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Three model problems and their well-posedness

Discrete de Rham (DDR) complexes

Application to magnetostatics
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Setting |

m Let Q c R3 be an open connected polyhedral domain with Betti numbers b;
m We have by =1 (number of connected components) and b3 =0

m by accounts for the number of tunnels crossing Q

(bo, b1,b2,b3) =(1,1,0,0)

m bs, on the other hand, is the number of voids encapsulated by Q

a

(bo, b1, b2,b3) = (1,0,1,0)
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Setting I

m We consider PDE models that hinge on the vector calculus operators:
01q 0O2v3 — 033
gradg =|02q |, curly =| 03v1 — O1vs |, divw = dywy + daws + d3ws
03q 01v2 — G2v1
for smooth enough functions
q:Q—>R, y:Q — RS, w:Q > R3
m The corresponding L2-domain spaces are

HY Q) = {q € L%(Q) : gradg € L*(Q) = LQ(Q)?’} ,
H(curl; Q) := {v € L*(Q) : curly € LQ(Q)} ,
H(div; Q) = {w € L*(Q) : divw € L*(Q)}
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Three model problems
The Stokes problem in curl-curl formulation

m Given v > 0 and f € L?(Q), the Stokes problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

—vAu

v(curlcurlu — )+gradp = f
divu=0 inQ, (mass conservation)

on 9Q, (boundary conditions)

in Q,  (momentum conservation)

curlu xn=0andu-n=0
Jop =0

m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. pr =0 and

/vcurlu~curlv+/gradp-v:/f~v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q
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Three model problems
The magnetostatics problem

m For u > 0 and Je curl H(curl; Q), the magnetostatics problem reads:

Find the magnetic field H : @ — R3 and vector potential A : @ — R? s.t.

uH —curlA =0 in Q, (vector potential)
curlH =J in Q, (Ampere's law)
divA=0 inQ (
AxXn=0 on IQ (boundary condition)

Coulomb's gauge)

m Weak formulation: Find (H, A) € H(curl; Q) x H(div; Q) s.t.
/uH-T—/A-curlrzo V1 € H(curl; Q),
Q Q

/curlH-v+/divAdivv=/J-v Vv € H(div; Q)
Q Q Q
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Three model problems
The Darcy problem in velocity-pressure formulation

m Given x > 0 and f € L?(Q), the Darcy problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

k'u—gradp =0 in Q, (Darcy's law)
—divu=f in Q, (mass conservation)

p=0 on 0Q (boundary condition)

m Weak formulation: Find (u, p) € H(div; Q) x L2(Q) s.t.

/K_lu'v+/p divy =0 Vv € H(div; Q),
Q Q

—/divuq:/fq Vg € L*(Q)
Q Q

8/38



A unified view

m The above problems are mixed formulations involving two fields

m They can be recast into the abstract setting: Find (o,u) € £ X U s.t.

a(o,7)+b(t,u) = f(r) VreZ,
—b(o,v)+c(u,v)=¢g(v) VYveU,

or, equivalently, in variational formulation,
Ao, u), (1.v) = f(1) +g(v)  Y(1.v) € XU
with
A((o,u), (,v)) =a(o,7) +b(r,u) = b(o,v) +c(u,v) = f(7) +g(v)

m Well-posedness holds under an inf-sup condition on A
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A unified tool for well-posedness: The de Rham complex

R H'(Q) =% H(ewrl Q) —% H(div;Q) —™ £2(Q) —° {0}
m Key properties depending on the topology of Q:

Imgrad c Kercurl,
Imcurl c Kerdiv,
QCcR3 (b3=0) = Imdiv = L?*(Q) (Darcy, magnetostatics)
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A unified tool for well-posedness: The de Rham complex

R — H'(Q) 2% H(curl Q) —2L H(div;Q) —23 12(Q) —>3 {0}

m Key properties depending on the topology of Q:

no tunnels crossing Q (b; =0) = Imgrad = Kercurl (Stokes)
no voids contained in Q (b2 =0) = Imecurl = Kerdiv (magnetostatics)

