking |

m Let QO — R denote a bounded polygonal or polyhedral domain

m We consider the linear elasticity equations
—Vg(u)=f in Q,
u=0 on 01},

where, for u, A € R, g(u) is the Cauchy stress tensor,

S

(u) :=2pe(u) + AV uly, e(u) = = (Vu+ Vu')

DN =

m When A — +00, numerical locking can be observed

m To avoid locking: uniform convergence w.r.t. A




Quasi-compressible materials and numerical locking Il

m If Q convex, in d = 2 there holds [Brenner and Sung, 1992]

1/2
Nai= (1l + NVl < Ifl2@pe,

Locking-free methods satisfy an error estimate of the form
lw = wnfle < CNabh,

with C independent of A\, h, and u
m Key point: approximation of non-trivial solenoidal fields
m Classical solution: Crouzeix—Raviart on matching triangular meshes

m What about general polygonal/polyhedral meshes?




Stokes flow with large irrotational body forces |

Let again 2 c R? denote a bounded polygonal or polyhedral domain

We consider the Stokes flow

—Au+Vp=¥-Vop in Q,

Vu=0 in Q,
u=0 on 09,
(Pa=0

Classical requirement: inf-sup stable discretization

m Avoid that large irrotational body forces affect the velocity
approximation [Galvin et al., 2012]

m Can these requirements be met on general polyhedral meshes?




Stokes flow with large irrotational body forces Il

m Let (uw, py) denote the exact solution with ¢ =0

m We note the following continuous property:

U= uy, pP=pr—¢

m Key point: mimick this property at the discrete level

m With Ny 1= |uw| g2()« + |pw | H1 (o) we obtain the estimate

th(’u — uh)HLz(Q)d,d < ChNy,
Ip = prllrz) < Ch (N + @] mr(a))

where C is independent of h, u, and ¢




Outline

A generalization of the Crouzeix—Raviart element
m Construction
m Continuity of face-averaged values
m Approximation




Admissible mesh sequences |

Trace and inverse inequalities

m Every 7;, admits a simplicial submesh &,
B (S})hen is shape-regular in the sense of Ciarlet

B (Sp)pen is contact regular: every simplex S T is s.t. hg ~ hy

Optimal polynomial approximation (for error estimates)

Every element T is star-shaped w.r.t. a ball of diameter i1 ~ hyp

uuuuuu

Figure: Admissible (left) and non-admissible (right) mesh elements ume



Admissible mesh sequences Il

Cell centers

We fix a set of points {& 1} e, S.t.
m all T € Ty, is star-shaped w.r.t. 7
m forall T €Ty, and all F € Frp, dp g :=dist(zy, F) ~ hyp

Figure: Cell center and face-based pyramid Pr r




Admissible mesh sequences Il|

Figure: Pyramidal submesh Py, := {Pr,r}rer, per,- 2n = {faces of P}

Lemma (Shape- and contact-regularity of Py,)

Let T, admit a set of cell centers. Then, if Ty, is shape- and
contact-regular, the same holds for P},.




A generalization of the Crouzeix—Raviart space |

m Following [Eymard et al., 2010], we consider the space of DOFs
V= RT x R7®
m Define the gradient reconstruction &), : V;, — P4 (P;,)? s.t.
VPr.r€Pn,  Ou(Vi)p,, = Gr(vh) + Rr r(vs)

where

F
Gr(vy) = Z ||T||UFTLT,F7
FE]'-T
, B
Ry p(vy) = dT]F [vp — (vp + Gop(vy)(Tp — zp))]neF

m Observe that R p(vy,) € (PY(T)%)*t




A generalization of the Crouzeix—Raviart space Il

m In the spirit of ccG methods, define 93;, : V), — PL(7y,) s.t.
V'PTJ:' € Py, %’L(Wh)\PT,F("B) = vp + ﬁh(wh)‘pﬂf(m — EF)

m Following [DP, 2012] we introduce the discrete space

[ ER(T3) = Ra(Va)= PU(Ps) |




Continuity of face-averaged values |

Figure: Primal mesh faces (thick lines) and lateral pyramidal faces (thin lines)

Lemma (Continuity of face-averaged values)

Assume 1) = d. There holds for all v, € €R(T},) and all o € ¥y,

([vn]>s = 0.




Continuity of face-averaged values |l

Fy

m Choice of the starting point: {Ju,])r = vp = 0 for all F € F,
m For o€ Eh\Fhr there holds with vj, € Vy, s.t. iﬁh(wh) = Up,

(onldo = vnipy p, (o) = Vrpy p, (To)

= VUp, — VRy — GT(\Vh)'(ELH*EFQ) + a1 — oo,

with ai::RT,Fi(‘Vh)'(EU_Ei):_% (T)Fi—UT— GT(wh)-(ii—mT))lerlszl




Continuity of face-averaged values IlI

m Hence, taking n = d,

(oil)o = (1= 2) (vr, = vr, = Gr(vs)-@r,—Tp,)) = 0

since

N1 — (Vg = —g (UF1 — Upy, — GT(Wh)'(fl—fg))




Approximation properties |

Lemma (Approximation in €9R(7}))
For ve HY(Q) let I,v € €R(T},) be s.t.
Inv = Rn(vn) with vi, = ((mpv(@ 1)) TeTss ((0)F) per,)

Then there holds
(V4 Znv) = (V).

