# An introduction to Discrete de Rham (DDR) methods

Daniele A. Di Pietro

Institut Montpelliérain Alexander Grothendieck, University of Montpellier https://imag.umontpellier.fr/~di-pietro/

École d'été CEA-EDF-Inria, 29 June 2023



- FEEC [Arnold, Falk, Winther, 2006, Arnold, 2018]
- Introduction of DDR [DP, Droniou, Rapetti, 2020]
- DDR with Koszul complements [DP and Droniou, 2023a]
- Application to magnetostatics [DP and Droniou, 2021]
- Polytopal Exterior Calculus [Bonaldi, DP, Droniou, Hu, 2023]
- 2D div-div complex [DP and Droniou, 2023b]
- C++ open-source implementation available in HArDCore3D

## Outline

#### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

## Outline

#### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

## Setting I

- Let  $\Omega \subset \mathbb{R}^3$  be an open connected polyhedral domain with Betti numbers  $b_i$
- We have  $b_0 = 1$  (number of connected components) and  $b_3 = 0$
- $b_1$  accounts for the number of tunnels crossing  $\Omega$



$$(b_0, b_1, b_2, b_3) = (1, 1, 0, 0)$$

**•**  $b_2$ , on the other hand, is the number of voids encapsulated by  $\Omega$ 



$$(b_0, b_1, b_2, b_3) = (1, 0, 1, 0)$$

## Setting II

• We consider PDE models that hinge on the vector calculus operators:

$$\operatorname{\mathbf{grad}} q = \begin{pmatrix} \partial_1 q \\ \partial_2 q \\ \partial_3 q \end{pmatrix}, \ \operatorname{\mathbf{curl}} \boldsymbol{v} = \begin{pmatrix} \partial_2 v_3 - \partial_3 v_2 \\ \partial_3 v_1 - \partial_1 v_3 \\ \partial_1 v_2 - \partial_2 v_1 \end{pmatrix}, \ \operatorname{div} \boldsymbol{w} = \partial_1 w_1 + \partial_2 w_2 + \partial_3 w_3$$

for smooth enough functions

$$q: \Omega \to \mathbb{R}, \qquad \mathbf{v}: \Omega \to \mathbb{R}^3, \qquad \mathbf{w}: \Omega \to \mathbb{R}^3$$

• The corresponding  $L^2$ -domain spaces are

$$\begin{split} H^1(\Omega) &\coloneqq \left\{ q \in L^2(\Omega) \ : \ \mathbf{grad} \ q \in L^2(\Omega) \coloneqq L^2(\Omega)^3 \right\},\\ H(\mathbf{curl};\Omega) &\coloneqq \left\{ v \in L^2(\Omega) \ : \ \mathbf{curl} \ v \in L^2(\Omega) \right\},\\ H(\operatorname{div};\Omega) &\coloneqq \left\{ w \in L^2(\Omega) \ : \ \operatorname{div} \ w \in L^2(\Omega) \right\} \end{split}$$

#### Three model problems: Stokes

 $-\nu \Lambda u$ 

Given  $\nu > 0$  and  $f \in L^2(\Omega)$ , the Stokes problem reads: Find the velocity  $\boldsymbol{u} : \Omega \to \mathbb{R}^3$  and pressure  $p : \Omega \to \mathbb{R}$  s.t.

 $\overline{v(\operatorname{curl}\operatorname{curl} u - \operatorname{grad}\operatorname{div} u)} + \operatorname{grad} p = f \quad \text{in } \Omega, \qquad (\text{momentum conservation})$  $\operatorname{div} u = 0 \quad \text{in } \Omega, \qquad (\text{mass conservation})$  $\operatorname{curl} u \times n = 0 \text{ and } u \cdot n = 0 \quad \text{on } \partial\Omega, \quad (\text{boundary conditions})$  $\int_{\Omega} p = 0$ 

• Weak formulation: Find  $(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{curl}; \Omega) \times H^1(\Omega)$  s.t.  $\int_{\Omega} p = 0$  and

$$\begin{split} \int_{\Omega} \nu \operatorname{curl} \boldsymbol{u} \cdot \operatorname{curl} \boldsymbol{v} + \int_{\Omega} \operatorname{grad} p \cdot \boldsymbol{v} &= \int_{\Omega} \boldsymbol{f} \cdot \boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}; \Omega) \\ &- \int_{\Omega} \boldsymbol{u} \cdot \operatorname{grad} q = 0 \qquad \quad \forall q \in H^{1}(\Omega) \end{split}$$

#### Three model problems: Magnetostatics

• For  $\mu > 0$  and  $J \in \operatorname{curl} H(\operatorname{curl}; \Omega)$ , the magnetostatics problem reads: Find the magnetic field  $H : \Omega \to \mathbb{R}^3$  and vector potential  $A : \Omega \to \mathbb{R}^3$  s.t.

| $\mu \boldsymbol{H} - \operatorname{curl} \boldsymbol{A} = \boldsymbol{0}$ | in Ω,                | (vector potential)   |
|----------------------------------------------------------------------------|----------------------|----------------------|
| $\operatorname{curl} H = J$                                                | in $\Omega$ ,        | (Ampère's law)       |
| $\operatorname{div} \boldsymbol{A} = \boldsymbol{0}$                       | in $\Omega$ ,        | (Coulomb's gauge)    |
| $A \times n = 0$                                                           | on $\partial \Omega$ | (boundary condition) |

• Weak formulation: Find  $(H, A) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$  s.t.

$$\begin{split} &\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{\tau} - \int_{\Omega} \boldsymbol{A} \cdot \mathbf{curl} \, \boldsymbol{\tau} = 0 & \forall \boldsymbol{\tau} \in \boldsymbol{H}(\mathbf{curl}; \Omega), \\ &\int_{\Omega} \mathbf{curl} \, \boldsymbol{H} \cdot \boldsymbol{\nu} + \int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{\nu} = \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{\nu} & \forall \boldsymbol{\nu} \in \boldsymbol{H}(\operatorname{div}; \Omega) \end{split}$$

#### Three model problems: Darcy

Given  $\kappa > 0$  and  $f \in L^2(\Omega)$ , the Darcy problem reads: Find the velocity  $\boldsymbol{u} : \Omega \to \mathbb{R}^3$  and pressure  $p : \Omega \to \mathbb{R}$  s.t.

$$\kappa^{-1}\boldsymbol{u} - \operatorname{grad} p = 0 \quad \text{in } \Omega, \qquad (\operatorname{Darcy's law})$$
$$-\operatorname{div} \boldsymbol{u} = f \quad \text{in } \Omega, \qquad (\operatorname{mass \ conservation})$$
$$p = 0 \quad \text{on } \partial\Omega \qquad (\operatorname{boundary \ condition})$$

• Weak formulation: Find  $(\boldsymbol{u}, p) \in \boldsymbol{H}(\operatorname{div}; \Omega) \times L^2(\Omega)$  s.t.

$$\int_{\Omega} \kappa^{-1} \boldsymbol{u} \cdot \boldsymbol{v} + \int_{\Omega} p \operatorname{div} \boldsymbol{v} = 0 \qquad \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}; \Omega), \\ - \int_{\Omega} \operatorname{div} \boldsymbol{u} q = \int_{\Omega} f q \quad \forall q \in L^{2}(\Omega)$$

## A unified view

- The above problems are mixed formulations involving two fields
- They can be recast into the abstract setting: Find  $(\sigma, u) \in \Sigma \times U$  s.t.

$$\begin{aligned} a(\sigma,\tau) + b(\tau,u) &= f(\tau) \quad \forall \tau \in \Sigma, \\ -b(\sigma,v) + c(u,v) &= g(v) \quad \forall v \in U, \end{aligned}$$

or, equivalently, in variational formulation,

$$\mathcal{A}((\sigma, u), (\tau, v)) = f(\tau) + g(v) \qquad \forall (\tau, v) \in \Sigma \times U$$

with

$$\mathcal{A}((\sigma, u), (\tau, v)) \coloneqq a(\sigma, \tau) + b(\tau, u) - b(\sigma, v) + c(u, v) = f(\tau) + g(v)$$

■ Well-posedness holds under an inf-sup condition on *A* 

#### A unified tool for well-posedness: The de Rham complex

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

$$\begin{split} & \operatorname{Im} \operatorname{\mathbf{grad}} \, \subset \operatorname{Ker} \operatorname{\mathbf{curl}}, \\ & \operatorname{Im} \operatorname{\mathbf{curl}} \, \subset \operatorname{Ker} \operatorname{div}, \\ & \Omega \subset \mathbb{R}^3 \, (b_3 = 0) \implies \operatorname{Im} \operatorname{div} \, = \, L^2(\Omega) \quad \text{(Darcy, magnetostatics)} \end{split}$$

#### A unified tool for well-posedness: The de Rham complex

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

no tunnels crossing  $\Omega$   $(b_1 = 0) \implies \text{Im} \operatorname{grad} = \text{Ker} \operatorname{curl}$  (Stokes) no voids contained in  $\Omega$   $(b_2 = 0) \implies \text{Im} \operatorname{curl} = \text{Ker} \operatorname{div}$  (magnetostatics)  $\Omega \subset \mathbb{R}^3$   $(b_3 = 0) \implies \text{Im} \operatorname{div} = L^2(\Omega)$  (Darcy, magnetostatics)