QcR3 (b3=0) = Imdiv = L?(Q) (Darcy, magnetostatics)
m When by # 0 or by # 0, de Rham’s cohomology characterizes
Kercurl /Imgrad and Kerdiv /Im curl

m Emulating these algebraic properties is key for stable discretizations
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Generalization through differential forms

m The de Rham complex generalizes to domains of R” or smooth manifolds

m Denoting by d the exterior derivative and by HA(Q) its domain,

0 dO dk—l k dk dn—l
HAY Q) — - L5 gak@) - - 5 HAM(Q) — {0)

m For n = 3, the vector calculus version is recovered through vector proxies

HAY(Q) —1 3 HAN(Q) —L— HA2(Q) —1 HA3(Q) — {0}

HY(Q) —2% H(curl; @)~y H(div; Q) —4 12(Q) —— {0}
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The (trimmed) Finite Element way

Local spaces

m Let T c R? be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T}

m Fix k > 0 and write, denoting by x7 a point inside T,

PHI)? = grad PUT) @ (x —xp) x PEH(T)P = 6M(T) @ 69K (T)
= el PNTY @ (x —xp)P (T = RET) @ ROK(T)

m Define the trimmed spaces that sit between P*(T)3 and P*+1(T)3:

NEYTY = g5(T) @ GSF(T)  [Nédélec, 1980)
RT(T) = RY(T) @ REFU(T) [Raviart and Thomas, 1977]
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The (trimmed) Finite Element way

Local spaces

m Let T c R? be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T}

m Fix k > 0 and write, denoting by x7 a point inside T,

PHI)? = grad PUT) @ (x —xp) x PEH(T)P = 6M(T) @ 69K (T)
= el PNTY @ (x —xp)P (T = RET) @ ROK(T)

m Define the trimmed spaces that sit between P*(T)3 and P*+1(T)3:
NEYTY = g5(T) @ GSF(T)  [Nédélec, 1980)
RT(T) = RY(T) @ REFU(T) [Raviart and Thomas, 1977]

m The generalization P7*A” (f) to r-forms on d-faces f is obtained using
Koszul complements
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The (trimmed) Finite Element way

Global complex

m Let 75, be a conforming tetrahedral mesh of Q and let & > 0
m Local spaces can be glued together to form a global FE complex:

R Phl(q;) B2y kel gy —cwly kel (qy Ay pk(qy 0 (o)

[ [ [ [

R H'(Q) —2% H(curl; Q) —L5 H(div;Q) —V 12(Q) —2 {0}

m The gluing only works on conforming meshes (simplicial complexes)!
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The Finite Element way

Shortcomings

m Approach limited to conforming meshes with standard elements
= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

m Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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The discrete de Rham (DDR) approach |

m Key idea: replace both spaces and operators by discrete counterparts:

Lewn . G S . DI 0
> Xovad.h > Xewln > Xy — P (T) — {0}

m Support of polyhedral meshes (CW complexes) and high-order
m Several strategies to reduce the number of unknowns on general shapes
m Natural generalization to the de Rham complex of differential forms

m On the relevance of general meshes and high-order: [Antonietti et al., 2013]
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The discrete de Rham (DDR) approach Il

m DDR spaces are spanned by vectors of polynomials
m Polynomial components enable consistent reconstructions of

m vector calculus operators
m the corresponding scalar or vector potentials

m These reconstructions emulate integration by parts (Stokes) formulas
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References for this presentation

FEEC [Arnold, Falk, Winther, 2006, Arnold, 2018]

Introduction of DDR [DP, Droniou, Rapetti, 2020]

DDR with Koszul complements [DP and Droniou, 2023]

