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Model problem |

Let Qc R%, d>1, be a polytopal bounded connected domain

Let p € (1,400) and f € L¥ (Q) with p/ := p%l

= We consider the Leray-Lions problem: Find u e W, () s.t.

A(u,v) = JQ a(z, Vu(zx)) - Vo(x)dz = J-Q fv Yve WP (Q)

A typical example is the p-Laplacian: For p € (1, +00),

a(z, Vu) = |Vu|P*Vu

Applications to glaciology, turbulent porous media flow, airfoil design

Perfect playground for discrete functional analysis tools ©



Model problem Il

Assumption (Leray-Lions operator/v1)

For a fixed index p € (1,+), f € L” (Q) and a satisfies
m Growth. a(-,0) € L (Q) and there is 8 > 0 s.t.

la(z, &) — a(z,0)| < Ba|€P~! for a.e. 2 € Q, for all € e RY.

m Monotonicity. For a.e. x € Q, for all (€,17) e R? x R4,

[a(z, &) —a(z,n)] - [ —n] > 0.
m Coercivity. There is Ay > 0 s.t.

a(x,€) - & = Na|€|P for a.e. e Q, forall € e RY.

A dependence on u can also be included in the analysis
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Discretization of Leray—Lions type problems

Conforming Finite Elements

m p-Laplacian, a priori [Barrett and Liu, 1994]

m A priori and a posteriori [Glowinski and Rappaz, 2003]
Nonconforming FE for the p-Laplacian [Liu and Yan, 2001]
Mixed Finite Volumes for Leray—Lions [Droniou, 2006]

Discrete Duality FV, d = 2 [Andreianov, Boyer, Hubert, 2004-07]
Mimetic FD, quasi linear [Antonietti, Bigoni, Verani, 2014]
Hybrid High-Order (HHO) for Leray—Lions, p € (1, +0)

m Convergence by compactness [DP & Droniou, Math. Comp., 2016]
m Error estimates [DP & Droniou, submitted, 2016]

Ideas and tools applicable also to other POEMS (VEM, DG,
HDG, WG,...)



Mesh |

Definition (Mesh regularity)
We consider a sequence (7j)ney of polyhedral meshes s.t., for all h € H,
Tr, admits a simplicial submesh T;, and (T},)pep is

m shape-regular in the usual sense of Ciarlet;

m contact-regular, i.e., every simplex S c T is s.t. hg ~ hy.

Main consequences:
m LP-trace and inverse inequalities
m Approximation for broken polynomial spaces
m See [Cangiani, Georgoulis, Houston, 2014] for degenerate faces
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Mesh 1l

Figure: Examples of meshes in 2d and 3d: [Herbin and Hubert, 2008] and
[DP and Lemaire, 2015] (above) and [DP and Specogna, 2016] (below)



Projectors on local polynomial spaces |

m The L*orthogonal projector mo' : LY(T) — PY(T) is s.t.
JT(W%ZU —v)w = 0 for all we P/(T)
m The elliptic projector my! : WHL(T) — PYT) is s.t.
L V(rhlv — v)-Vw = 0 for all w e P{(T) and J (mrto —v) =0

T

m The elliptic projector is at the core of other POEMS, e.g.,
m VEM [Beirdo da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo,
2013]
m HOM/nc-VEM |[Lipnikov and Manzini, 2014]



Projectors on local polynomial spaces Il

Lemma (Optimal approximation)

For allpe[1,+mo], all se {1,...,l+ 1}, all me {0,...,s— 1}, and all
ve W*P(T), it holds with = € {0,1}

1 5 1 _
"U e ﬂ-;—v U|W7n,p(T) + h%h} e 7'(_;—‘ 'U|Wm,p(].‘T) ,S h;—‘ m|'U|Ws,p(T).

Proof.

Apply a general result from [DP and Droniou, 2016b]: every W-bounded
projector has optimal approximation properties. [
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Key ideas

m DOFs: polynomials of degree k > 0 at elements and faces

m Differential operators reconstructions taylored to the problem:

Ajp(u,v) ~ f a(xz, Ghur(x)) - Ghogp(x)de + stab.
T

with
m gradient reconstruction G% from local solves
m stabilisation using face-based penalty and high-order potential
reconstruction

m General meshes in any d > 1 and arbitrary polynomial degrees



DOFs and interpolation

k=0 k=1 k=2

Figure: Ql} for k € {0,1,2}

m For k > 0 and T € T}, we define the local space of DOFs

Uk .= PF(T) x ( X Pk(F)>

FG.FT

= The local interpolator I : WHH(T) — Uk is s.t.

Ipv = (7TT v, (ﬂ-%kv)FE]‘—T)



Operator reconstructions |

m We define the gradient reconstruction G&. : U%. — P¥(T)4 s t.