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

no tunnels crossing  $\Omega$   $(b_1 = 0) \implies \operatorname{Im} \operatorname{grad} = \operatorname{Ker} \operatorname{curl}$  (Stokes) no voids contained in  $\Omega$   $(b_2 = 0) \implies \operatorname{Im} \operatorname{curl} = \operatorname{Ker} \operatorname{div}$  (magnetostatics)  $\Omega \subset \mathbb{R}^3$   $(b_3 = 0) \implies \operatorname{Im} \operatorname{div} = L^2(\Omega)$  (Darcy, magnetostatics)

• When  $b_1 \neq 0$  or  $b_2 \neq 0$ , de Rham's cohomology characterizes

 $\operatorname{Ker}\operatorname{\mathbf{curl}}/\operatorname{Im}\operatorname{\mathbf{grad}}$  and  $\operatorname{Ker}\operatorname{div}/\operatorname{Im}\operatorname{\mathbf{curl}}$ 

$$H^{1}(\Omega) \xrightarrow{\operatorname{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\}$$

We have key properties depending on the topology of Ω:

no tunnels crossing  $\Omega$   $(b_1 = 0) \implies \operatorname{Im} \operatorname{grad} = \operatorname{Ker} \operatorname{curl}$  (Stokes) no voids contained in  $\Omega$   $(b_2 = 0) \implies \operatorname{Im} \operatorname{curl} = \operatorname{Ker} \operatorname{div}$  (magnetostatics)  $\Omega \subset \mathbb{R}^3$   $(b_3 = 0) \implies \operatorname{Im} \operatorname{div} = L^2(\Omega)$  (Darcy, magnetostatics)

• When  $b_1 \neq 0$  or  $b_2 \neq 0$ , de Rham's cohomology characterizes

 $\operatorname{Ker}\operatorname{\mathbf{curl}}/\operatorname{Im}\operatorname{\mathbf{grad}}$  and  $\operatorname{Ker}\operatorname{div}/\operatorname{Im}\operatorname{\mathbf{curl}}$ 

Emulating these properties is key for stable discretizations

#### Poincaré inequalities

A consequence of the above facts are Poincaré-type inequalities
It holds (see, e.g., [Arnold, 2018, Theorem 4.6])

$$\begin{split} \|v\|_{L^{2}(\Omega;\mathbb{R}^{3})} &\lesssim \|\operatorname{curl} v\|_{L^{2}(\Omega;\mathbb{R}^{3})} \quad \forall v \in (\operatorname{Ker} \operatorname{curl})^{\perp}, \\ \|w\|_{L^{2}(\Omega;\mathbb{R}^{3})} &\lesssim \|\operatorname{div} w\|_{L^{2}(\Omega)} \quad \forall w \in (\operatorname{Ker} \operatorname{div})^{\perp}, \end{split}$$

with orthogonals taken w.r.t. the  $L^2$ -product

By the properties of the de Rham complex,

if 
$$b_1 = 0$$
,  $\mathbf{v} \in (\operatorname{Ker} \operatorname{\mathbf{curl}})^{\perp} \iff \int_{\Omega} \mathbf{v} \cdot \nabla q = 0$  for all  $q \in H^1(\Omega)$ ,  
if  $b_2 = 0$ ,  $\mathbf{w} \in (\operatorname{Ker} \operatorname{div})^{\perp} \iff \int_{\Omega} \mathbf{w} \cdot \operatorname{\mathbf{curl}} \mathbf{v} = 0$  for all  $\mathbf{v} \in H(\operatorname{\mathbf{curl}}; \Omega)$ 

#### Well-posedness of the magnetostatics problem I

• Assume, for the sake of simplicity,  $\mu = 1$  and set

$$\mathcal{A}((\boldsymbol{\sigma}, \boldsymbol{u}), (\boldsymbol{\tau}, \boldsymbol{v})) \coloneqq a(\boldsymbol{\sigma}, \boldsymbol{\tau}) + b(\boldsymbol{\tau}, \boldsymbol{u}) - b(\boldsymbol{\sigma}, \boldsymbol{v}) + c(\boldsymbol{u}, \boldsymbol{v})$$

with bilinear forms a, b, and c s.t.

$$a(\boldsymbol{\sigma}, \boldsymbol{\tau}) \coloneqq \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{\tau}, \quad b(\boldsymbol{\tau}, \boldsymbol{v}) \coloneqq -\int_{\Omega} \operatorname{curl} \boldsymbol{\tau} \cdot \boldsymbol{v}, \quad c(\boldsymbol{u}, \boldsymbol{v}) \coloneqq \int_{\Omega} \operatorname{div} \boldsymbol{u} \operatorname{div} \boldsymbol{v}$$

The variational formulation of magnetostatics reads: Find  $(H, A) \in \mathbb{Z} := H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$  s.t.

$$\mathcal{A}((H,A),(\tau,\nu)) = \int_{\Omega} J \cdot \nu \quad \forall (\tau,\nu) \in \mathcal{Z}$$

• Define the norm s.t.,  $\forall (\tau, v) \in \mathcal{Z}$ ,

$$\|(\boldsymbol{\tau},\boldsymbol{\nu})\|_{\mathcal{Z}} \coloneqq \left(\|\boldsymbol{\tau}\|_{\boldsymbol{H}(\operatorname{curl};\Omega)}^2 + \|\boldsymbol{\nu}\|_{\boldsymbol{H}(\operatorname{div};\Omega)}^2\right)^{\frac{1}{2}}$$

Theorem (Well-posedness for magnetostatics)

Assume  $b_2 = 0$ . Then, it holds, for all  $(\sigma, u) \in \mathbb{Z}$ ,

$$\|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\mathcal{Z}} \lesssim \$ \coloneqq \sup_{(\tau,\boldsymbol{\nu})\in\mathcal{Z}\setminus\{0\}} \frac{\mathcal{A}((\boldsymbol{\sigma},\boldsymbol{u}),(\tau,\boldsymbol{\nu}))}{\|(\tau,\boldsymbol{\nu})\|_{\mathcal{Z}}}.$$

Hence, the magnetostatics problem admits a unique solution that satisfies

 $\|(\boldsymbol{H},\boldsymbol{A})\|_{\mathcal{Z}} \lesssim \|\boldsymbol{J}\|_{L^{2}(\Omega;\mathbb{R}^{3})}.$ 

#### Well-posedness of the magnetostatics problem III

Taking  $(\tau, v) = (\sigma, u + \operatorname{curl} \sigma)$  and since  $c(u, v) = \int_{\Omega} \operatorname{div} u \operatorname{div} v$ , we have

$$\begin{aligned} \mathcal{A}((\boldsymbol{\sigma},\boldsymbol{u}),(\boldsymbol{\sigma},\boldsymbol{u}+\operatorname{curl}\boldsymbol{\sigma})) \\ &= a(\boldsymbol{\sigma},\boldsymbol{\sigma}) + \overline{b}(\boldsymbol{\sigma},\boldsymbol{u}) - b(\boldsymbol{\sigma},\boldsymbol{u}+\operatorname{curl}\boldsymbol{\sigma}) + c(\boldsymbol{u},\boldsymbol{u}+\operatorname{curl}\boldsymbol{\sigma}) \quad (\operatorname{div}\operatorname{curl}=0) \\ &= a(\boldsymbol{\sigma},\boldsymbol{\sigma}) - b(\boldsymbol{\sigma},\operatorname{curl}\boldsymbol{\sigma}) + c(\boldsymbol{u},\boldsymbol{u}) \\ &= \|\boldsymbol{\sigma}\|_{L^{2}(\Omega;\mathbb{R}^{3})}^{2} + \|\operatorname{curl}\boldsymbol{\sigma}\|_{L^{2}(\Omega;\mathbb{R}^{3})}^{2} + \|\operatorname{div}\boldsymbol{u}\|_{L^{2}(\Omega)}^{2} \\ &= \|\boldsymbol{\sigma}\|_{\boldsymbol{H}(\operatorname{curl};\Omega)}^{2} + \|\operatorname{div}\boldsymbol{u}\|_{L^{2}(\Omega)}^{2} \end{aligned}$$

Hence,

$$\|\boldsymbol{\sigma}\|_{\boldsymbol{H}(\operatorname{curl};\Omega)}^{2} + \|\operatorname{div}\boldsymbol{u}\|_{L^{2}(\Omega)}^{2} \lesssim \|(\boldsymbol{\sigma},\boldsymbol{u} + \operatorname{curl}\boldsymbol{\sigma})\|_{\mathcal{Z}} \lesssim \|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\mathcal{Z}} \quad (1)$$

• It only remains to estimate  $\|u\|_{L^2(\Omega;\mathbb{R}^3)}$ . To this purpose, we write

$$\begin{split} \boldsymbol{u} &= \boldsymbol{u}^0 + \boldsymbol{u}^\perp \in \operatorname{Ker}\operatorname{div} \oplus (\operatorname{Ker}\operatorname{div})^\perp \\ &\stackrel{b_2 = 0}{=} \operatorname{Ker}\operatorname{div} \oplus (\operatorname{Im}\operatorname{\mathbf{curl}})^\perp \quad (\operatorname{Ker}\operatorname{div} = \operatorname{Im}\operatorname{\mathbf{curl}}) \end{split}$$

