An introduction to Discrete de Rham methods A polytopal exterior calculus framework

Daniele A. Di Pietro from joint works with F. Bonaldi, J. Droniou, and K. Hu

Institut Montpelliérain Alexander Grothendieck, University of Montpellier https://imag.umontpellier.fr/~di-pietro/

Journés Ondes Sud-Ouest 2023, 15 March 2023

1 Motivation

2 The Discrete de Rham construction

3 Application to magnetostatics

- Finite Element Exterior Calculus [Arnold, Falk, Winther, 2006, Arnold, 2018]
- Finite Element Systems [Christiansen and Gillette, 2016]
- Introduction of DDR [DP, Droniou, Rapetti, 2020]
- DDR sequence based on Koszul complements [DP and Droniou, 2023]
- Application to magnetostatics [DP and Droniou, 2021]
- Polytopal Exterior Calculus [Bonaldi, DP, Droniou, Hu, 2023]
- C++ open-source implementation available in HArDCore3D

Outline

1 Motivation

2 The Discrete de Rham construction

Two model problems: Stokes

 $-\nu\Delta u$

• With $\Omega \subset \mathbb{R}^3$ connected, $\nu > 0$, and $f \in L^2(\Omega)$, the Stokes problem reads: Find the velocity $\boldsymbol{u} : \Omega \to \mathbb{R}^3$ and pressure $p : \Omega \to \mathbb{R}$ s.t.

$$\overbrace{v(\operatorname{curl}\operatorname{curl} u - \operatorname{grad}\operatorname{div} u)}^{\mathsf{v}} + \operatorname{grad} p = f \quad \text{in } \Omega, \quad (\text{local equilibrium})$$
$$\operatorname{div} u = 0 \quad \text{in } \Omega, \quad (\text{mass conservation})$$
$$\operatorname{curl} u \times n = 0 \text{ and } u \cdot n = 0 \quad \text{on } \partial\Omega, \quad (\text{boundary conditions})$$
$$\int_{\Omega} p = 0$$

• Weak formulation: Find $(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{curl}; \Omega) \times H^1(\Omega)$ s.t. $\int_{\Omega} p = 0$ and

$$\begin{split} \int_{\Omega} \mathbf{v} \operatorname{curl} \mathbf{u} \cdot \operatorname{curl} \mathbf{v} + \int_{\Omega} \operatorname{grad} p \cdot \mathbf{v} &= \int_{\Omega} \mathbf{f} \cdot \mathbf{v} \quad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; \Omega), \\ &- \int_{\Omega} \mathbf{u} \cdot \operatorname{grad} q = 0 \qquad \quad \forall q \in H^{1}(\Omega) \end{split}$$

Two model problems: Magnetostatics

• For $\mu > 0$ and $J \in \operatorname{curl} H(\operatorname{curl}; \Omega)$, the magnetostatics problem reads: Find the magnetic field $H : \Omega \to \mathbb{R}^3$ and vector potential $A : \Omega \to \mathbb{R}^3$ s.t.

$\mu \boldsymbol{H} - \operatorname{curl} \boldsymbol{A} = \boldsymbol{0}$	in Ω,	(vector potential)	
$\operatorname{curl} H = J$	in Ω ,	(Ampère's law)	
$\operatorname{div} \boldsymbol{A} = \boldsymbol{0}$	in Ω ,	(Coulomb's gauge)	
$A \times n = 0$	on $\partial \Omega$	(boundary condition)	

• Weak formulation: Find $(H, A) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ s.t.

$$\begin{split} &\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{\tau} - \int_{\Omega} \boldsymbol{A} \cdot \mathbf{curl} \, \boldsymbol{\tau} = 0 & \forall \boldsymbol{\tau} \in \boldsymbol{H}(\mathbf{curl}; \Omega), \\ &\int_{\Omega} \mathbf{curl} \, \boldsymbol{H} \cdot \boldsymbol{v} + \int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{v} = \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} & \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}; \Omega) \end{split}$$

- The above problems are mixed formulations involving two fields
- They can be recast into the abstract setting: Find $(u, p) \in V \times Q$ s.t.

$$Au + B^{\top}p = f$$
 in V' ,
 $-Bu + Cp = g$ in Q'

