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Setting |

m Let Q ¢ R3 be a connected polyhedral domain with Betti numbers b;
m We have by = 1 (number of connected components) and b3 = 0

m by accounts for the number of tunnels crossing Q

(bo,b1,b2,b3) =(1,1,0,0)

m Do is the number of voids encapsulated by Q

3

(b()’ bls b25 bS) = (1, O, 1,0)
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Setting I
m We consider PDE models that hinge on the vector calculus operators:
g O2v3 — O3v2
gradg =|02q |, curly =| 03v1 — O1vs |, divw = dywy + daws + d3ws
6361 01vy — 0oV
for smooth enough functions
q:Q—>R, y:Q — R3, w:Q—-R?

m The corresponding L2-graph (domain) spaces are

H'(Q) ={g € L*(Q) : gradqg € L*(Q) = L*(Q)*},
H(curl; Q) := {v € L*(Q) : curly € LQ(Q)} ,
H(div; Q) = {w € L*(Q) : divw € L*(Q)}

m Assume for the moment that Q has trivial topology (i.e., b1 = by =0)

4/41



Three model problems
The Stokes problem in curl-curl formulation

m Given a real number v > 0 and f € L?(Q), the Stokes problem reads:

Find the velocity u : Q — R3 and pressure p : Q — R s.t.

-vAu
v(curlcurlu — )+gradp = f in Q, (momentum conservation)
divu=0 inQ, (mass conservation)
curlu xn=0andu-n=0 on dQ, (boundary conditions)
Jop=0

m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. fgp =0 and

/vcurlu~curlv+/gradp-v:/f~v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q
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Three model problems
The magnetostatics problem

m For y > 0 and J€ curl H(curl; Q), the magnetostatics problem reads:
Find the magnetic field H : @ — R3 and vector potential A : Q@ — R? s.t.

uH —curlA =0 in Q, (vector potential)
curlH =J in Q, (Ampere's law)
divA=0 inQ (
AxXxn=0 on IQ (boundary condition)

Coulomb's gauge)

m Weak formulation: Find (H, A) € H(curl; Q) X H(div;Q) s.t.
/uH-T—/A-curlrzo V1 € H(curl; Q),
Q Q

/curlH-v+/divAdivv=/J-v Vv € H(div; Q)
Q Q Q
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Three model problems
The Darcy problem in velocity-pressure formulation

m Given x > 0 and f € L?(Q), the Darcy problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

k'u—gradp =0 in Q, (Darcy's law)
—divu=f in Q, (mass conservation)

p=0 on 0Q (boundary condition)

m Weak formulation: Find (u, p) € H(div; Q) x L%(Q) s.t.

/K_lu'v+/p divy =0 Vv € H(div; Q),
Q Q

—/divuq:/fq Vg € L*(Q)
Q o)
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A unified view

m The above problems are mixed formulations involving two fields

m They can be recast into the abstract setting: Find (o,u) € £ X U s.t.

a(o,7)+b(t,u) = f(r) VreZ,
—b(o,v)+c(u,v)=¢g(v) VYveU,

or, equivalently, in variational formulation,
Ao, u), (1.v) = f(1) +g(v)  Y(1.v) € XU
with
A(o,u), (,v)) =a(o,7) +b(r,u) = b(o,v) +c(u,v) = f(7) +g(v)

m Well-posedness holds under an inf-sup condition on A
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A unified tool for well-posedness: The de Rham complex

{0y — B (@ % H(ewlQ) - H(div;:Q) 1% 12(Q) — (0)
m Key properties, possibly depending on the topology of Q:

Imgrad c Ker curl,

Im curl c Kerdiv,

QCcR3 (b3=0) = Imdiv = L?(Q) (Darcy, magnetostatics)
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A unified tool for well-posedness: The de Rham complex