#### Well-posedness of the magnetostatics problem IV

By the Poincaré inequality for the divergence, we have

$$\|\boldsymbol{u}^{\perp}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2} \lesssim \|\operatorname{div}\boldsymbol{u}^{\perp}\|_{\boldsymbol{L}^{2}(\Omega)}^{2} = \|\operatorname{div}\boldsymbol{u}\|_{\boldsymbol{L}^{2}(\Omega)}^{2} \lesssim \$\|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\boldsymbol{\mathcal{Z}}}$$
(2)

Since  $b_2 = 0$ , we can find  $\boldsymbol{v} \in (\operatorname{Ker} \operatorname{\mathbf{curl}})^{\perp}$  such that

$$\boldsymbol{u}^{0} = -\operatorname{curl} \boldsymbol{v} \quad \text{and} \quad \|\boldsymbol{v}\|_{\boldsymbol{H}(\operatorname{curl};\Omega)} \lesssim \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}$$
(3)

#### Well-posedness of the magnetostatics problem V

We then write

$$\begin{aligned} \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})} &\gtrsim \|(\boldsymbol{v},\boldsymbol{0})\|_{\boldsymbol{Z}} \gtrsim \mathcal{A}((\boldsymbol{\sigma},\boldsymbol{u}),(\boldsymbol{v},\boldsymbol{0})) = a(\boldsymbol{\sigma},\boldsymbol{v}) + b(\boldsymbol{v},\boldsymbol{u}) \\ &= \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{v} - \int_{\Omega} \operatorname{curl} \boldsymbol{v} \cdot \boldsymbol{u} \\ &= \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{v} + \int_{\Omega} \boldsymbol{u}^{0} \cdot \boldsymbol{u} = \int_{\Omega} \boldsymbol{\sigma} \cdot \boldsymbol{v} + \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2}, \end{aligned}$$

Rearranging the term and using a Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2} &\lesssim \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})} + \|\boldsymbol{\sigma}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})} \|\boldsymbol{v}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})} \\ &\stackrel{(3)}{\lesssim} \left( \$ + \|\boldsymbol{\sigma}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})} \right) \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}, \end{aligned}$$

so that, simplifying, squaring both sides, and recalling (1),

$$\|\boldsymbol{u}^0\|_{\boldsymbol{L}^2(\Omega;\mathbb{R}^3)}^2 \lesssim \$^2 + \$\|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\mathcal{Z}}$$
(4)

)

#### Well-posedness of the magnetostatics problem VI

■ Summing (1), (2), and (4), we get,

$$\|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\mathcal{Z}}^2 \lesssim \|(\boldsymbol{\sigma},\boldsymbol{u})\|_{\mathcal{Z}} + \$^2,$$

where we have additionally noticed that, by  $L^2$ -orthogonality,

$$\|\boldsymbol{u}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2} = \|\boldsymbol{u}^{0}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2} + \|\boldsymbol{u}^{\perp}\|_{\boldsymbol{L}^{2}(\Omega;\mathbb{R}^{3})}^{2}$$

Using Young's inequality we conclude the proof that

$$\|(\sigma, u)\|_{\mathcal{Z}} \lesssim \$$$

The well-posedness of the magnetostatics problem readily follows

## The Finite Element way

Local spaces

• Let  $T \subset \mathbb{R}^3$  be a polyhedron and set, for any  $r \geq -1$ ,

 $\mathcal{P}_r(T) \coloneqq \{\text{restrictions of 3-variate polynomials of degree } \leq r \text{ to } T\}$ 

Fix  $r \ge 0$ . Denoting by  $x_T$  a point inside T, it holds

$$\begin{aligned} \mathcal{P}_{r}(T)^{3} &= \operatorname{grad} \mathcal{P}_{r+1}(T) \oplus (\mathbf{x} - \mathbf{x}_{T}) \times \mathcal{P}_{r-1}(T)^{3} \eqqcolon \mathcal{G}_{r}(T) \oplus \mathcal{G}_{r}^{c}(T) \\ &= \operatorname{curl} \mathcal{P}_{r+1}(T)^{3} \oplus (\mathbf{x} - \mathbf{x}_{T}) \mathcal{P}_{r-1}(T) \qquad \rightleftharpoons \mathcal{R}_{r}(T) \oplus \mathcal{R}_{r}^{c}(T) \end{aligned}$$

• Define the trimmed spaces that sit between  $\mathcal{P}_r(T)^3$  and  $\mathcal{P}_{r+1}(T)^3$ :

 $\mathcal{N}_{r+1}(T) \coloneqq \mathcal{G}_r(T) \oplus \mathcal{G}_{r+1}^c(T) \qquad [\mathsf{N}\acute{\mathsf{e}}\acute{\mathsf{d}}\acute{\mathsf{e}}\mathsf{lec}, \ 1980]$  $\mathcal{R}\mathcal{T}_{r+1}(T) \coloneqq \mathcal{R}_r(T) \oplus \mathcal{R}_{r+1}^c(T) \qquad [\mathsf{Raviart and Thomas}, \ 1977]$ 

## The Finite Element way

Global complex



Let T<sub>h</sub> be a conforming tetrahedral mesh of Ω and let r ≥ 0
 Local spaces can be glued together to form a global FE complex:

$$\begin{array}{ccc} \mathcal{P}_{r+1}^{\mathrm{cont}}(\mathcal{T}_{h}) & \xrightarrow{\mathrm{grad}} & \mathcal{N}_{r+1}(\mathcal{T}_{h}) & \xrightarrow{\mathrm{curl}} & \mathcal{R}\mathcal{T}_{r+1}(\mathcal{T}_{h}) & \xrightarrow{\mathrm{div}} & \mathcal{P}_{r}(\mathcal{T}_{h}) & \xrightarrow{0} & \{0\} \\ & & & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ & & H^{1}(\Omega) & \xrightarrow{\mathrm{grad}} & H(\mathrm{curl};\Omega) & \xrightarrow{\mathrm{curl}} & H(\mathrm{div};\Omega) & \xrightarrow{\mathrm{div}} & L^{2}(\Omega) & \xrightarrow{0} & \{0\} \end{array}$$

The gluing only works on conforming meshes (simplicial complexes)!

# The Finite Element way

Shortcomings



- Approach limited to conforming meshes with standard elements
  - $\implies$  local refinement requires to trade mesh size for mesh quality
  - ⇒ complex geometries may require a large number of elements
  - $\implies$  the element shape cannot be adapted to the solution
- Need for (global) basis functions
  - $\implies$  significant increase of DOFs on hexahedral elements

## Outline

#### 1 Motivation

#### 2 Exterior calculus

- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

#### A higher-level view of vector calculus operators

- $\blacksquare$  So far, we have treated grad, curl, and  $\operatorname{div}$  as different operators
- A unified view is possible through exterior calculus
- This view can be exploited in the construction of numerical approximations

#### Alternating forms I

• Let  $\operatorname{Alt}^k(\mathbb{R}^n)$  be the space of (multilinear) forms that are alternating, i.e.: For all  $1 \le i < j \le k$  and all  $v_1, \ldots, v_k \in \mathbb{R}^n$ ,

$$\omega(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_k) = -\omega(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_k)$$

• The exterior product of  $\omega \in \operatorname{Alt}^i(\mathbb{R}^n)$  and  $\mu \in \operatorname{Alt}^j(\mathbb{R}^n)$  is

$$\omega \wedge \mu \in \operatorname{Alt}^{i+j}(\mathbb{R}^n)$$

s.t., for all  $v_1, \ldots, v_{i+j}$  in  $\mathbb{R}^n$ ,

$$(\omega \wedge \mu)(\mathbf{v}_1, \ldots, \mathbf{v}_{i+j}) \coloneqq \sum_{\sigma \in \Sigma_{i,j}} \operatorname{sign}(\sigma) \, \omega(\mathbf{v}_{\sigma_1}, \ldots, \mathbf{v}_{\sigma_i}) \, \mu(\mathbf{v}_{\sigma_{i+1}}, \ldots, \mathbf{v}_{\sigma_{i+j}}),$$

with

$$\Sigma_{i,j} \coloneqq \left\{ \mathsf{permutations} \text{ of } (1, \dots, i+j) \ : \ \sigma_1 < \dots < \sigma_i \text{ and } \sigma_{i+1} < \dots < \sigma_{i+j} \right\}$$

#### Example (Exterior product of 1-forms)

Given  $\omega, \mu \in \Lambda^1(\mathbb{R}^n)$ , it holds, for all  $v, w \in \mathbb{R}^n$ ,

$$(\omega \wedge \mu)(\mathbf{v}, \mathbf{w}) = \omega(\mathbf{v})\mu(\mathbf{w}) - \omega(\mathbf{w})\mu(\mathbf{v}),$$

so that, in particular,  $\omega \wedge \omega = 0$ .