- Well-posedness for this problem holds under [Brezzi and Fortin, 1991]:
 - The coercivity of A in Ker B and of C in Ker B^{\top}
 - An inf-sup condition for *B*

Similar properties underlie the stability of numerical approximations

A unified tool for well-posedness: The de Rham complex

$$H^1(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^2(\Omega) \xrightarrow{0} \{0\}$$

• We have key properties depending on the topology of Ω :

Im grad \subset Ker curl, Im curl \subset Ker div $\Omega \subset \mathbb{R}^3 (b_3 = 0) \implies$ Im div = $L^2(\Omega)$ (magnetostatics)

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

no "tunnels" crossing Ω $(b_1 = 0) \implies \operatorname{Im} \operatorname{grad} = \operatorname{Ker} \operatorname{curl}$ (Stokes) no "voids" contained in Ω $(b_2 = 0) \implies \operatorname{Im} \operatorname{curl} = \operatorname{Ker} \operatorname{div}$ (magnetostatics) $\Omega \subset \mathbb{R}^3$ $(b_3 = 0) \implies \operatorname{Im} \operatorname{div} = L^2(\Omega)$ (magnetostatics)

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

no "tunnels" crossing Ω $(b_1 = 0) \implies \text{Im grad} = \text{Ker curl}$ (Stokes) no "voids" contained in Ω $(b_2 = 0) \implies \text{Im curl} = \text{Ker div}$ (magnetostatics) $\Omega \subset \mathbb{R}^3$ $(b_3 = 0) \implies \text{Im div} = L^2(\Omega)$ (magnetostatics)

• When $b_1 \neq 0$ or $b_2 \neq 0$, de Rham's cohomology characterizes

 $\operatorname{Ker}\operatorname{\mathbf{curl}}/\operatorname{Im}\operatorname{\mathbf{grad}}$ and $\operatorname{Ker}\operatorname{div}/\operatorname{Im}\operatorname{\mathbf{curl}}$

Emulating these properties is key for stable discretizations

Generalization through differential forms

- Denote by Ω a connected domain of \mathbb{R}^n , $n \ge 1$
- The de Rham complex can be generalized using differential forms:

$$H\Lambda^{0}(\Omega) \xrightarrow{d^{0}} \cdots \xrightarrow{d^{k-1}} H\Lambda^{k}(\Omega) \xrightarrow{d^{k}} \cdots \xrightarrow{d^{n-1}} H\Lambda^{n}(\Omega) \longrightarrow \{0\}$$

For n = 3, the following links are established through vector proxies:

$$\begin{array}{cccc} H\Lambda^{0}(\Omega) & \stackrel{d^{0}}{\longrightarrow} & H\Lambda^{1}(\Omega) & \stackrel{d^{1}}{\longrightarrow} & H\Lambda^{2}(\Omega) & \stackrel{d^{2}}{\longrightarrow} & H\Lambda^{3}(\Omega) & \longrightarrow \{0\} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ H^{1}(\Omega) & \stackrel{\operatorname{grad}}{\longrightarrow} & H(\operatorname{curl};\Omega) & \stackrel{\operatorname{curl}}{\longrightarrow} & H(\operatorname{div};\Omega) & \stackrel{\operatorname{div}}{\longrightarrow} & L^{2}(\Omega) & \longrightarrow \{0\} \end{array}$$

Outline

2 The Discrete de Rham construction

3 Application to magnetostatics

Domain and polytopal mesh

- Assume $\Omega \subset \mathbb{R}^n$ polytopal (polygon if n = 2, polyhedron if n = 3, ...)
- We consider a polytopal mesh \mathcal{M}_h containing all (flat) d-cells, $0 \le d \le n$
- *d*-cells in \mathcal{M}_h are collected in $\Delta_d(\mathcal{M}_h)$, so that, when n = 3,
 - $\Delta_0(\mathcal{M}_h) = \mathcal{W}_h$ is the set of vertices
 - $\Delta_1(\mathcal{M}_h) = \mathcal{E}_h$ is the set of edges
 - $\Delta_2(\mathcal{M}_h) = \mathcal{F}_h$ is the set of faces
 - $\Delta_3(\mathcal{M}_h) = \mathcal{T}_h$ is the set of elements