{0y — B (@ % H(ewlQ) - H(div;:Q) 1% 12(Q) — (0)
m Key properties, possibly depending on the topology of Q:

no tunnels crossing Q (b1 =0) = Imgrad = Kercurl (Stokes)
no voids contained in Q (b2 =0) = Imcurl = Kerdiv (magnetostatics)

QCcR3 (b3=0) = Imdiv = L?(Q) (Darcy, magnetostatics)
m When by # 0 or by # 0, de Rham’s cohomology characterizes
Kercurl /Imgrad and Kerdiv /Im curl

m Emulating these algebraic properties is key for stable discretizations
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Generalization through differential forms

m The de Rham complex generalizes to domains of R”
m Denoting by d the exterior derivative and by HA(Q) its L?-domain,

HAYQ) —s . 0 gak() —Ls L gAn(Q) — {0)

m For n = 3, the vector calculus version is recovered through vector proxies

HAYQ) —L HALQ) —X s HA2(Q) —L HA3(Q) — {0}

I; IE I; IE

grad

HY(Q) %5 H(curl; Q) L% H(div; Q) —3 12(Q) — {0}
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The (trimmed) Finite Element way

Local spaces

m Let T c R3 be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T}

m Fix £k > 0 and write, denoting by x7 a point inside T,

PR(T)? = grad PH*1(T) @ (x - x7) x PF1(1)? = 6X(T) © G=F(T)
= curl?”kH(T)3 ® (x — xT)Pk_l(T) = Rk(T) o Rc’k(T)

m Define the trimmed spaces that sit between P¥(T)3 and P*+1(T)3:

NEUT) = 64(T)  6*1(T)
RTNT) = R¥(T) @ ROF1(T)
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m Let T c R3 be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T}

m Fix £k > 0 and write, denoting by x7 a point inside T,

PH(T)? = grad PF(T) @ (x —x7) x PFH(1)3 = 65 (T) © =K (T)
= el PNTY @ (x —xp)P (T = RE(T) @ ROK(T)

m Define the trimmed spaces that sit between P¥(T)3 and P*+1(T)3:
NEUT) = 64(T)  6*1(T)
RTNT) = R¥(T) @ ROF1(T)

m PKA”(f) generalizes to r-forms on d-faces f through Koszul
complements
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The (trimmed) Finite Element way

Global complex

m Let 75, be a conforming tetrahedral mesh of Q and let &k > 0
m Local spaces can be glued together to form a global FE complex:

Pkl (7)) B2 Ak () Ly kel (g AV k() 5 (0}

[ [ [ [

HY(Q) —2%5 H(curl; @) —y H(div;Q) Yy 12(Q) —— {0}

m The gluing only works on conforming meshes (simplicial complexes)!
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The Finite Element way

Shortcomings

m Approach limited to conforming meshes with standard elements

= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

m Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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The discrete de Rham (DDR) approach |

m Key idea: replace both spaces and operators by discrete counterparts:

G Ci Dj,
Xoan — X — X — PEOT) — (0}

—grad, “—curl,h

m Support of polyhedral meshes (CW complexes) and high-order
m Several strategies to reduce the number of unknowns on general shapes

m Natural generalization to the de Rham complex of differential forms
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The discrete de Rham (DDR) approach Il

m DDR spaces are spanned by vectors of polynomials
m Polynomial components enable consistent reconstructions of

m vector calculus operators
m the corresponding scalar or vector potentials

m These reconstructions emulate integration by parts (Stokes) formulas
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References for this presentation

Vector FE spaces [Raviart and Thomas, 1977, Nédélec, 1980]

FEEC [Arnold, Falk, Winther, 2006—pres.| ~»> 2021 seminar by D. Arnold
Introduction of DDR [DP, Droniou, Rapetti, 2020]

DDR with Koszul complements [DP and Droniou, 2023a]