- Let  $\{e_i\}_{1 \le i \le n}$  denote the canonical basis of  $\mathbb{R}^n$
- We consider the dual basis  $\{dx^i\}_{1 \le i \le n}$  of  $(\mathbb{R}^n)'$ , characterised by

$$\mathrm{d}x^i(\boldsymbol{e}_j) = \delta_{ij} \qquad 1 \le i, j \le n$$

• Every  $\omega \in \operatorname{Alt}^k(\mathbb{R}^n)$  can be expanded using this basis as

$$\omega = \sum_{1 \le \sigma_1 < \dots < \sigma_k \le n} a_{\sigma} \, \mathrm{d} x^{\sigma_1} \wedge \dots \wedge \mathrm{d} x^{\sigma_k}, \quad a_{\sigma} \in \mathbb{R}$$

- The scalar product in  $\mathbb{R}^n$  induces an inner product  $\langle \cdot, \cdot \rangle$  on  $\operatorname{Alt}^{\ell}(\mathbb{R}^n)$
- If  $\ell = 1$ ,  $\langle \cdot, \cdot \rangle$  is simply the inner product of  $(\mathbb{R}^n)'$
- For general  $\ell$ , given two  $\ell$ -forms expressed as exterior products of 1-forms

$$\omega = \omega^1 \wedge \cdots \wedge \omega^\ell, \qquad \mu = \mu^1 \wedge \cdots \wedge \mu^\ell,$$

we set

$$\langle \omega, \mu \rangle \coloneqq \det \left[ \langle \omega^i, \mu^j \rangle \right]_{1 \le i,j \le \ell}$$

• The Hodge star operator  $\star : \operatorname{Alt}^{\ell}(\mathbb{R}^n) \to \operatorname{Alt}^{n-\ell}(\mathbb{R}^n)$  is s.t.

$$\forall \omega \in \operatorname{Alt}^{\ell}(\mathbb{R}^n), \quad \langle \star \omega, \mu \rangle \operatorname{vol} = \omega \wedge \mu \quad \forall \mu \in \operatorname{Alt}^{n-\ell}(\mathbb{R}^n)$$

where  $vol := dx^1 \land \cdots \land dx^n$  is the volume form

- It can be checked that  $\star$  is an isomorphism
- In what follows, we will also need its inverse

$$\star^{-1} \coloneqq (-1)^{\ell(n-\ell)} \star$$

#### Example (Hodge star)

| n = 2                                                                 | n = 3                                                                                                                          |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| $\star 1 = dx^1 \wedge dx^2$ $\star dx^1 = dx^2$ $\star dx^2 = -dx^1$ | $\star 1 = \mathrm{d}x^1 \wedge \mathrm{d}x^2 \wedge \mathrm{d}x^3$ $\star \mathrm{d}x^1 = \mathrm{d}x^2 \wedge \mathrm{d}x^3$ |
|                                                                       | $\star dx = dx \wedge dx$ $\star dx^2 = -dx^1 \wedge dx^3$                                                                     |
|                                                                       | $\star \mathrm{d} x^3 = \mathrm{d} x^1 \wedge \mathrm{d} x^2$                                                                  |

Formulas for  $\star$  applied to 2- and 3-forms (if n = 3) can be obtained taking the  $\star^{-1}$  of the previous expressions, e.g., for n = 3,

$$\mathrm{d} x^1 = \star^{-1} \star \mathrm{d} x^1 = \star^{-1} (\mathrm{d} x^2 \wedge \mathrm{d} x^3) = (-1)^{2(3-2)} \star (\mathrm{d} x^2 \wedge \mathrm{d} x^3) = \star (\mathrm{d} x^2 \wedge \mathrm{d} x^3).$$

#### Vector proxies in dimension n = 3

For n = 3, we can identify vector proxies for all form degrees:

Alt<sup>0</sup>(R<sup>3</sup>) := R by definition
Alt<sup>3</sup>(R<sup>3</sup>) = \*Alt<sup>0</sup>(R<sup>3</sup>) ≅ R since \* is an isomorphism
Alt<sup>1</sup>(R<sup>3</sup>) = (R<sup>3</sup>)' and, for all 
$$\omega \in Alt^1(R^3)$$
,
$$\omega = a \, dx^1 + b \, dx^2 + c \, dx^3 \cong (a, b, c) \in R^3$$
Alt<sup>2</sup>(R<sup>3</sup>) = \*Alt<sup>1</sup>(R<sup>3</sup>) ≅ R<sup>n</sup> and, for all  $\omega \in Alt^2(R^3)$ ,
$$\omega = a \, \underbrace{dx^2 \wedge dx^3}_{\star dx^1} - b \, \underbrace{dx^1 \wedge dx^3}_{-\star dx^2} + c \, \underbrace{dx^1 \wedge dx^2}_{\star dx^3} \cong (a, b, c) \in R^3$$

For general *n*, vector proxies are available for  $\operatorname{Alt}^0(\mathbb{R}^n) \cong \operatorname{Alt}^n(\mathbb{R}^n)$  and  $\operatorname{Alt}^1(\mathbb{R}^n) \cong \operatorname{Alt}^{n-1}(\mathbb{R}^n)$ 

#### Differential forms

- Let M denote an open set in an affine subspace of  $\mathbb{R}^n$
- A (differential) *k*-form is given by

$$\omega = \sum_{1 \le \sigma_1 < \dots < \sigma_k \le n} a_{\sigma} \, \mathrm{d} x^{\sigma_1} \wedge \dots \wedge \mathrm{d} x^{\sigma_k}, \quad a_{\sigma} : M \to \mathbb{R}$$

• The value of a k-form at  $x \in M$  is denoted  $\omega_x$ :

$$\omega_{\mathbf{x}} = \sum_{1 \le \sigma_1 < \dots < \sigma_k \le n} a_{\sigma}(\mathbf{x}) \, \mathrm{d} x^{\sigma_1} \wedge \dots \wedge \mathrm{d} x^{\sigma_k} \in \mathrm{Alt}^k(\mathbb{R}^n)$$

- The space of k-forms (without regularity requirements on  $a_{\sigma}$ ) is  $\Lambda^{k}(M)$
- When regularity on the  $a_{\sigma}$  is required, we prepend it to  $\Lambda^{k}(M)$ , e.g.,

 $L^2 \Lambda^k(M)$  = space of k-forms with coefficients  $a_\sigma$  square-integrable on M,  $\mathcal{P}_r \Lambda^k(M)$  = space of k-forms with coefficients  $a_\sigma$  in  $\mathcal{P}_r(M)$ 

#### Exterior derivative I

The exterior derivative is the (unbounded) operator

$$d: L^2 \Lambda^k(M) \to L^2 \Lambda^{k+1}(M)$$
$$\omega \mapsto \sum_{1 \le \sigma_1 < \dots < \sigma_k \le n} \sum_{i=1}^n \frac{\partial a_{\sigma}}{\partial x_i} \, \mathrm{d} x^i \wedge \mathrm{d} x^{\sigma_1} \wedge \dots \wedge \mathrm{d} x^{\sigma_k}$$

In what follows, we define the domain of the exterior derivative

$$H\Lambda^k(M)\coloneqq \left\{\omega\in L^2\Lambda^k(M)\,:\,\mathrm{d}\omega\in L^2\Lambda^{k+1}(M)\right\}$$

• For  $M = \Omega$  domain of  $\mathbb{R}^3$ ,

 $\blacksquare~d$  corresponds grad, curl, div regarded as unbounded operators

•  $H\Lambda^k(\Omega)$  to the usual spaces  $H^1(\Omega)$ ,  $H(\operatorname{curl};\Omega)$ ,  $H(\operatorname{div};M)$ , and  $L^2(\Omega)$ 

#### Example (Exterior derivative of a 0-form)

Let  $\Omega$  be a domain of  $\mathbb{R}^3$  and  $\omega = \varphi \in C^1 \Lambda^0(\overline{\Omega})$  a 0-form. Then

$$\mathrm{d}\omega = \frac{\partial\varphi}{\partial x_1}\mathrm{d}x^1 + \frac{\partial\varphi}{\partial x_2}\mathrm{d}x^2 + \frac{\partial\varphi}{\partial x_3}\mathrm{d}x^3 \cong \operatorname{\mathbf{grad}}\varphi.$$
#### Example (Exterior derivative of a 1-form)

Moving to a 1-form  $C^1 \Lambda^1(\overline{\Omega}) \ni \omega = a_1 dx^1 + a_2 dx^2 + a_3 dx^3 \cong \mathbf{v}$ , we have  $d\omega = \frac{\partial a_1}{\partial x_1} dx^1 \wedge dx^1 + \frac{\partial a_1}{\partial x_2} dx^2 \wedge dx^1 + \frac{\partial a_1}{\partial x_3} dx^3 \wedge dx^1$   $\frac{\partial a_2}{\partial x_2} = a_1 - a_2 - \frac{\partial a_2}{\partial x_2} = a_2 - \frac{\partial a_2}{\partial x_2} = a_2 - a_3$ 

$$+ \frac{\partial a_2}{\partial x_1} dx^1 \wedge dx^2 + \frac{\partial a_2}{\partial x_2} dx^2 \wedge dx^2 + \frac{\partial a_2}{\partial x_3} dx^3 \wedge dx^2 + \frac{\partial a_3}{\partial x_1} dx^1 \wedge dx^3 + \frac{\partial a_3}{\partial x_2} dx^2 \wedge dx^3 + \frac{\partial a_3}{\partial x_3} dx^3 \wedge dx^3 = \left(\frac{\partial a_3}{\partial x_2} - \frac{\partial a_2}{\partial x_3}\right) dx^2 \wedge dx^3 - \left(\frac{\partial a_1}{\partial x_3} - \frac{\partial a_3}{\partial x_1}\right) dx^1 \wedge dx^3 + \left(\frac{\partial a_3}{\partial x_1} - \frac{\partial a_1}{\partial x_2}\right) dx^1 \wedge dx^2 \approx \operatorname{curl} \mathbf{x}$$