General ideas

- Discrete spaces with polynomial components attached to mesh entities
- We recursively construct on *d*-cells, d = k, ..., n:
 - A discrete potential (playing the role of a k-form inside f)

$$P^k_{r,f}:\underline{X}^k_{r,f}\to \mathcal{P}_r\Lambda^k(f)$$

If $d \ge k + 1$, a discrete exterior derivative

$$\mathrm{d}^k_{r,f}:\underline{X}^k_{r,f}\to \mathcal{P}_r\Lambda^{k+1}(f)$$

Reconstructions mimic the Stokes formula: $\forall (\omega, \mu) \in \Lambda^{\ell}(f) \times \Lambda^{n-\ell-1}(f)$,

$$\int_f \mathrm{d}^\ell \omega \wedge \mu = (-1)^{\ell+1} \int_f \omega \wedge \mathrm{d}^{n-\ell-1} \mu + \int_{\partial f} \mathrm{tr}_{\partial f} \, \omega \wedge \mathrm{tr}_{\partial f} \, \mu$$

Trimmed polynomial spaces

• Let $f \in \Delta_d(\mathcal{M}_h)$, $d \in [1, n]$, fix $\mathbf{x}_f \in f$, and define the Koszul complement

$$\mathcal{K}^{\ell}_{r}(f) \coloneqq \kappa \mathcal{P}_{r-1} \Lambda^{\ell+1}(f) \quad \text{with} \quad (\kappa \omega)_{\mathbf{x}}(\cdot, \ldots) \coloneqq \omega_{\mathbf{x}}(\mathbf{x} - \mathbf{x}_{f}, \ldots)$$

• For $\ell \geq 1$ we define the trimmed polynomial spaces

$$\begin{split} \mathcal{P}_r^-\Lambda^0(f) &\coloneqq \mathcal{P}_r\Lambda^0(f), \\ \mathcal{P}_r^-\Lambda^\ell(f) &\coloneqq \mathrm{d}\mathcal{P}_r\Lambda^{\ell-1}(f) \oplus \mathcal{K}_r^\ell(f) \quad \text{ if } \ell \geq 1 \end{split}$$

In terms of vector proxies,

$$\begin{split} \forall f &\equiv F \in \mathcal{F}_h, \qquad \mathcal{P}_r^- \Lambda^1(f) \cong \mathcal{N}_r(F) = \mathcal{RT}_r(F)^{\perp}, \\ \forall f &\equiv T \in \mathcal{T}_h, \qquad \begin{cases} \mathcal{P}_r^- \Lambda^1(f) \cong \mathcal{N}_r(T) \coloneqq \operatorname{grad} \mathcal{P}_r(T) + (\mathbf{x} - \mathbf{x}_T) \times \mathcal{P}_{r-1}(T), \\ \mathcal{P}_r^- \Lambda^2(f) \cong \mathcal{RT}_r(T) \coloneqq \operatorname{curl} \mathcal{P}_r(T) + (\mathbf{x} - \mathbf{x}_T) \mathcal{P}_{r-1}(T) \end{cases} \end{split}$$

Discrete $H\Lambda^k(\Omega)$ spaces and interpolator

$$\underline{X}_{r,h}^{k} \coloneqq \bigotimes_{d=k}^{n} \bigotimes_{f \in \Delta_{d}(\mathcal{M}_{h})} \mathcal{P}_{r}^{-} \Lambda^{d-k}(f)$$
$$\underline{I}_{r,f}^{k} : \Lambda^{k}(\Omega) \ni \omega \mapsto \left(\pi_{r,f}^{-,d-k}(\star \operatorname{tr}_{f} \omega)\right)_{f \in \Delta_{d}(f), \, d \in [k,n]} \in \underline{X}_{r,h}^{k}$$

