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ERC Synergy Grants

 Largest and most competitive grants awarded by the ERC
 Aimed at problems too difficult to solve for a single researcher
* Up to 4 Principal Investigators (PlI)

* Total funding up to 10M€, duration up to 6 years

* All fields of research evaluated by a single panel

Established by the European Commission



The NEMESIS project

* Principal Investigators (all researchers in Numerical Analysis!):
- Daniele Di Pietro, Université de Montpellier, IMAG, corr. Pl
- Paola Antonietti, Politecnico di Milano, MOX
- Lourenco Beirao da Veiga, Universita di Milano Bicocca
- Jerome Droniou, CNRS, IMAG

e 7.8M€ (4.4M€ at IMAG), 4 research clusters, 8 work packages

e >70 + >15 man-year of non-permanent + permanent researchers
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From physical problems to numerical simulations

I Physical
= problem
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N NEMESIS <

I Mathematical < puH —curl A =0 in Q,
= model curl H=J in Q,
divA =0 In Q
A Uu) = ’

( 1 f AXn=0 on 0Q2
Numerical Computer

= approximation ——
Ay(uy) = fy

V.

simulation
A, =1,




The challenges for next generation simulators

01. 02. 03. 04.

v Incomplete v Efficient solution v Nonlinear, v Handling all of
differential of large, hybrid- the above at
operators in indefinite dimensional once
Hilbert algebraic physics
complexes systems

These challenges correspond to the research clusters of NEMESIS
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Stability, consistency, and convergence

Ap(uy) = 1y

. % measures the effort required to solve the discrete problem

* Our ultimate goal is to have convergent schemes, for which
u, > uash — 0

- Stability: Small variations of f; induce small variations of 1,

- Consistency: f, —A,([,u) > Qash = 0

* For linear problems, we have the Lax principle™:

Stability = (Consistency <= Convergence)

N

* See, e.g., [Lax & Richtmyer, 1956] 6



Physical quantities have different nature

 Scalar: potential (pressure p) or density (energy &)
« Vector: circulation (magnetic field H) or flux (heat flux @)

 Tensor: (deformation &, etc.)

H, €11 €12 €13
\ px) Hx) = |H, e(x) =|€12 €2 &3

H, €13 &3 &33
X
o
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How can we measure these quantities?

e Pressure p: evaluation at a point V
« Magnetic field H: free current in a wire £
e Heat flux ®: normal flux through a surface I

« Energy &: quantity in a volume T

RO

Differential forms provide a unified approach to integration over
curves, surfaces, solids, etc. N
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Vector calculus operators

01p o

pxy) — plxy) = [ gradp - tpdl  gradp = | 0,p
E
03P
02H3 o 03H2
o d alHZ o aZHl
(7

<'ET T N7

 curl and div are incomplete differential operators
« the notion of exterior derivative unifies grad, curl, and div M
i
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Betti numbers

. Let Q C R’ be a polyhedron with Betti numbers b,
e by = | (number of connected components) and b; = ()

e b, and b, account for the number of tunnels and voids in €2

(bO, bl’ bz, b3) — (1,1,0,0) (bo, bl’ bz, b3) — (1,0,1,0)

N
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The de Rham cohomology

For a domain €2 of [R3, we can form the de Rham complex:

HY(Q) 22% H(curl; Q) —L H(div; Q) —9Ys 12(Q)

e Since curl grad = 0 and div curl = 0, this is a complex
« Depending on £2, we can strengthen these relations:
- If by =0, Ker curl = Im grad
- If b, = 0, Im curl = Kerdiv
« When b; # 0 or b, # 0, de Rham’s cohomology characterizes

Ker curl/Im grad and Ker div/Im curl

Discrete counterparts of these properties are key to stability N
when dealing with incomplete differential operators! 1
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[Raviart and Thomas, 1977], [Nédélec, 1980]




Finite Element discretization

Strong formulation

Find H: Q > R¥andA : Q - R3st.
uH —curlA =0 in Q,
curl H =J In Q,
divA =0 In Q,
Axn=0 on 0Q Weak formulation

Find H € H(curl; Q2) and A € H(div; Q) s.t.