# Exterior derivative IV

### Example (Exterior derivative of a 2-form)

For a 2-form

$$C^1\Lambda^2(\overline{\Omega}) \ni \omega = a_1 \mathrm{d} x^2 \wedge \mathrm{d} x^3 - a_2 \mathrm{d} x^1 \wedge \mathrm{d} x^3 + a_3 \mathrm{d} x^1 \wedge \mathrm{d} x^2 \cong \mathbf{w},$$

we have

$$\begin{split} \mathrm{d}\omega &= \frac{\partial a_1}{\partial x_1} \mathrm{d}x^1 \wedge \mathrm{d}x^2 \wedge \mathrm{d}x^3 + \frac{\partial a_1}{\partial x_2} \underline{\mathrm{d}x^2} \wedge \mathrm{d}x^2 \wedge \mathrm{d}x^3 + \frac{\partial a_1}{\partial x_3} \underline{\mathrm{d}x^3} \wedge \mathrm{d}x^2 \wedge \mathrm{d}x^3 \\ &\quad - \frac{\partial a_2}{\partial x_1} \underline{\mathrm{d}x^1} \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^3 - \frac{\partial a_2}{\partial x_2} \mathrm{d}x^2 \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^3 - \frac{\partial a_2}{\partial x_3} \underline{\mathrm{d}x^3} \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^3 \\ &\quad + \frac{\partial a_3}{\partial x_1} \underline{\mathrm{d}x^1} \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^2 + \frac{\partial a_3}{\partial x_2} \underline{\mathrm{d}x^2} \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^2 + \frac{\partial a_3}{\partial x_3} \mathrm{d}x^3 \wedge \mathrm{d}x^1 \wedge \mathrm{d}x^2 \\ &= \left(\frac{\partial a_1}{\partial x_1} + \frac{\partial a_2}{\partial x_2} + \frac{\partial a_3}{\partial x_3}\right) \mathrm{vol} \cong \mathrm{div} \, \mathbf{w}. \end{split}$$

## The continuous de Rham complex

- Let  $\Omega$  denote a domain of  $\mathbb{R}^n$
- In what follows, we will focus on the de Rham complex

$$H\Lambda^{0}(\Omega) \xrightarrow{d^{0}} \cdots \xrightarrow{d^{k-1}} H\Lambda^{k}(\Omega) \xrightarrow{d^{k}} \cdots \xrightarrow{d^{n-1}} H\Lambda^{n}(\Omega) \longrightarrow \{0\}$$

For n = 3, we have the following interpretation in terms of vector proxies:

$$\begin{array}{cccc} H\Lambda^{0}(\Omega) & \stackrel{\mathrm{d}}{\longrightarrow} & H\Lambda^{1}(\Omega) & \stackrel{\mathrm{d}}{\longrightarrow} & H\Lambda^{2}(\Omega) & \stackrel{\mathrm{d}}{\longrightarrow} & H\Lambda^{3}(\Omega) & \longrightarrow \{0\} \\ & & \uparrow^{\cong} & \uparrow^{\cong} & \uparrow^{\cong} & \uparrow^{\cong} \\ & & H^{1}(\Omega) & \stackrel{\mathrm{grad}}{\longrightarrow} & \boldsymbol{H}(\operatorname{curl};\Omega) & \stackrel{\mathrm{curl}}{\longrightarrow} & \boldsymbol{H}(\operatorname{div};\Omega) & \stackrel{\mathrm{div}}{\longrightarrow} & L^{2}(\Omega) & \longrightarrow \{0\} \end{array}$$

- Let M denote an n-dimensional manifold and  $\ell\in\mathbb{N}$  s.t.  $0\leq\ell\leq n$
- Let  $\operatorname{tr}_{\partial M}$  be the trace operator (pullback of the inclusion  $\partial M \hookrightarrow M$ ) s.t.

$$\operatorname{tr}_{\partial M} : \Lambda^k(M) \to \Lambda^k(\partial M)$$

 $\blacksquare \mbox{ It holds, for all } (\omega,\mu) \in C^1\Lambda^\ell(\overline{M}) \times C^1\Lambda^{n-\ell-1}(\overline{M}),$ 

$$\int_{M} \mathrm{d}\omega \wedge \mu = (-1)^{\ell+1} \int_{M} \omega \wedge \mathrm{d}\mu + \int_{\partial M} \mathrm{tr}_{\partial M} \, \omega \wedge \mathrm{tr}_{\partial M} \, \mu$$

# Outline

### 1 Motivation

2 Exterior calculus

### 3 The Discrete de Rham construction

- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

- Discrete spaces with polynomial components attached to mesh entities
- For any form degree k, recursively on d-cells f, d = k, ..., n, construct
  - A local discrete potential

$$P_{r,f}^k: \underline{X}_{r,f}^k \to \mathcal{P}_r \Lambda^k(f)$$

• If  $d \ge k + 1$ , a local discrete exterior derivative

$$\mathrm{d}_{r,f}^k:\underline{X}_{r,f}^k\to \mathcal{P}_r\Lambda^{k+1}(f)$$

Connect the spaces through a global discrete exterior derivative

# Domain and polytopal mesh



- Assume  $\Omega \subset \mathbb{R}^n$  polytopal (polygon if n = 2, polyhedron if n = 3, ...)
- We consider a polytopal mesh  $\mathcal{M}_h$  containing all (flat) d-cells,  $0 \le d \le n$
- *d*-cells in  $\mathcal{M}_h$  are collected in  $\Delta_d(\mathcal{M}_h)$ , so that, when n = 3,
  - $\Delta_0(\mathcal{M}_h) = \mathcal{W}_h$  is the set of vertices
  - $\Delta_1(\mathcal{M}_h) = \mathcal{E}_h$  is the set of edges
  - $\Delta_2(\mathcal{M}_h) = \mathcal{F}_h$  is the set of faces
  - $\Delta_3(\mathcal{M}_h) = \mathcal{T}_h$  is the set of elements

# Local Koszul differential and complements I

- Let  $f \in \Delta_d(\mathcal{M}_h)$ ,  $d \in [0, n]$ , and fix  $\mathbf{x}_f \in f$
- We define the local Koszul differential  $\kappa : \Lambda^{\ell+1}(f) \to \Lambda^{\ell}(f)$  s.t.

$$(\kappa\omega)_{\boldsymbol{x}}(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_\ell)=\omega_{\boldsymbol{x}}(\boldsymbol{x}-\boldsymbol{x}_f,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_\ell)$$

for all  $x \in f$  and  $v_1, \ldots, v_\ell$  tangent vectors to f

- $\kappa$  "binds" the first vector to  $x x_f$
- We define the Koszul complement space

$$\mathcal{K}^{\ell}_{r}(f)\coloneqq \kappa \mathcal{P}_{r-1}\Lambda^{\ell+1}(f)$$

# Local Koszul differential and complements II

### Example (Vector proxies for $\mathcal{K}_r^{\ell}(f_d)$ )



$$\begin{split} \mathcal{K}_{r}^{0}(f_{d}) &\cong \mathcal{P}_{\flat}^{r}(f_{d}) \coloneqq (\mathbf{x} - \mathbf{x}_{f_{d}}) \cdot \mathcal{P}_{r-1}(f_{d}) \quad \forall d \in \{1, 2, 3\}, \\ \mathcal{K}_{r}^{d-1}(f_{d}) &\cong \mathcal{R}_{r}^{c}(f_{d}) \coloneqq (\mathbf{x} - \mathbf{x}_{f_{d}})\mathcal{P}_{r-1}(f_{d}) \quad \forall d \in \{2, 3\}, \\ \mathcal{K}_{r}^{1}(f_{3}) &\cong \mathcal{G}_{r}^{c}(f_{3}) \coloneqq (\mathbf{x} - \mathbf{x}_{f_{3}}) \times \mathcal{P}_{r-1}(f_{3}) \end{split}$$

# Trimmed local polynomial spaces I

- Let  $f \in \Delta_d(\mathcal{M}_h)$ ,  $1 \le d \le n$ , and integers  $\ell \in [0, d]$  and  $r \ge 0$  be fixed
- The following direct decompositions hold:

$$\begin{split} \mathcal{P}_{r}\Lambda^{0}(f) &= \mathcal{P}_{0}\Lambda^{0}(f) \oplus \mathcal{K}_{r}^{0}(f), \\ \mathcal{P}_{r}\Lambda^{\ell}(f) &= \mathrm{d}\mathcal{P}_{r+1}\Lambda^{\ell-1}(f) \oplus \mathcal{K}_{r}^{\ell}(f) \quad \text{ if } \ell \geq 1 \end{split}$$

• Lowering by one the polynomial degree of the first component for  $\ell \ge 1$  yields trimmed polynomial spaces

$$\begin{split} \mathcal{P}_r^-\Lambda^0(f) &\coloneqq \mathcal{P}_r\Lambda^0(f), \\ \mathcal{P}_r^-\Lambda^\ell(f) &\coloneqq \mathrm{d}\mathcal{P}_r\Lambda^{\ell-1}(f) \oplus \mathcal{K}_r^\ell(f) \quad \text{ if } \ell \geq 1 \end{split}$$