Space	$f_0 \equiv V$	$f_1 \equiv E$	$f_2 \equiv F$	$f_3 \equiv T$
$\underline{X}_{r,h}^{0}$	$\mathbb{R} = \mathcal{P}_r \Lambda^0(f_0)$	$\mathcal{P}_{r-1}\Lambda^1(f_1)$	$\mathcal{P}_{r-1}\Lambda^2(f_2)$	$\mathcal{P}_{r-1}\Lambda^3(f_3)$
$\underline{X}_{r,h}^{1}$		$\mathcal{P}_r \Lambda^0(f_1)$	$\mathcal{P}_r^-\Lambda^1(f_2)$	$\mathcal{P}_r^-\Lambda^2(f_3)$
$\underline{X}_{r,h}^2$			$\mathcal{P}_r \Lambda^0(f_2)$	$\mathcal{P}_r^-\Lambda^1(f_3)$
$\underline{X}^{3}_{r,h}$				$\mathcal{P}_r \Lambda^0(f_3)$
$\underline{X}_{\text{grad},h}^{r}$	$\mathbb{R} = \mathcal{P}_r(V)$	$\mathcal{P}_{r-1}(E)$	$\mathcal{P}_{r-1}(F)$	$\mathcal{P}_{r-1}(T)$
$\underline{X}_{\mathrm{curl},h}^{r}$		$\mathcal{P}_r(E)$	$\mathcal{RT}_r(F)$	$\mathcal{RT}_r(T)$
$\underline{X}^{r}_{\mathrm{div},h}$			$\mathcal{P}_r(F)$	$\mathcal{N}_r(T)$
$\mathcal{P}_r(\mathcal{T}_h)$				$\mathcal{P}_r(T)$

Discrete potential and exterior derivative

For
$$d = k, ..., n$$
, all $f \in \Delta_d(\mathcal{M}_h)$, and all $\underline{\omega}_f \in \underline{X}_{r,f}^k$:
If $d = k$, we let
$$P_{r,f}^k \underline{\omega}_f := \star^{-1} \omega_f \in \mathcal{P}_r \Lambda^d(f)$$

• If $d \ge k + 1$, we first let, for all $\mu \in \mathcal{P}_r \Lambda^{d-k-1}(f)$,

$$\int_{f} \mathrm{d}_{r,f}^{k} \underline{\omega}_{f} \wedge \mu = (-1)^{k+1} \int_{f} \star^{-1} \omega_{f} \wedge \mathrm{d}\mu + \int_{\partial f} \frac{P_{r,\partial f}^{k} \underline{\omega}_{\partial f}}{P_{r,\partial f}^{k} \underline{\omega}_{\partial f}} \wedge \mathrm{tr}_{\partial f} \mu$$

then we enforce $\pi_{r,f}^{\mathcal{K},d-k} \underline{P}_{r,f}^{k} \underline{\omega}_{f} = \star^{-1} \omega_{f}$ and, for all $\mu \in \mathcal{K}_{r+1}^{d-k-1}(f)$,

$$(-1)^{k+1} \int_{f} P_{r,f}^{k} \underline{\omega}_{f} \wedge \mathrm{d}\mu = \int_{f} \mathrm{d}_{r,f}^{k} \underline{\omega}_{f} \wedge \mu - \int_{\partial f} P_{r,\partial f}^{k} \underline{\omega}_{\partial f} \wedge \mathrm{tr}_{\partial f} \mu$$

The case n = 3 and k = 1 l

For all
$$f \equiv T \in \mathcal{T}_h$$
,

$$\underline{X}_{r,f}^{1} \cong \underline{X}_{\operatorname{curl},T}^{r} \coloneqq \bigotimes_{E \in \mathcal{E}_{T}} \mathcal{P}_{r}(E) \times \bigotimes_{F \in \mathcal{F}_{T}} \mathcal{RT}_{r}(F) \times \mathcal{RT}_{r}(T)$$

Let

$$\underline{\boldsymbol{\nu}}_T = \left((\boldsymbol{\nu}_E)_{E \in \mathcal{E}_T}, (\boldsymbol{\nu}_F)_{F \in \mathcal{F}_T}, \boldsymbol{\nu}_T \right) \in \underline{X}_{\mathrm{curl}, T}^r$$

and denote by \underline{v}_Y its restriction to $Y \in \mathcal{E}_T \cup \mathcal{F}_T$