Algebraic properties (general topologies) [DP, Droniou, Pitassi, 2023]
Bridges with VEM [Beirdo da Veiga, Dassi, DP, Droniou, 2022]
Polytopal Exterior Calculus [Bonaldi, DP, Droniou, Hu, 2023]

C++ open-source implementation available in HArDCore3D
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The two-dimensional case

Continuous exact complex

m With F mesh face let, forg: F > Randv:F — R2Z smooth enough,
rotr g == (grady q)* rotp v = dive(vt)
m We derive a discrete counterpart of the 2D de Rham complex:

gradp, rotg

R < H'(F) =% H(rot;F) == L*(F) —— {0}
m We will need the following decomposition of P*(F)?:
PX(F)? =rotp P (F) @ (x —xp) P 1(F) = R¥(F) @ RO (F),
and recall the 2D Raviart—Thomas space

RT*L(F) = RE(F) @ RO*(F)
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The two-dimensional case
A key remark

WFE =

le nrg

m Let g € PXI(F). For any v € P*(F)?, we have

/gradpq~v:—/qdivFv+ Z wFE/CIwF(V'”FE)
F F E

EESF
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The two-dimensional case
A key remark

U.)FEI].
le nrg

m Let g € PXI(F). For any v € P*(F)?, we have

/gradpq~v:—/7r1, £q divpy + Z wFE/qu(v-an)
F F E

EESF
ePk-1(F)

m Hence, grady ¢ can be computed given ﬂ’;, .q and q|oF
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The two-dimensional case
Discrete H'(F) space

m Based on this remark, we take as discrete counterpart of H'(F)

Xt = {4, = (@r.aor) 5 ar € P (F) and qor € P (Ep))

w Let I8 4 CO(F) = XK ¢ be st Vg € CO(F),

lgrad F4q = (ﬂ-é’i;‘q qﬁF) with

T 5 (qor)|E = 7T¢> +q 1 VE € EF and gor(xy) = q(xy) YV € Vg

92020
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € EF, the edge gradient Gk — PK(E) is s.t.

grad F

G4, = (4or)|g

m The full face gradient Gk Xg aar = PHF)? isst., Vv € PE(F)?,

‘/FGéﬁp'v:_‘/FquivFV"' Z ‘”FE‘/E%F(V'HFE)

EcéF
m The scalar trace ypt X’g‘rad » — PHLUF) s s.t., for all v € ROF2(F),
/7'£~+1q divpy = / Grq, v+ WFE / qer (v - nrE)
EeS F

m By construction, we have polynomial consistency:

Gk ( grad, Fq) gradF q and 7k+1 (Igrad Fq) q for all q € Pk+1(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N<H(F) = RTY(F)L, Vg € PH(F),

/I‘OtFV qz/v- rotpqg — Z wFE/(V'tE)CNE
F F o— E

EE(SF
eR¥L(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N<H(F) = RTY(F)L, Vg € PH(F),
/rotpv q= / ﬂl;{%v- rotpqg — wFE/ (v-tg) q|E
F F ’ —— Ec&p
eRF1(F) ePk(E)

m This leads to the following discrete counterpart of H(rot; F):

k
Xewl,F = {"F = (vr.F VR g (VE)EEER)

v r € RETL(F), v o € ROK(F), v € PK(E) VE € &F }

N 2.\

AN RRY

k:
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The two-dimensional case

. . k
Reconstructions in X¢ )

m The face curl operator CX : X* — PK(F) iss.t.,

F ° —curl,F
/C;EQKF C]Z‘/‘V(R’F'I'Oth— Z wFE/VE g Vg e PKF)
F F F<2. E
m Let I¥ . H'(F)? - X%, ; collect component-wise L*-projections

[ C}E is polynomially consistent by construction:

CilIt,, pv) =rotpv Wy e N*'(F)
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The two-dimensional case