# Trimmed local polynomial spaces II

- Let n = 3 and  $T = f_3 \in \Delta_3(\mathcal{M}_h) = \mathcal{T}_h$  be a mesh element
- The vector proxies for trimmed spaces are the Nédélec and Raviart–Thomas spaces

$$\begin{aligned} \mathcal{P}_r^- \Lambda^1(f_3) &\cong \mathcal{N}_r(T) \coloneqq \mathcal{G}_{r-1}(T) + \mathcal{G}_r^c(T) \\ \mathcal{P}_r^- \Lambda^2(f_3) &\cong \mathcal{RT}_r(T) \coloneqq \mathcal{R}_{r-1}(T) + \mathcal{R}_r^c(T) \end{aligned}$$

• For  $F = f_2 \in \Delta_2(\mathcal{M}_h)$ , we have

$$\mathcal{P}_r^-\Lambda^1(f_2) \cong \mathcal{RT}_r(F)$$

 $L^2$ -orthogonal projector onto  $\mathcal{P}_r^-\Lambda^k(f)$ 

• We define the  $L^2$ -orthogonal projector  $\pi_{r,f}^{-,k}: L^2\Lambda^k(f) \mapsto \mathcal{P}_r^-\Lambda^k(f)$  s.t.

$$\forall \omega \in L^2 \Lambda^k(f), \quad \int_f \pi_{r,f}^{-,k} \omega \wedge \star \mu = \int_f \omega \wedge \star \mu \quad \forall \mu \in \mathcal{P}_r^- \Lambda^k(f)$$

• We note the following result: For all  $(\omega, \mu) \in L^2 \Lambda^k(f) \times \mathcal{P}_r^- \Lambda^{d-k}(f)$ ,

$$\int_{f} \star^{-1} \pi_{r,f}^{-,d-k}(\star \omega) \wedge \mu = \int_{f} \mu \wedge \star \pi_{r,f}^{-,d-k}(\star \omega) = \int_{f} \omega \wedge \mu$$

## Discrete spaces and interpolators I

The discrete  $H\Lambda^k(\Omega)$  space,  $0 \le k \le n$ , is

$$\underline{X}_{r,h}^{k} \coloneqq \bigvee_{d=k}^{n} \sum_{f \in \Delta_{d}(\mathcal{M}_{h})}^{n} \mathcal{P}_{r}^{-} \Lambda^{d-k}(f)$$

- Its restrictions to  $f \in \Delta_d(\mathcal{M}_h)$ ,  $k \leq d \leq n$ , and  $\partial f$  are  $\underline{X}_{r,f}^k$  and  $\underline{X}_{r,\partial f}^k$
- The meaning of the polynomial components is provided by the interpolator

$$\begin{split} I_{r,f}^{k} &: C^{0}\Lambda^{k}(\overline{f}) \to \underline{X}_{r,f}^{k} \\ & \omega \mapsto \left(\pi_{r,f'}^{-,d'-k}(\star \operatorname{tr}_{f'} \omega)\right)_{f' \in \Delta_{d'}(f), \, d' \in [k,d]} \end{split}$$

# Discrete spaces and interpolators II

| k $d$                                                            | 0                                           | 1                                                                                      | 2                                                                                                 | 3                                                                           |
|------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 0<br>1                                                           | $\mathbb{R} = \mathcal{P}_r \Lambda^0(f_0)$ | $\mathcal{P}_{r-1}\Lambda^1(f_1) \\ \mathcal{P}_r\Lambda^0(f_1)$                       | $\mathcal{P}_{r-1}\Lambda^2(f_2) \\ \mathcal{P}_r^-\Lambda^1(f_2)$                                | $\mathcal{P}_{r-1}\Lambda^3(f_3) \\ \mathcal{P}_r^-\Lambda^2(f_3)$          |
| 2                                                                |                                             | ,                                                                                      | $\mathcal{P}_r \Lambda^0(f_2)$                                                                    | $\mathcal{P}_r^-\Lambda^1(f_3)$                                             |
| 3                                                                |                                             |                                                                                        |                                                                                                   | $\mathcal{P}_r \Lambda^0(f_3)$                                              |
|                                                                  |                                             |                                                                                        |                                                                                                   |                                                                             |
| k $d$                                                            | 0                                           | 1                                                                                      | 2                                                                                                 | 3                                                                           |
| $\frac{d}{k}$                                                    | $0$ $\mathbb{R} = \mathcal{P}_r(f_0)$       | $\frac{1}{\mathcal{P}_{r-1}(f_1)}$                                                     | $\frac{2}{\mathcal{P}_{r-1}(f_2)}$                                                                | $\frac{3}{\mathcal{P}_{r-1}(f_3)}$                                          |
| $\frac{k}{0}$                                                    | $0$ $\mathbb{R} = \mathcal{P}_r(f_0)$       | $\frac{1}{\begin{array}{c} \mathcal{P}_{r-1}(f_1)\\ \mathcal{P}_{r}(f_1) \end{array}}$ | $\frac{2}{\begin{pmatrix} \mathcal{P}_{r-1}(f_2) \\ \mathcal{R}\mathcal{T}_r(f_2) \end{pmatrix}}$ | $\frac{3}{\mathcal{P}_{r-1}(f_3)}\\ \mathcal{R}\mathcal{T}_r(f_3)$          |
| $ \begin{array}{c}             d \\             k \\           $ | $0$ $\mathbb{R} = \mathcal{P}_r(f_0)$       | $\frac{1}{\mathcal{P}_{r^{-1}}(f_1)}\\ \mathcal{P}_r(f_1)$                             | $\frac{2}{\mathcal{P}_{r-1}(f_2)}$ $\mathcal{RT}_r(f_2)$ $\mathcal{P}_r(f_2)$                     | $\frac{3}{\mathcal{P}_{r-1}(f_3)}\\\mathcal{RT}_r(f_3)\\\mathcal{N}_r(f_3)$ |

- Let  $d \in \mathbb{N}$  be s.t.  $0 \le d \le n$  and  $f \in \Delta_d(\mathcal{M}_h)$
- The Stokes formula on f reads: For all  $(\omega, \mu) \in C^1 \Lambda^k(\overline{f}) \times C^1 \Lambda^{d-k-1}(\overline{f})$ ,

$$\int_{f} \mathrm{d}\omega \wedge \mu = (-1)^{k+1} \int_{f} \omega \wedge \mathrm{d}\mu + \int_{\partial f} \mathrm{tr}_{\partial f} \omega \wedge \mathrm{tr}_{\partial f} \mu$$

Local reconstructions are obtained emulating this formula

### Discrete potential and exterior derivative II

If 
$$d = k$$
,  
 $P_{r,f}^k \underline{\omega}_f := \star^{-1} \omega_f \in \mathcal{P}_r \Lambda^d(f)$ 

• If  $k + 1 \le d \le n$ , we first let, for all  $\underline{\omega}_f \in \underline{X}_{r,f}^k$  and all  $\mu \in \mathcal{P}_r \Lambda^{d-k-1}(f)$ ,

$$\int_{f} \mathrm{d}_{r,f}^{k} \underline{\omega}_{f} \wedge \mu = (-1)^{k+1} \int_{f} \star^{-1} \omega_{f} \wedge \mathrm{d}\mu + \int_{\partial f} \underline{P}_{r,\partial f}^{k} \underline{\omega}_{\partial f} \wedge \mathrm{tr}_{\partial f} \mu$$

then, for all  $(\mu, \nu) \in \mathcal{K}^{d-k-1}_{r+1}(f) \times \mathcal{K}^{d-k}_{r}(f)$ ,

$$(-1)^{k+1} \int_{f} P_{r,f}^{k} \underline{\omega}_{f} \wedge (\mathrm{d}\mu + \nu) = \int_{f} \mathrm{d}_{r,f}^{k} \underline{\omega}_{f} \wedge \mu$$
$$- \int_{\partial f} P_{r,\partial f}^{k} \underline{\omega}_{\partial f} \wedge \mathrm{tr}_{\partial f} \,\mu + (-1)^{k+1} \int_{f} \star^{-1} \omega_{f} \wedge \nu$$

The case n = 3 and k = 1 |

• For 
$$T = f_3 \in \Delta_3(\mathcal{M}_h) = \mathcal{T}_h$$
,  
$$\underline{X}^1_{r,f} \cong \underline{X}^r_{\operatorname{curl},T} \coloneqq \bigotimes_{E \in \mathcal{E}_T} \mathcal{P}_r(E) \times \bigotimes_{F \in \mathcal{F}_T} \mathcal{RT}_r(F) \times \mathcal{RT}_r(T)$$

#### Let

$$\underline{\mathbf{v}}_T = \left( (v_E)_{E \in \mathcal{E}_T}, (v_F)_{F \in \mathcal{F}_T}, v_T \right) \in \underline{X}_{\operatorname{curl}, T}^r$$

■ The edge tangential trace is simply

$$\gamma_{\mathrm{t},E}^{r}\underline{\mathbf{v}}_{E} \coloneqq v_{E} \quad \forall E \in \mathcal{E}_{T}$$