Algebraic properties (general topology) [DP, Droniou, Pitassi, 2023]
Bridges with VEM [Beirdo da Veiga, Dassi, DP, Droniou, 2022]
Polytopal Exterior Calculus (PEC) [Bonaldi, DP, Droniou, Hu, 2023]
C++ open-source implementation available in HArDCore3D
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The two-dimensional case

Continuous exact complex

m With F mesh face let, forg: F > Randv: F — R2 smooth enough,
rotr g == (grady q)* rotp v = dive(vt)
m We start by deriving a discrete counterpart of the 2D de Rham complex:

gradp, rotg

H'(F) —= H(rot; F) —— L*(F) — {0}
m We will need the following decomposition of PX(F)?:
PX(F)? =rotp P (F) @ (x —xp)P* 1 (F) = R¥(F) @ RO (F),
and recall the 2D Raviart—-Thomas space

RT*L(F) = RE(F) @ RE*(F)
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The two-dimensional case
A key remark

WFE =

le nrg

m Let g € P (F). For any v € PX(F)?, we have

/gradpq~v:—/qdivFv+ Z wFE/CIwF(V'”FE)
F F E

EESF
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The two-dimensional case
A key remark

U.)FEI].
le nrg

m Let g € P (F). For any v € PX(F)?, we have

‘/gradpqw:—/ﬂ,n rq divpv + Z wFE/CIwF(V'"FE)
F F E

EESF
ePk-1(F)

m Hence, grad; g can be computed given ﬂ’;’jq and q|oF
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The two-dimensional case
Discrete H'(F) space

m Based on this remark, we take as discrete counterpart of H'(F)

Xbar = {4, = (@r.aor) 5 ar € P (F) and qor € P (Ep))

m Let /X :COF) — Xk

Lpadr be s.t., Vg € C°(F),

“—grad,F

lgrad F4q = (ﬂ-é’i;‘q qﬁF) with

T 5 (qor)|E = 7T¢> +q 1 VE € EF and gor(xy) = q(xy) YV € Vg

92020
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € &, the edge gradient G%. : — PY(E) is s.t.

grad F

G4, = (qor)ig

m The face gradient GX : — PK(F)?is s.t., Vv € PK(F)?,

gradF
/GIZ<6/F‘V=—/C/1«‘diVFV+ Z U)FE/C](BI"(V"’FE)
F F o E
m The scalar trace yk+! X{g‘rad » — PHLUF) s s.t., for all v € ROM2(F),
/7’?1(1 divpv = - /G v+ wFE/CI& (v-nrE)
EES[- F

m By construction, we have polynomial consistency:

G’,f-(!grad’l,q) grad; ¢ and y<H (1% Loraa, +q) = q for all g € PXL(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N (F) = RT*H(F)L, Vg € PX(F),

/rotpvq:/v~ rotrg — Z CUFE/(V'tE)Q\E
F F —_— E

EES[:
eRTX(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N (F) = RT*H(F)L, Vg € PX(F),

/rotpvq:‘/n’ﬁ?T’Fv- rotpq — Z wFE/(V'tE)CNE
F F E~— —

~—— Ecér
eRT*(F) ePk(E)

m This leads to the following discrete counterpart of H(rot; F):

Xfurl,F = {KF = (vFa(VE)EESF) . VE € 'RTk(F) and vg € Pk(E) VE € & }
m !fot’p HY(F)? - XmeF is obtained collecting L2-orthogonal projections

N Z\ £\
WASIEEY

k=0 k=1 k=2
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The two-dimensional case

Reconstructions in Xcurl 7

m The face curl operator CK : X* — PK(F)is s.t.,

F ° —curLF

/Cfézpq=/vF-roth— Z wFE/VEq Vg € PX(F)
F F E

Ec&EF

— PK(F)? is s.t.,

k
m The tangent trace 'yt FiXewlr

/ yf’FgF - (rotpr+w)
F

=/C1§K,,r+
F

m We have the following polynomial consistency:

LL)FE/VEV+/VF w

V(r,w) € POR(F) x ROK(F)