(Grog, @)1 = —(vr,divg)r + Y] (vr, dnrp)r Ve PH(T)!
FeFr

m Recalling the definition of I%., it holds for all v € W1(T),

(Gh 1w, ¢)r = —(}%@,div d)r+ Z (%%QS'TLTF)F = (Vv, @),

FE}—T

i.e., by definition of w%k,

GhItv = 7y (Vo)

m As a result, (G? ol?) has optimal W*"P-approximation properties



Operator reconstructions |l

m We define the potential reconstruction p5™ : Uk — PF+1(T) s.t.
(Vpk o, — Ghog, V) =0 Yw e PFHY(T)

and (pivp —v, 1) =0

m Recalling the definition of G and I%., it holds for all v e Wh1(T),

(Vph ' IE v, Vw)r = (}{Kq Aw)r+ Z J/Kq Vwnrp)r = (Vou, Vw)r,

FeFr
1,k+1
i.e., by definition of 7 i
1,k+1
k-‘rlITU T, + v

m As a result, (p7 k1 ol;) has optimal W#*P-approximation properties



Global problem |

m For all T € T;, we define the local function Ay : UX x Uk — R sit.

Ar(up,vp) = f a(, Gy (x)) - Ghup(@)dz + sr(up, vr)
T

m The stabilisation term st :Q? X Q’% — R is s.t.

1-p k P2 o k
7(ur, vr) 2 hp J |§TF@T| o7 plp OppUp,
FE]'-T

with face-based residual operator 0% : Uk — P*(F) s.t.

k ._ 0k k+1 0,k k+1
Oppur =Tg ( F—pr v —mp (VT —Pr UT))

m Polynomial consistency: 8% .I%v = 0 for all v e PF+1(T)
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Global problem Il

m Define the following global space with single-valued interface DOFs:

i (o) x P
TeTh FeFy

m A global function Ay, :QZ X QZ — R is assembled element-wise:

Ap(up,vy) = Z Ar(up, vr)
TeTh

m We seek u,, GQIZ,,O = {yh eUF |vp = OVFG}"}?} s.t.

Ah(ﬂhayh) = J Jon Yy, € Q];L,O
Q

with v = v forall T € Ty,

14
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Global problem Il

m Define on Qk the W 1P-like seminorm (this is a norm on Qk
h h,0

1—
|;0’p’ = Z <|V’UT|I£,,(T)GL+ Z hF p’UF_UT;Zp(F)>

TGTh FG]'-T

|vp,

m We have coercivity for Aj: For all v, € Qz,

luy, Hzlj,p,h < An(up,vp)

m Existence for u,, follows (cf. [Deimling, 1985]) with a priori estimate

Junlipn < CIAI g,
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Convergence to minimal regularity solutions |

Theorem (Convergence)

Up to a subsequence as h — 0, with p* = ddfpp if p < d, +00 otherwise,
m wy, — u and pittu, — u strongly in LY(Q) for all ¢ < p*,

m GYuy, — Vu weakly in LP()%.

Additionally, if a is strictly monotone,
m Gyu; — Vu strongly in LP(Q)%.

In this case, both v and w,;, are unique and the whole sequence converges.
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Convergence to minimal regularity solutions Il

Key discrete functional analysis results on hybrid polynomial spaces:

Lemma (Discrete Sobolev embeddings)

Let 1< g<p*ifl<p<dandl<q<+w ifp=>d. Then, there
exists C' only depending on Q, o, k, q and p s.t. for all v, € Q’fho,

[vrlLa) < Clluglip.h-

Lemma (Discrete compactness)

Let (vy,)hen be s.t. |v,|l1pn < C for a fixed C € R. Then, there exists

vE Wol’p(Q) s.t., up to a subsequence as h — 0,

m v, — v and pfﬁlyh — v strongly in L1(Q) for all ¢ < p*,

» Gy, — Vo weakly in LP(Q)%.
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Error estimates |

Assumption (Leray—Lions operator/v2)
Forpe (1,+m), a: Q x R? — R satisfies
m Growth. Same as before
m Continuity. There is yo > 0 s.t. for a.e. € Q, V€, € R?

la(z, €) — a(@,n)| < 7al€ —n|(|€F72 + [n|P72).

m Monotonicity. There is (5 > 0 s.t. for a.e. & € (), V&€, neR?,

[a(z, &) —a(z,n)] - [€ — 1] > Gal€ — n*(|€] + [n])P~.

m Coercivity. Same as before
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Error estimates I

Theorem (Error estimate)
Assume u € W*t2P(T,), a(-, Vu) € WFLY (T;)4, and let, if p > 2

1

1T )

k
B (w) i= B sz + 0T (s

while, if p < 2,

En(u) := REHDED 2 + 1 a(, Vu

Wk+2 P (Th, ) )‘Wk+1=Pl(7’}L)'

Then, it holds,

k+1

O(hv 1) ifp =2
< =
ph S En(w) {O(h(kJrl)(pl) ifp < 2.