The case n = 3 and k = 1 II

For all  $F \in \mathcal{F}_T$ , the face curl is given by: For all  $q \in \mathcal{P}_r(F)$ ,

$$\int_{F} C_{F}^{r} \underline{\mathbf{v}}_{F} \ q = \int_{F} \mathbf{v}_{F} \cdot \mathbf{rot}_{F} \ q - \sum_{E \in \mathcal{E}_{F}} \mathcal{E}_{FE} \ \int_{E} \gamma_{t,E}^{r} \underline{\mathbf{v}}_{E} \ q$$

• The face tangential trace is such that, for all  $(q, w) \in \mathcal{P}_{r+1}^{b}(F) \times \mathcal{R}_{r}^{c}(F)$ ,

$$\int_{F} \boldsymbol{\gamma}_{\mathrm{t},F}^{\boldsymbol{r}} \underline{\boldsymbol{\nu}}_{F} \cdot (\operatorname{rot}_{F} q + \boldsymbol{w}) = \int_{F} C_{F}^{\boldsymbol{r}} \underline{\boldsymbol{\nu}}_{F} q + \sum_{E \in \mathcal{E}_{F}} \varepsilon_{FE} \int_{E} \boldsymbol{\gamma}_{\mathrm{t},E}^{\boldsymbol{r}} \underline{\boldsymbol{\nu}}_{E} q + \int_{F} \boldsymbol{\nu}_{F} \cdot \boldsymbol{w}$$

• The element curl satisfies, for all  $w \in \mathcal{P}_r(T)$ ,

$$\int_{T} \boldsymbol{C}_{T}^{r} \underline{\boldsymbol{\nu}}_{T} \cdot \boldsymbol{w} = \int_{T} \boldsymbol{\nu}_{T} \cdot \operatorname{curl} \boldsymbol{w} + \sum_{F \in \mathcal{F}_{T}} \varepsilon_{TF} \int_{F} \boldsymbol{\gamma}_{t,F}^{r} \underline{\boldsymbol{\nu}}_{F} \cdot (\boldsymbol{w} \times \boldsymbol{n}_{F})$$

Finally, by similar principles, we can construct  $P_{\text{curl},T}^r : \underline{X}_{\text{curl},T}^r \to \mathcal{P}_r(T)$ 

### Theorem (Complex property)

Let 
$$\underline{d}_{r,h}^{k} : \underline{X}_{r,h}^{k} \to \underline{X}_{r,h}^{k+1}$$
 be s.t.  
 $\underline{d}_{r,h}^{k} \underline{\omega}_{h} \coloneqq (\pi_{r,f}^{-,d-k-1}(\star d_{r,f}^{k} \underline{\omega}_{f}))_{f \in \Delta_{d}(\mathcal{M}_{h}), d \in [k+1,n]}.$   
Then it holds, for all  $0 \le k \le d \le n$ , all  $f \in \Delta_{d}(\mathcal{M}_{h})$ , and all  $\underline{\omega}_{f} \in \underline{X}_{r,f}^{k-1}$ ,  
 $P_{r,f}^{k}(\underline{d}_{r,f}^{k-1} \underline{\omega}_{f}) = d_{r,f}^{k-1} \underline{\omega}_{f},$   
and, if  $d \ge k+1$ ,  
 $d_{r,f}^{k}(\underline{d}_{r,f}^{k-1} \underline{\omega}_{f}) = 0.$ 

As a consequence,  $\underline{d}_{r,f}^{k} \underline{d}_{r,f}^{k-1} = 0$  and the DDR sequence defines a complex.

#### Theorem (Commutation)

For all  $0 \le k \le d-1 \le n-1$  and for all  $f \in \Delta_d(\mathcal{M}_h)$ , it holds

$$\underline{\mathrm{d}}^k_{r,f}(\underline{I}^k_{r,f}\omega)=\underline{I}^{k+1}_{r,f}(\mathrm{d}\omega)\qquad\forall\omega\in C^1\Lambda^k(\overline{f}),$$

expressing the commutativity of the following diagram:

# Polynomial consistency I

#### Theorem (Polynomial consistency)

For all integers  $0 \le k \le d \le n$  and all  $f \in \Delta_d(\mathcal{M}_h)$ , it holds

$$P^k_{r,f}\underline{I}^k_{r,f}\omega=\omega\qquad\forall\omega\in\mathcal{P}_r\Lambda^k(f),$$

and, if  $d \ge k + 1$ ,

$$\mathrm{d}_{r,f}^{k}\underline{I}_{r,f}^{k}\omega=\mathrm{d}\omega\qquad\forall\omega\in\mathcal{P}_{r+1}^{-}\Lambda^{k}(f).$$

#### Example (The case (n, d, k) = (3, 3, 1))

The above properties translate as follows for (n, d, k) = (3, 3, 1):

$$\begin{aligned} \boldsymbol{P}_{\operatorname{curl},T}^{r} \boldsymbol{I}_{\operatorname{curl},T}^{r} \boldsymbol{\nu} &= \boldsymbol{\nu} & \forall \boldsymbol{\nu} \in \mathcal{P}_{r}(T), \\ \boldsymbol{C}_{T}^{r} \boldsymbol{I}_{\operatorname{curl},T}^{r} \boldsymbol{\nu} &= \operatorname{curl} \boldsymbol{\nu} & \forall \boldsymbol{\nu} \in \mathcal{N}_{r+1}(T) \end{aligned}$$

# Polynomial consistency II

• The proof is made by induction on  $\rho := d - k$ . If  $\rho = 0$  (i.e., d = k), we have

$$P_{r,d}^{k} \underline{I}_{r,f}^{k} \omega = \star^{-1} \pi_{r,f}^{-,0} (\star \omega) = \star^{-1} \star \omega = \omega$$

Assume that the lemma holds for a given  $\rho \ge 0$ , and consider d and k s.t.

$$d - k = \rho + 1$$

By the link between potentials and differentials and the commutativity,

$$\mathrm{d}_{r,f}^{k}\underline{I}_{r,f}^{k}\omega=P_{r,f}^{k+1}(\underline{\mathrm{d}}_{r,f}^{k}\underline{I}_{r,f}^{k}\omega)=P_{r,f}^{k+1}\underline{I}_{r,f}^{k+1}(\mathrm{d}\omega)\quad\forall\omega\in\mathcal{P}_{r+1}^{-}\Lambda^{k}(f)$$

Since  $d\omega \in \mathcal{P}_r \Lambda^{k+1}(f)$  and  $d - (k+1) = \rho$ , by the induction hypothesis

$$\mathrm{d}_{r,f}^k \underline{I}_{r,f}^k \omega = \mathrm{d}\omega$$

## Polynomial consistency III

• For  $\omega \in \mathcal{P}_r \Lambda^k(f)$ , we write, for all  $(\mu, \nu) \in \mathcal{K}^{d-k-1}_{r+1}(f) \times \mathcal{K}^{d-k}_r(f)$ ,

$$(-1)^{k+1} \int_{f} P_{r,f}^{k} I_{-r,f}^{k} \omega \wedge (\mathrm{d}\mu + \nu) = \int_{f} \mathrm{d}\omega \wedge \mu$$
$$- \int_{\partial f} P_{r,\partial f}^{k} I_{-r,\partial f}^{k} \operatorname{tr}_{\partial f} \omega \wedge \operatorname{tr}_{\partial f} \mu + (-1)^{k+1} \int_{f} \underbrace{(\star^{-1} \pi_{r,f}^{-,d-k} \star \omega) \wedge \nu}_{k} \nabla_{\mu} \nabla_{$$

• Applying the polynomial consistency of  $P_{r,\partial f}^k$  (valid by induction since  $(d-1) - k = \rho$ ) and integrating by parts yields

$$\int_f P^k_{r,f} \underline{I}^k_{r,f} \omega \wedge (\mathrm{d} \mu + \nu) = \int_f \omega \wedge (\mathrm{d} \mu + \nu),$$

which, since  $d\mu + \nu$  spans  $\mathcal{P}^r \Lambda^k(f)$ , gives

$$P_{r,f}^k \underline{I}_{r,f}^k \omega = \omega$$

## Global discrete exterior derivative and DDR complex

- Our next goal is to connect the spaces  $\underline{X}_{r,h}^k$  to form a well-defined sequence
- We recall the global discrete exterior derivative  $\underline{d}_{r,h}^k : \underline{X}_{r,h}^k \to \underline{X}_{r,h}^{k+1}$  s.t.

$$\underline{\mathrm{d}}_{r,h}^{k}\underline{\omega}_{h} \coloneqq \left(\pi_{r,f}^{-,d-k-1}(\star \mathrm{d}_{r,f}^{k}\underline{\omega}_{f})\right)_{f \in \Delta_{d}(\mathcal{M}_{h}), \, d \in [k+1,n]}$$

The DDR sequence then reads

$$\underline{X}^{0}_{r,h} \xrightarrow{\underline{d}^{0}_{r,h}} \underline{X}^{1}_{r,h} \longrightarrow \cdots \longrightarrow \underline{X}^{n-1}_{r,h} \xrightarrow{\underline{d}^{n-1}_{r,h}} \underline{X}^{n}_{r,h} \longrightarrow \{0\}$$

Specifically, for n = 3, we recover the complex of [DP and Droniou, 2023a]:

$$\underline{X}^{r}_{\mathrm{grad},h} \xrightarrow{\underline{G}^{r}_{h}} \underline{X}^{r}_{\mathrm{curl},h} \xrightarrow{\underline{C}^{r}_{h}} \underline{X}^{r}_{\mathrm{div},h} \xrightarrow{D^{r}_{h}} \mathcal{P}_{r}(\mathcal{T}_{h}) \longrightarrow \{0\}$$

#### Theorem (Cohomology of the Discrete de Rham complex)

The cohomology of the DDR complex is isomorphic to that of the continuous de Rham complex.