EESF

Ch (L pv) = r0tr v V9 € NH(F) and yf 1 (I, pv) = v Vv € PH(F)?
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Two-dimensional DDR complex

Space ‘ V (vertex) E (edge) F (face)

Xh i r R PELE)  PEL(F)
Xﬁurl,F Pl\(E) R{Tk(F)
Pk (F) Pk (F)

m Define the discrete gradient
k, . k k k
Gra, = ("r7.rGrd, (Gpd,)Ecer)
m The two-dimensional DDR complex reads
k Qlfv} k Cr y Pk
Xgrad,F Xcurl,F P (F) ? {0}
m If F is simply connected, this complex is exact
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A glance at the general case |

L Xﬁ’r spanned by vectors of polynomial components
m Recursive and hierarchical construction on d-cells, d =r+1,...,n, of
m A discrete exterior derivative
k,r . yvk,r k Aar+l
df .Xf — PENTTH(S)

m Based on it, an associated discrete potential (=~ k-form inside f)

k,r | vk,r kar
Pf .Xf — PEAN(f)

m Reconstructions mimic the Stokes formula: ¥(w, u) € AL(f) x A~ =1(f),

/dfw/\,uz(—1)f+1/w/\d"7[’1,u+/ trof w Atrgr p
f f of
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A glance at the general case Il

m For a polytopal domain Q c R” and a form degree r, the DDR space is

n

Xkr = >< >< PR (£) with Ag(Tr) = {d-faces of T}
d=r feha(Th)

m We recursively define, for f € Ay(7,), d=r,...,n,

mIfr=d,
P-];.’dgf = *71wf e PEAL(f)
m If r+1<d<n, wefirst let, for all w, € gf;r and all € PEAd-T=1(F),

k,r r+l -1 k,r
AV we Au=(-1) /* a)f/\dﬂ+/ P wye Nrgsp
/f =t f of af =of f

then, for all (u,v) € kPKAd=7(f) x kpk-Ld=r+l(py
(-1t /f Pj:’gf A (dp+v)

k,r k,r r+1 -1
= d’afuv/\p—/ Porwsr AMrgepu+(—1) /* wrAv
/f 5 oy 01 Loy Ntrof s
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A glance at the general case Il

m The following polynomial consistency properties hold:

Pyl w=w  VoePN(f),

I w=dw VYo € PTRIAT(S)

m Setting

k, (= kd-r=1,, 1k,
d, rﬂh = (”f ' (*df er))feAd(ﬁ,),de[k+1,n]’

the global DDR complex of differential forms reads

k,0 k,n—-1

4 d
XKO Dy ykt sy xkeol Ty yken > {0}
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A glance at the general case IV

For n = 3, vector proxies yield the DDR complex of [DP and Droniou, 2023al:

k Q;(' k Q;(- k D;(“ k
Xorad,T > Xewr — Xgyr — P — {0}

Space 1% E F T (element)
XP' = Xar |BOPEUE) PENE) PR
Xt =X, PLE)  RTNF)  RTHT)
xk2% > xk PE(F) NX(T)

=T =div,T
X5 = PR(T) PK(T)
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Commutation with the interpolators

Lemma (Local commutation properties)
The following diagrams commute:

= (T) =% (1) <2 (D) 5 (1) — {0}

k k k g
llgrad,T l’curl,T l’dw T \L’T
k k Dk

QT QT T ; k )
T : XcurlT : XleT P (T) {0}

—grad

m Crucial for both algebraic and analytical properties
m Compatibility of projections with Helmholtz—Hodge decompositions
= robustness of DDR schemes with respect to the physics, e.g.:
m Stokes [Beirdo da Veiga, Dassi, DP, Droniou, 2022]

m Navier-Stokes [DP, Droniou, Qian, 2023|
m Reissner—Mindlin [DP and Droniou, 2023b]
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Local discrete L?-products

m Based on the element potentials, we construct local discrete L?-products

(tpoy e = [ Pursy Puiryy#serspy,) Vo€ fgrad curl div)
y ! y y

consistency stability

m The L2-products are built to be polynomially consistent
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Global DDR complex