For all $E \in \mathcal{E}_T$ (d = k = 1), the edge tangential trace is simply

$$\gamma_{\mathrm{t},E}^{r} \underline{\mathbf{v}}_{E} \coloneqq v_{E} \quad \forall E \in \mathcal{E}_{T}$$

The case n = 3 and k = 1 II

For all $F \in \mathcal{F}_T$ (d = 2), the face curl is given by: For all $q \in \mathcal{P}_r(F)$,

$$\int_{F} C_{F}^{r} \underline{\mathbf{v}}_{F} \ q = \int_{F} \mathbf{v}_{F} \cdot \operatorname{rot}_{F} q - \sum_{E \in \mathcal{E}_{F}} \varepsilon_{FE} \int_{E} \gamma_{t,E}^{r} \underline{\mathbf{v}}_{E} \ q$$

• The face tangential trace is such that, for all $(q, w) \in \mathcal{P}_{r+1}^{b}(F) \times \mathcal{R}_{r}^{c}(F)$,

$$\int_{F} \boldsymbol{\gamma}_{t,F}^{r} \underline{\boldsymbol{\nu}}_{F} \cdot (\operatorname{rot}_{F} q + \boldsymbol{w}) = \int_{F} C_{F}^{r} \underline{\boldsymbol{\nu}}_{F} q - \sum_{E \in \mathcal{E}_{F}} \varepsilon_{FE} \int_{E} \boldsymbol{\gamma}_{t,E}^{r} \underline{\boldsymbol{\nu}}_{E} q + \int_{F} \boldsymbol{\nu}_{F} \cdot \boldsymbol{w}$$

For all $T \in \mathcal{T}_h$ (d = 3), the element curl satisfies, for all $w \in \mathcal{P}_r(T)$,

$$\int_{T} \boldsymbol{C}_{T}^{r} \underline{\boldsymbol{\nu}}_{T} \cdot \boldsymbol{w} = \int_{T} \boldsymbol{\nu}_{T} \cdot \operatorname{curl} \boldsymbol{w} + \sum_{F \in \mathcal{F}_{T}} \varepsilon_{TF} \int_{F} \boldsymbol{\gamma}_{t,F}^{r} \underline{\boldsymbol{\nu}}_{F} \cdot (\boldsymbol{w} \times \boldsymbol{n}_{F})$$

• Finally, by similar principles, we can construct $P_{\operatorname{curl},T}^r : \underline{X}_{\operatorname{curl},T}^r \to \mathcal{P}_r(T)$

Polynomial consistency

Theorem (Polynomial consistency)

For all integers $0 \le k \le d \le n$ and all $f \in \Delta_d(\mathcal{M}_h)$, it holds

$$P^k_{r,f}\underline{I}^k_{r,f}\omega=\omega\qquad\forall\omega\in\mathcal{P}_r\Lambda^k(f),$$

and, if $d \ge k + 1$,

$$\mathrm{d}_{r,f}^{k}\underline{I}_{r,f}^{k}\omega=\mathrm{d}\omega\qquad\forall\omega\in\mathcal{P}_{r+1}^{-}\Lambda^{k}(f).$$

Example (The case n = 3 and k = 1)

For n = 3 and k = 1, the above properties translate as follows:

$$\begin{aligned} \boldsymbol{P}_{\operatorname{curl},T}^{r} \boldsymbol{I}_{\operatorname{curl},T}^{r} \boldsymbol{\nu} &= \boldsymbol{\nu} & \forall \boldsymbol{\nu} \in \mathcal{P}_{r}(T), \\ \boldsymbol{C}_{T}^{r} \boldsymbol{I}_{\operatorname{curl},T}^{r} \boldsymbol{\nu} &= \operatorname{curl} \boldsymbol{\nu} & \forall \boldsymbol{\nu} \in \mathcal{N}_{r+1}(T) \end{aligned}$$

Global discrete exterior derivative and DDR complex

- Our next goal is to connect the spaces $\underline{X}_{r,h}^k$ to form a well-defined sequence
- We define the global discrete exterior derivative $\underline{d}_{r,h}^k : \underline{X}_{r,h}^k \to \underline{X}_{r,h}^{k+1}$ s.t.