. . k
Reconstructions in X¢ )

m The face curl operator CX : X* — PK(F) iss.t.,

F ° —curl,F
/C;EQKF C]Z‘/‘V(R’F'I'Oth— Z wFE/VE g Vg e PKF)
F F F<2. E
m Let I¥ . H'(F)? - X%, ; collect component-wise L*-projections

[ C}E is polynomially consistent by construction:

CilIt,, pv) =rotpv Wy e N*'(F)

m Similarly, we can construct a tangent trace yfF : lfurlF—> Pk(F)? s.t.

yf’F(!furLFv) =y vy € PK(F)?
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Two-dimensional DDR complex

Space ‘ V (vertex) E (edge) F (face)

X odF R PL(E)  PHU(F)
gurl,F Pk(E) RTk(F)
Pr(F) Pr(F)

m Define the discrete gradient

k, . k-1 -k ko ek k
Grg, = (ﬂR,}:GFzF’n;e,FGFZF’ (GEZE)EESF)
m The two-dimensional DDR complex reads

—grad, F,

L 3 k gi; s k (:é k 0
R Xgrad,F Xcurl,F — P (F) — {O}
m If F is simply connected, this complex is exact
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A glance at the general case |

m For a general domain Q ¢ R" and a form degree r, the DDR space is

n

xpm = X PTRATT () with Ag(T5) = {d-faces of T}
d=r feba(T;)

m We recursively define, for f € Ay(T), d=r,...,n,

mIfr=d, »
Pilw,=x"ws e PEAL(£)
m Ifr+1<d<n,wefirst let, forall w, € ngr and all g e PKALT-1(f),

‘/fd?rgf Au= (_1)r+1‘/f*—1wf Adu+ /angjfl‘.'gﬁf ANtrgr p
then, for all (u,v) € kPRAd=T(f) x gPk-Ld-r+1(f),
- k’ 2 -,
(_1)k+1 /f p.l;..l wp A (du+v) = ‘/fdf 'fgf Ap— ./6f ng’fgﬁf Aty p

+(—1)k+1/*_1wf/\v
f
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A glance at the general case Il

m The following polynomial consistency properties hold:

Pyl w=w  VoePN(f),

I w=dw VYo € PTRIAT(S)

m Setting

k, (= kd-r=1,, 1k,
d, rﬂh = (”f ' (*df er))feAd(ﬁ,),de[k+1,n]’

the global DDR complex of differential forms reads

k,0 k,n—-1

4 d
XKO Dy ykt sy xkeol Ty yken > {0}
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A glance at the general case Il

For n = 3, we recover the DDR complex of [DP and Droniou, 2023]:

Lgrad, T,

L, k Ql; k Ql; k D# k 0
R 1 Xgrad,T 1 Xcurl,T 1 Xdiv,T 7 P (T) 7 {O}

Space 1% E F T (element)
X0 =xk i | ROPEUE) PRUE) PR
DED G PKE)  RTYF)  RTNT)
X7 = X PRF)  NNT)

k’ ~ .
X5% = PR(T) P(T)
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Local discrete L?-products

m Based on the element potentials, we construct local discrete L?-products

(tpoy e = [ Pursy Puiryy#serspy,) Vo€ fgrad curl div)
y ! y y

consistency stability

m The L2-products are built to be polynomially consistent
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Global DDR complex

k
!grad, h

Dk 0
grad, h ) url, ) Xdlvh — Pk (T) — {0}

m Global DDR spaces on a mesh 7}, are defined gluing boundary components
m Global operators are obtained collecting local components
m Global L?-products (-, )., are obtained assembling element-wise
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Cohomology of the global three-dimensional DDR complex

K k

G, Dk o
R X{scrad,h I 1 —curlh —> Xdlvh —h> Pk((ﬁl) — {0}

Theorem (Cohomology of the 3D DDR complex [DP, Droniou, Pitassi, 2023])

For any k > 0, the DDR sequence forms a complex whose cohomology spaces
are isomorphic to those of the continuous de Rham complex. In particular, if Q
has a trivial topology (i.e., by = by =0), the DDR complex is exact, i.e.,

ImG} =KerCf, ImC}=KerD}, ImD} =P 7).