Dk
—gradh —> url, h —> Xdlvh —h> Pk((h-l) — {O}

m Global DDR spaces on a mesh 7}, are defined gluing boundary components
m Global operators are obtained collecting local components

m Global L?-products (-, )., are obtained assembling element-wise

31/41



Cohomology of the global three-dimensional DDR complex

k

G, Dy
—gradh —> —curlh —> Xdlvh —h> Pk(ﬁ) — {O}

Theorem (Cohomology of the 3D DDR complex [DP, Droniou, Pitassi, 2023])

For any k > 0, the DDR sequence forms a complex whose cohomology spaces
are isomorphic to those of the continuous de Rham complex. In particular, if
Q has a trivial topology (i.e., b1 = bs =0), the DDR complex is exact, i.e.,

ImG) =KerC5, ImCj=KerD}, ImD}=PTp).

Remark (Extension to PEC [Bonaldi, DP, Droniou, Hu, 2023])

The above result extends to the de Rham complex of differential forms.
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Uniform discrete Poincaré inequality for the curl

Theorem (Poincaré inequality for the curl [DP and Hanot, 2023

For all v, € XX . it holds

curl,h’

inf ”Kh _Eh”curl,h S ”gﬁzh”div,h’
ghEKerQZ

with hidden constant only depending on Q, mesh regularity, and k.

This results holds for domains of general topology!
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Adjoint consistency of the discrete curl

Adjoint consistency measures the failure to satisfy a global IBP. For the curl,

/w-curlv—/curlw~v=0ifw><n=00n69
Q Q

Theorem (Adjoint consistency for the curl)

Let Ecurt.n : (CO(Q)? N Hy(curl; Q)) x Xi‘uﬂ,h — R bes.t.

7k k k
Eeur,n(W,v),) = (!div,hw’ghzh)div’h - /chrlw P iV

Then, for all w € C°(Q)3 N Hy(curl; Q) s.t. w € H**2(7;)3: Yy, € Xk

curl,h’

k k
| Eeurtn 92,1 5 5 (11, lew + €52, i)
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DDR scheme

m Assume by = 0. We seek (H, A) € H(curl; Q) x H(div; Q) s.t.
/,uH~T—/A~cur1‘r=O V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q
m With obvious substitutions: Find (H,,A,) € X rl n X de St

(ﬂﬂh, Ih)curl,h - (éh; gzzh)div,h =0 VTh € Xcurl n

(ChH,,,v))div,n + / DA, Dyv, =1n(v,) Vv, € Xfiiv,h
Q
m If by # 0, we need to add orthogonality of A, to harmonic forms

k ko opky - ky oy
§d1V n= {Kh € Xgivn * Dpwy,=0and (w,,,Cpv)aivn =0 ¥y, € Xcurl h }
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Analysis

m Inf-sup stability is proved as in the continuous case for the norm

D=

k 2 2 k 2
”l(‘rh,_h)mh = (”Th”curl nt ”thh”div,h + “Kh”div,h + ”thh”L?(Q))

m Crucial points are the isomorphism in cohomology and Poincaré inequality
m Assuming H € CO(Q)? n H**2(7;,)® and A € CY(Q)3 x H*2(7;)3, it holds

l(H,, - HA, -1, ,A)lln s 1"

—curl h
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Numerical examples (energy error vs. meshsize)
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Conclusions and perspectives

m Fully discrete approach for PDEs relating to the de Rham complex
m Key features: support of general polyhedral meshes and high-order
m Novel computational strategies made possible
L]

Natural extensions to differential forms

Unified proof of analytical properties using differential forms

Development of novel complexes (e.g., elasticity, Hessian,...)

Applications (possibly beyond continuum mechanics)
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