[ ,uH-T—J A-curlt=0 Vt € H(curl; ),
Q Q

curlH-v+ | divA divy = Y Vv € H(div; Q
FE scheme [Q JQ sz ( )

Find H, € /(T ,)and A, € RT (T ) st.
[ uH, - 7, — ‘ A, -curlt, =0 Vi, € /(T ), J
Q Q

J curth-vh+[ divA, divvhz[ [, Vv e RTN(T)) \1
Q Q Q -

13



Limitations of Finite Elements

* Approach limited to conforming meshes with standard elements:
- Local refinement requires to trade mesh quality for size
- Complex geometries may require a large number of elements
- The element shape cannot be adapted to the solution

* The extension to more advanced cases is not straightforward

* Solution of algebraic systems cannot benefit from agglomeration

N
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The fully discrete polyhedral approach

 Key idea: use discrete spaces and operators
e Support of general polyhedral meshes and high-order
* Several strategies to reduce the size of algebraic systems

* Agglomeration-based multi-grid solvers for algebraic systems

N

See [Bassi et al., 2012] and [Antonietti et al., 2013] for mesh agglomeration 15



Discrete vector calculus operators

_PVZ_PV1
| E|

Pv,

P = (PVIver, € R77 QTET = (GEET)EE%T € R®7

Xgrad,T ’ Xcurl,T

See [Beirao da Veiga et al., 2014], [Bonelle and Ern, 2014] 16



Discrete vector calculus operators

== 3 o | Hy

ECOF




A lowest-order polyhedral scheme

Qh Dy, o
> X div. h > R

Gy,
Xgrad,h > X

Weak formulation
Find H € H(curl; Q2) and A € H(div; Q) s.t.

J ,uH-r—" A-curlt=0 Vt € H(curl; Q),
Q Q

[ curlH-v+" divA divv=J f-v Vv € H(div; Q)
Q Q Q

\ V%

Polyhedral scheme
Find H € X andA, € X, , st

curl,h —div,
(H 7)) eunin — (A, C, 7 )givy = 0 VT, € X
(C,H,, v )divn J DA, Dy, = [ I Paiva¥y Vi € Xy N
Q Q
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Increasing the approximation order

* With the previous construction, one can hope for the error
[ = Tyull), S h
e However, for u smooth, it would be desirable to have instead
lu—Lu||, < h* with k > 1

* This requires high-order discrete de Rham complexes

10!
100

N, — Lull, .
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Arbitrary order discrete de Rham complexes

k
k & k 2 k Dy, I
X orad.h > X curl.h > X div.h > P*(Th)

* First ideas based on FE [Beirao da Veiga et al., 2016 —18]

* First DDR complex [DPF, Droniou, and Rapetti, 2020]

* First complete set of analytical properties [DP and Droniou, 2023]
* Extension to differential forms [Bonaldi, DP, Droniou, Hu, 2023]
 Key preliminary developments for the NEMESIS project!

N
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Convergence for the magnetostatics problem

o k=0-mLk=1-ek=2—+k=3
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* Agglomeration-based multigrid solvers

* Al-driven mesh adaptation
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* Serendipity and static condensation to reduce system size
J,:,; §§
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Hybrid-dimensional, coupled, nonlinear physics

* Rigorous mathematical tools for highly non linear problems
* Development of methods for problems set on surfaces

* Polyhedral meshes for moving interface problems

Discrete Rellich—Kondrachov on domains and manifolds:

(D), bOunded = (1), CcOMpact

with D, discrete curl, div, grads,

N
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An example of highly nonlinear problem

The non-Newtonian Navier—Stokes equations

p=1.5 p=2

ou—V-ow)+w-V)u+Vp=f

Voo with 6(u) = v | e(u) [P~ e(u)

N

[Castanon Quiroz, DP, Harnist, 2023] 24



Example of mathematical challenges

 Development of discrete elasticity complexes
* Corresponding discrete Poincarée and Sobolev inequalities

e Compactness results

vSym

» Hs(RotRot ' ; Q) = Rot |, Hs(Div; Q) SRLEN L?(Q)

N

25

HY(Q)



Proof-of-concept applications

Magnetohydrodynamics

Geological flows

These applications require to combine all the advances of the —
NEMESIS project! N
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Thank you for your attention!
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