$$\underline{\mathrm{d}}_{r,h}^{k}\underline{\omega}_{h} \coloneqq \left(\pi_{r,f}^{-,d-k-1}(\star \mathrm{d}_{r,f}^{k}\underline{\omega}_{f})\right)_{f \in \Delta_{d}(\mathcal{M}_{h}), \, d \in [k+1,n]}$$

The DDR sequence then reads

$$\underline{X}^{0}_{r,h} \xrightarrow{\underline{d}^{0}_{r,h}} \underline{X}^{1}_{r,h} \longrightarrow \cdots \longrightarrow \underline{X}^{n-1}_{r,h} \xrightarrow{\underline{d}^{n-1}_{r,h}} \underline{X}^{n}_{r,h} \longrightarrow \{0\}$$

Specifically, for n = 3, we recover the one in [DP and Droniou, 2023]:

$$\underline{X}^{r}_{\operatorname{grad},h} \xrightarrow{\underline{G}^{k}_{h}} \underline{X}^{r}_{\operatorname{curl},h} \xrightarrow{\underline{C}^{r}_{h}} \underline{X}^{r}_{\operatorname{div},h} \xrightarrow{D^{r}_{h}} \mathcal{P}_{r}(\mathcal{T}_{h}) \longrightarrow \{0\}$$

Theorem (Cohomology of the Discrete de Rham complex)

The DDR sequence is a complex and its cohomology is isomorphic to the cohomology of the continuous de Rham complex, i.e., for all k,

$$\operatorname{Ker} \underline{d}_{r,h}^{k} / \operatorname{Im} \underline{d}_{r,h}^{k-1} \cong \operatorname{Ker} d^{k} / \operatorname{Im} d^{k-1}.$$

Example (The case n = 3)

For n = 3, in terms of vector proxies, this implies, in particular:

no "tunnels" crossing
$$\Omega$$
 $(b_1 = 0) \implies \operatorname{Im} \underline{G}_h^k = \operatorname{Ker} \underline{C}_h^r$
no "voids" contained in Ω $(b_2 = 0) \implies \operatorname{Im} \underline{C}_h^r = \operatorname{Ker} D_h^r$
 $\Omega \subset \mathbb{R}^3 (b_3 = 0) \implies \operatorname{Im} D_h^r = \mathcal{P}_r(\mathcal{T}_h)$

• We can define on $\underline{X}_{r,h}^k$ a discrete L^2 -product $(\cdot, \cdot)_{k,h} : \underline{X}_{r,h}^k \times \underline{X}_{r,h}^k \to \mathbb{R}$:

$$(\underline{\omega}_h, \underline{\mu}_h)_{k,h} \coloneqq \sum_{f \in \Delta_n(\mathcal{M}_h)} \left(\int_f P_{r,f}^k \underline{\omega}_f \wedge \star P_{r,f}^k \underline{\mu}_f + \underline{s_{k,f}}(\underline{\omega}_f, \underline{\mu}_f) \right)$$

• Above, $s_{k,f} : \underline{X}_{r,f}^k \times \underline{X}_{r,f}^k \to \mathbb{R}$ is a stabilisation that satisfies

$$s_{k,f}(\underline{I}_{r,f}^k\omega,\underline{\mu}_f) = 0 \qquad \forall \omega \in \mathcal{P}_r \Lambda^k(f)$$

 Numerical schemes are obtained replacing spaces, differential operators, and L²-products with their discrete counterparts

Outline

1 Motivation

2 The Discrete de Rham construction

Discrete problem I

• With $\mu = 1$, we seek $(H, A) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$ s.t.

$$\int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{\tau} - \int_{\Omega} \boldsymbol{A} \cdot \mathbf{curl} \, \boldsymbol{\tau} = 0 \qquad \forall \boldsymbol{\tau} \in \boldsymbol{H}(\mathbf{curl}; \Omega),$$
$$\int_{\Omega} \mathbf{curl} \, \boldsymbol{H} \cdot \boldsymbol{\nu} + \int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{\nu} = \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{\nu} \quad \forall \boldsymbol{\nu} \in \boldsymbol{H}(\operatorname{div}; \Omega)$$