Remark (Extension to differential forms [Bonaldi, DP, Droniou, Hu, 2023])

The above result extends to the de Rham complex of differential forms.
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Uniform discrete Poincaré inequality for the curl

m We assume, from this point on, that Q has a trivial topology
m Let (KerC )+ be the orthogonal of KerCh in Xk for (-, )eurt,n- Then,

—curl,h

ck . KerC L — Ker D¥ is an isomorphism
=h " h

m Moreover, denoting by ||-|le,» the norm induced by (:,).., ONn X’f’h,

”Vh”curlh < ”—h—h“div»h Vvh € (KerC )J'
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Discrete problem

m We seek (H, A) € H(curl; Q) x H(div; Q) s.t.
/,uH~T—/A~(mrlT=O V1 € H(curl; ),
Q Q
/curlH-v+/diVAdivv=/J-v Vv € H(div; Q)
Q Q Q

m The DDR scheme is obtained with obvious substitutions:
Find (H,,A,) € X~ ,, x XX , st

(l«lgh’zh)curl,h - (éh,gﬁzh)div,h =0 vVt n € x*

Zcurl,h’

(gﬁﬂh,gh)div,h+/D A, Div, =l(v,) Vv, egﬁiv’h

m Assume H € C°(Q)% N H**2(7,)% and A € C°(Q)? x H**2(7;,)3. Then,

l(H,), - H A, - I5, Ay s 71!

—curl h
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Numerical examples (energy error vs. meshsize)
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Conclusions and perspectives

m Fully discrete approach for PDEs relating to the de Rham complex
m Key features: support of general polyhedral meshes and high-order
m Novel computational strategies made possible
[

Natural extensions to differential forms

Unified proof of analytical properties using differential forms

Development of novel complexes (e.g., elasticity, Hessian,...)

Applications (possibly beyond continuum mechanics)

36/38



References |

) & W W )

Antonietti, P. F., Giani, S., and Houston, P. (2013)

h p-version composite discontinuous Galerkin methods for elliptic problems on complicated domains.
SIAM J. Sci. Comput., 35(3):A1417-A1439.

Arnold, D. (2018).

Finite Element Exterior Calculus.

SIAM.

Arnold, D. N., Falk, R. S., and Winther, R. (2006).

Finite element exterior calculus, homological techniques, and applications.

Acta Numer., 15:1-155

Beirdo da Veiga, L., Dassi, F., Di Pietro, D. A., and Droniou, J. (2022).

Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes.
Comput. Meth. Appl. Mech. Engrg., 397(115061)

Bonaldi, F., Di Pietro, D. A., Droniou, J., and Hu, K. (2023).

An exterior calculus framework for polytopal methods.
http: / /arxiv.org /abs/2303.11093

Di Pietro, D. A. and Droniou, J. (2023).

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency.
Found. Comput. Math., 23:85-164

Di Pietro, D. A., Droniou, J., and Pitassi, S. (2023)

Cohomology of the discrete de Rham complex on domains of general topology.
Calcolo, 60(32)
http://arxiv.org/abs/2209.00957

37/38


http://arxiv.org/abs/2303.11093
http://arxiv.org/abs/2209.00957

References |l

ﬁ Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).

Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra.
Math. Models Methods Appl. Sci., 30(9):1809-1855

Nédélec, J-C. (1980).
Mixed finite elements in RS.
Numer. Math., 35(3):315-341

Raviart, P. A. and Thomas, J. M. (1977).

A mixed finite element method for 2nd order elliptic problems.
In Galligani, I and Magenes, E., editors, Mathematical Aspects of the Finite Element Method. Springer, New York

38/38



	Three model problems and their well-posedness
	Discrete de Rham (DDR) complexes
	Application to magnetostatics