Hﬁlu — Upll1

Results coherent with [Liu and Yan, 2001] (Crouzeix—Raviart)
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Numerical example |

Figure: Triangular and (predominantly) hexagonal meshes

m We consider the following exact solution
u(x) = sin(mzq) sin(rzy)

m We solve the corresponding Dirichlet problem for p € {2, 3,4}
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Numerical example |l
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Figure: |IFu — up|1,p,n vs. h for p = 2,3,4 (left to right) for the triangular (above)
and hexagonal (below) mesh families
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Variations |

m Following [Cockburn, DP, Ern, 2016], one could replace Q? with

ULl = PU(T) x ( X IP”“(F)), le{k—1,kk+1}

FeFy,

[ Glfp and pi}“ remain formally the same (only their domain changes)

m The boundary residual operator, on the other hand, becomes

0,k k+1 0,1 k+1
5TFUT =TR ( F—pp vp — 7y (vr — P UT))



Variations I

Convergence and error estimates as for the original HHO method
I = k—1 yields a HOM /nc-VEM-type scheme

m Linear diffusion [Lipnikov and Manzini, 2014]
m Analysis [Ayuso de Dios, Lipnikov, Manzini, 2016]

I = k corresponds to the original HHO method
I = k+1 yields a Lehrenfeld—Schéberl-type HDG method
m Linear diffusion [Lehrenfeld, 2010]

k =0and [ =k —1 on simplices yields the Crouzeix—Raviart element

The globally-coupled unknowns coincide in all the cases!

23/26



References |

) & & ) )

Andreianov, B., Boyer, F., and Hubert, F. (2007).

Discrete Duality Finite Volume schemes for Leray—Lions-type elliptic problems on general 2D meshes.
Num. Meth. PDEs, 23:145-195

Antonietti, P. F., Bigoni, N., and Verani, M. (2014).

Mimetic finite difference approximation of quasilinear elliptic problems.

Calcolo, 52:45-67

Ayuso de Dios, B., Lipnikov, K., and Manzini, G. (2016)

The nonconforming virtual element method.
ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):879-904.

Barrett, J. W. and Liu, W. B. (1994).

Quasi-norm error bounds for the finite element approxi ion of a
Numer. Math., 68(4):437-456

flow.

Cangiani, A., Georgoulis, E. H., and Houston, P. (2014).

hp-version discontinuous Galerkin methods on polygonal and polyhedral meshes.
Math. Models Methods Appl. Sci., 24(10):2009-2041.

Cockburn, B., Di Pietro, D. A, and Ern, A. (2016).

Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods.
ESAIM: Math. Model Numer. Anal. (M2AN), 50(3):635-650.

Deimling, K. (1985).

Nonlinear functional analysis.

Springer-Verlag, Berlin

Di Pietro, D. A. and Droniou, J. (2016a).

A Hybrid High-Order method for Leray—Lions elliptic equations on general meshes.
Math. Comp.
Accepted for publication. Preprint arXiv 1508.01918

24


http://arxiv.org/abs/1508.01918

References Il

) & O B @

Di Pietro, D. A. and Droniou, J. (2016b).

W S>P_approximation properties of elliptic projectors on polynomial spaces with application to the error analysis of a Hybrid
High-Order discretisation of Leray—Lions elliptic problems.

Submitted.

Di Pietro, D. A. and Lemaire, S. (2015).

An extension of the Crouzeix—Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes
flow.
Math. Comp., 84(291):1-31

Di Pietro, D. A. and Specogna, R. (2016).

An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics.
Submitted. Preprint hal-01310313

Droniou, J. (2006).

Finite volume schemes for fully non-linear elliptic equations in divergence form.

ESAIM: Math. Model Numer. Anal. (M2AN), 40:1069-1100.

Glowinski, R. and Rappaz, J. (2003).

Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology.
ESAIM: Math. Model Numer. Anal. (M2AN), 37(1):175-186.

Herbin, R. and Hubert, F. (2008).

Benchmark on discretization schemes for anisotropic diffusion problems on general grids.

In Eymard, R. and Hérard, J.-M., editors, Finite Volumes for Complex Applications V, pages 659-692. John Wiley & Sons
Lehrenfeld, C. (2010).

Hybrid Discontinuous Galerkin hods for solving incompressible flow pi
PhD thesis, Rheinisch-Westfalischen Technischen Hochschule Aachen

25


http://hal.archives-ouvertes.fr/hal-01310313

References IlI

@ Lipnikov, K. and Manzini, G. (2014)

A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation
J. Comput. Phys., 272:360-385

@ Liu, W. and Yan, N. (2001).
Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian.
Numer. Math., 89:341-378

26

26