Moreover, if ve HY(Q) n H?(Ty), there holds for all T € Ty,

|v = Zholl 2(zy + |V (0 = Zho)l| L2(7ys < ChZ||v] B2 (1)




Approximation properties |l

Let T € Tj. Using Green's Theorem and since Rt p(vy) € (P(T)%)+,
||

(Vi Zhv) r = Gr(va) = FGZ; m@FnT,F

| 1)
= — mpp=-— | Vo=(Vuyr.
7 2 ) 7 )

The second point can be proved as in [DP, 2012]. O




Approximation properties |l|

Corollary (Divergence approximation)

For ve H'(Q)* n H'(div; Q) let vj, := T,v and Dy,(vp,) 1= 119(V-v),
ie.,
1

VT € Th, Du(vn)r = 7]

Z |F|’UF‘TLT7F.
FE]‘_T

As a consequence, for all T € T, there holds

”V"U_Dh('vh)HLZ(T) 4F hT|V~’U—Dh(’Uh)|H1(T) < ChT|V"U|H1(T).

urmne
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A locking-free method on general meshes |

—V.g(u)=f in £,
u=0 on 0f)

m We seek an approximation of the displacement w in the space
Uy = CRo(Th)*
m The discrete problem reads
Find uy, € Uy, s.t. ap(up, vp) = JQ frop forall v, € Uy,
with

= EpL(W)EQLD w v ﬂ w|-|v
O R P RCI LG W L




A locking-free method on general meshes Il

Lemma (Coercivity of ay)

There holds for all vy, € Uy, with Cy, independent of h and of A,

an(vh, vn) =t [[vnlld = Csal Vavnl 7z (qyaa-

m Continuity of face-averaged values: |V v 12(q)4q is a norm on Uy,

m Discrete Korn's inequality [Brenner, 2004],

1/2
Vone Un, [Vavnloaoes < C (;@(vmnizm)d,d n |vh|§)

0
urme-




A locking-free method on general meshes Il|

Lemma (Weak consistency)

Assume u e Uy := (H}(Q) n H*(Q))?. Then
Yo, € Uy, ah(u, ’Uh) = J fon + 5h(vh),
Q
with consistency error

Z J [['Uh]]®nF+J A(Dp(u) — V-u)Vy-vy.

gEX

Proof
Integrate by parts the volumic terms and use —V-g(u) = f a.e. in Q. O

urmne




A locking-free method on general meshes IV

Theorem (Convergence)

Assume u € U,. Then the method satisfies the locking-free estimate

llw — upf|er < CNeh.

Proof.
Strang's Second Lemma yields

. En(v
llw— wplla < inf lu—vplla+ sup [En(on)] . _ T) + Do,
vpeUy,

oneUnN0} llVnller

m T;: approximation properties of Zy;

m Ty continuity of face-averaged values. [




Numerical example |

Figure: Closed cavity [Hansbo and Larson, 2003] () ~ 1.666 - 10°, u ~ 333)

ume

uuuuuu




Numerical example |l
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Figure: Meshes for the closed cavity
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Numerical example Ill
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Figure: Closed cavity problem, coarse meshes




Numerical example IV
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Figure: Closed cavity problem, fine meshes
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Inf-sup stable discretization |

—Au+Vp=W¥ —-Vop in 2,
Vu=0 in Q,
u=0 on 01},
(pra=0

m We consider the following discrete spaces:
Up = CRo(Tn)*,  Pri=PY(Th) 0 L§(Q), Xj:=Upx Py
m The discretization of the diffusion term is based on the bilinear form

ap(w, v) 1= J V5iw:Vyv
Q

m The velocity-pressure coupling is based on the bilinear form

b(v.0)i= = | (Tiou)g urme



Inf-sup stable discretization Il

Lemma (Stability)

There exist a reals 3 > 0 independent of h s.t., for all q;, € Py,

br(wh, qn)
Blanlzz) <8:= sup ——7b——.
6 wre UL\{0} ||Vhwh||L2(Q)d~d

Proof.
With v, velocity lifting of qx, &), := Zrv,, there holds

lanl = L Vvg 0 = JQ I9(V-00,) a1 = — b (€n» an)

< 8V réplzyaa < Slvgllm (@) < Slanlrz(o)-




Forcing term |

m At the continuous level there holds for all v e Hi ()<,
J (T —Vp)v= f v+ f (V-v)p
Q Q Q
m We discretize the source term accordingly,
Ih(v) = J T-v — by, (v, 1100) 12(0)
Q
m The discrete problem reads: Find (up, py) € X, s.t.

an(wh, v) + bp(vn, pr) — bn(un, qn) = (vn), Y(va, qn) € Xi

urmne



Forcing term |l

Proposition

Denote by (uw 1, pw,) the solution with ¢ = 0. There holds

0
Up = U, prn = pw.n — ;0.

Owing to the choice of the right-hand side there holds

an(wn, v1) + b (va, pr + he) — bp(up, qn) = J Vv,
Q

The conclusion follows since the discrete problem is well-posed. [




Error estimate

Theorem (Error estimate for the problem with ¢ = 0)

Assume (uw p, pw.p) € Xy with Xy := X n H?(Q)¢ x HY(Q). There
holds with N\p = HU\I}HHQ(Q)LI aF Hp\y”Hl(Q)

IVi(we — we )| o) < CNygh.

Corollary (Error estimate)

There holds

CNgh
C (N\Il ar HSDHHl ) h.

IVh(u— un)| 2@ <
<

lp — PhHL2(Q)

urmne




Numerical example |

m We consider the following exact solution:
up = —e®(ycos(y) +sin(y)), up = e®ysin(y), pe = 2e”sin(y) — C,
with ¥ = 0 and potential
© = xsin(27x) sin(27y), x>0

m The parameter x allows to vary the magnitude of the irrotational
body force




Numerical example |l
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Figure: Depedence of the velocity and pressure approximations on the
magnitude of the irrotational body force
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