The DDR scheme is obtained substituting

$$H(\operatorname{curl}; \Omega) \leftarrow \underline{X}^r_{\operatorname{curl},h}, \qquad H(\operatorname{div}; \Omega) \leftarrow \underline{X}^r_{\operatorname{div},h}$$

and

$$\begin{split} \int_{\Omega} \boldsymbol{H} \cdot \boldsymbol{\tau} \leftarrow (\underline{\boldsymbol{H}}_{h}, \underline{\boldsymbol{\tau}}_{h})_{\mathrm{curl},h}, & \int_{\Omega} \mathrm{curl}\, \boldsymbol{\tau} \cdot \boldsymbol{\nu} \leftarrow (\underline{\boldsymbol{C}}_{h}^{r} \underline{\boldsymbol{\tau}}_{h}, \underline{\boldsymbol{\nu}}_{h})_{\mathrm{div},h}, \\ \int_{\Omega} \mathrm{div}\, \boldsymbol{w} \; \mathrm{div}\, \boldsymbol{\nu} \leftarrow \int_{\Omega} D_{h}^{r} \underline{\boldsymbol{w}}_{h} \; D_{h}^{r} \underline{\boldsymbol{\nu}}_{h}, & \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{\nu} \leftarrow \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{P}_{\mathrm{div},h}^{r} \underline{\boldsymbol{\nu}}_{h} \end{split}$$

Discrete problem II

• The discrete problem reads: Find $(\underline{H}_h, \underline{A}_h) \in \underline{X}_{\operatorname{curl},h}^r \times \underline{X}_{\operatorname{div},h}^r$ s.t.

$$\begin{split} (\underline{\boldsymbol{H}}_{h},\underline{\boldsymbol{\tau}}_{h})_{\mathrm{curl},h} &- (\underline{\boldsymbol{A}}_{h},\underline{\boldsymbol{C}}_{h}^{r}\underline{\boldsymbol{\tau}}_{h})_{\mathrm{div},h} = 0 \qquad \forall \underline{\boldsymbol{\tau}}_{h} \in \underline{\boldsymbol{X}}_{\mathrm{curl},h}^{r}, \\ (\underline{\boldsymbol{C}}_{h}^{r}\underline{\boldsymbol{H}}_{h},\underline{\boldsymbol{\nu}}_{h})_{\mathrm{div},h} &+ \int_{\Omega} D_{h}^{r}\underline{\boldsymbol{A}}_{h} D_{h}^{r}\underline{\boldsymbol{\nu}}_{h} = l_{h}(\underline{\boldsymbol{\nu}}_{h}) \quad \forall \underline{\boldsymbol{\nu}}_{h} \in \underline{\boldsymbol{X}}_{\mathrm{div},h}^{r} \end{split}$$

Provided $b_2 = 0$, stability results from the exactness of the portion

$$\underline{X}_{\mathrm{grad},h}^{r} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathrm{curl},h}^{r} \xrightarrow{\underline{C}_{h}^{r}} \underline{X}_{\mathrm{div},h}^{r} \xrightarrow{D_{h}^{r}} \mathcal{P}_{r}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

• For smooth enough solution, the energy error is $O(h^{r+1})$

Numerical examples

Table: Energy error vs. meshsize

References

Arnold, D. (2018).

Finite Element Exterior Calculus. SIAM.

Arnold, D. N., Falk, R. S., and Winther, R. (2006).

Finite element exterior calculus, homological techniques, and applications. Acta Numer., 15:1–155.

Bonaldi, F., Di Pietro, D. A., Droniou, J., and Hu, K. (2023).

An exterior calculus framework for polytopal methods. In preparation.

Brezzi, F. and Fortin, M. (1991).

Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York.

Christiansen, S. H. and Gillette, A. (2016).

Constructions of some minimal finite element systems. ESAIM Math. Model. Numer. Anal., 50(3):833-850.

Di Pietro, D. A. and Droniou, J. (2021).

An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence. J. Comput. Phys., 429(109991).

Di Pietro, D. A. and Droniou, J. (2023).

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency. Found. Comput. Math., 23:85–164.

Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).

Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra. Math. Models Methods Appl. Sci., 30(9):1809–1855.