#### Example (The case n = 3)

For n = 3, in terms of vector proxies, this implies

no "tunnels" crossing  $\Omega$   $(b_1 = 0) \implies \operatorname{Im} \underline{G}_h^r = \operatorname{Ker} \underline{C}_h^r$ , no "voids" contained in  $\Omega$   $(b_2 = 0) \implies \operatorname{Im} \underline{C}_h^r = \operatorname{Ker} D_h^r$ ,  $\Omega \subset \mathbb{R}^3$   $(b_3 = 0) \implies \operatorname{Im} D_h^r = \mathcal{P}_k(\mathcal{T}_h)$ 

# Cohomology II



Key point: design of the extension cochain map

# Discrete $L^2$ -product

• For all  $0 \le k \le n$ , we let  $(\cdot, \cdot)_{k,h} : \underline{X}_{r,h}^k \times \underline{X}_{r,h}^k \to \mathbb{R}$  be s.t.

$$(\underline{\omega}_h, \underline{\mu}_h)_{k,h} \coloneqq \sum_{f \in \Delta_n(\mathcal{M}_h)} (\underline{\omega}_f, \underline{\mu}_f)_{k,f}$$

with

$$(\underline{\omega}_f, \underline{\mu}_f)_{k,f} \coloneqq \int_f P_{r,f}^k \underline{\omega}_f \wedge \star P_{r,f}^k \underline{\mu}_f + s_{k,f}(\underline{\omega}_f, \underline{\mu}_f) \quad \forall f \in \Delta_n(\mathcal{M}_h)$$

• Above,  $s_{k,f}$  is a stabilization contribution s.t., with  $h_f$  diameter of f,

$$\begin{split} s_{k,f}(\underline{\omega}_{f},\underline{\mu}_{f}) \\ &= \sum_{d'=k}^{n-1} h_{f}^{n-d'} \sum_{f' \in \Delta_{d'}(f)} \int_{f'} (\operatorname{tr}_{f'} P_{r,f}^{k} \underline{\omega}_{f} - P_{r,f'}^{k} \underline{\omega}_{f'}) \wedge \star (\operatorname{tr}_{f'} P_{r,f}^{k} \underline{\mu}_{f} - P_{r,f'}^{k} \underline{\mu}_{f'}) \end{split}$$

# Outline

### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

## Discrete problem

- $\blacksquare$  We assume, from now on,  $b_1=b_2=0$  and  $\mu\in\mathbb{R}$
- We seek  $(H, A) \in H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$  s.t.

$$\int_{\Omega} \mu \boldsymbol{H} \cdot \boldsymbol{\tau} - \int_{\Omega} \boldsymbol{A} \cdot \mathbf{curl} \, \boldsymbol{\tau} = 0 \qquad \forall \boldsymbol{\tau} \in \boldsymbol{H}(\mathbf{curl}; \Omega),$$
$$\int_{\Omega} \mathbf{curl} \, \boldsymbol{H} \cdot \boldsymbol{v} + \int_{\Omega} \operatorname{div} \boldsymbol{A} \operatorname{div} \boldsymbol{v} = \int_{\Omega} \boldsymbol{J} \cdot \boldsymbol{v} \quad \forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{div}; \Omega)$$

• The discrete problem reads: Find  $(\underline{H}_h, \underline{A}_h) \in \underline{X}_{\operatorname{curl}, h}^r \times \underline{X}_{\operatorname{div}, h}^r$  s.t.

$$\begin{split} (\mu \underline{H}_h, \underline{\tau}_h)_{\mathrm{curl},h} &- (\underline{A}_h, \underline{C}_h^r \underline{\tau}_h)_{\mathrm{div},h} = 0 \qquad \forall \underline{\tau}_h \in \underline{X}_{\mathrm{curl},h}^r, \\ (\underline{C}_h^r \underline{H}_h, \underline{\nu}_h)_{\mathrm{div},h} &+ \int_{\Omega} D_h^r \underline{A}_h D_h^r \underline{\nu}_h = l_h(\underline{\nu}_h) \quad \forall \underline{\nu}_h \in \underline{X}_{\mathrm{div},h}^r, \end{split}$$

For  $b_2 \neq 0$ , we need to add orthogonality to harmonic forms

# Stability

### Theorem (Stability)

Define the bilinear form  $\mathcal{A}_h: \left[\underline{X}_{\operatorname{curl},h}^r \times \underline{X}_{\operatorname{div},h}^r\right]^2 \to \mathbb{R} \text{ s.t.}$ 

$$\begin{split} \mathbf{A}_{h}((\underline{\sigma}_{h},\underline{u}_{h}),(\underline{\tau}_{h},\underline{v}_{h})) &\coloneqq \\ & (\underline{\sigma}_{h},\underline{\tau}_{h})_{\mathrm{curl},h} - (\underline{u}_{h},\underline{C}_{h}^{r}\underline{\tau}_{h})_{\mathrm{div},h} + (\underline{C}_{h}^{r}\underline{\sigma}_{h},\underline{v}_{h})_{\mathrm{div},h} + \int_{\Omega} D_{h}^{r}\underline{u}_{h} D_{h}^{r}\underline{v}_{h}. \end{split}$$
  
Then, the following inf-sup condition holds:  $\forall (\underline{\sigma}_{h},\underline{u}_{h}) \in \underline{X}_{\mathrm{curl},h}^{r} \times \underline{X}_{\mathrm{div},h}^{r}.$   
 $\|\|(\underline{\sigma}_{h},\underline{u}_{h})\|\|_{h} \lesssim \sup_{(\underline{\tau}_{h},\underline{v}_{h}) \in \underline{X}_{\mathrm{curl},h}^{r} \times \underline{X}_{\mathrm{div},h}^{r} \setminus \{(\underline{0},\underline{0})\}} \frac{\mathbf{A}_{h}((\underline{\sigma}_{h},\underline{u}_{h}),(\underline{\tau}_{h},\underline{v}_{h}))}{\||(\underline{\tau}_{h},\underline{v}_{h})\|\|_{h}}.$   
with  $\|\|(\underline{\tau}_{h},\underline{v}_{h})\|\|_{h}^{2} \coloneqq \|\underline{\tau}_{h}\|_{\mathrm{curl},h}^{2} + \|\underline{C}_{h}^{r}\underline{\tau}_{h}\|_{\mathrm{div},h}^{2} + \|\underline{v}_{h}\|_{\mathrm{div},h}^{2} + \|D_{h}^{r}\underline{v}_{h}\|_{L^{2}(\Omega)}^{2}. \end{split}$ 

### Proof.

И

Analogous to the continuous case!

#### Theorem (Error estimate for the magnetostatics problem)

Assume  $H \in C^0(\overline{\Omega})^3 \cap H^{r+2}(\mathcal{T}_h)^3$  and  $A \in C^0(\overline{\Omega})^3 \cap H^{r+2}(\mathcal{T}_h)^3$ . Then, we have the following error estimate:

$$\||\underline{H}_{h} - \underline{I}_{\mathrm{curl},h}^{r}H, \underline{A}_{h} - \underline{I}_{\mathrm{div},h}^{r}A)||_{h} \leq \underline{h}^{r+1}.$$

## Convergence: Energy error vs. meshsize



# Outline

### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics

#### 5 Implementation

- 6 Serendipity
- 7 An example of advanced complex

## Bases for local polynomial spaces I

• Let  $T \in \mathcal{T}_h$  and  $\ell \ge 0$ , set  $N_{\mathcal{P},T}^{\ell} \coloneqq \dim \left( \mathcal{P}_{\ell}(T) \right) = {\ell+3 \choose 3}$ , and denote by

$$\mathfrak{P}_{\ell,T} \coloneqq \left\{ \varphi^{i}_{\mathcal{P},T} \, : \, i \in [0, N^{\ell}_{\mathcal{P},T}[ \right\} \right\}$$

a basis for  $\mathcal{P}_{\ell}(T)$  s.t.  $\varphi^0_{\mathcal{P},T} \equiv C$  and and  $\int_T \varphi^i_{\mathcal{P},T} = 0$  if  $i \geq 1$ 

- For simplicity, we also assume that  $\mathfrak{P}_{\ell,T} \subset \mathfrak{P}_{\ell+1,T}$  for all  $\ell \geq 0$
- A basis  $\mathfrak{P}_{\ell,T}$  for  $\mathcal{P}_{\ell}(T)$  is obtained by tensorisation
- The choice of  $\mathfrak{P}_{\ell,T}$  has a sizeable impact on conditioning!

# Bases for local polynomial spaces II

• Let 
$$N_{\mathcal{G},T}^{\ell} \coloneqq \dim \left( \mathcal{G}_{\ell}(T) \right) = N_{\mathcal{P},T}^{\ell+1} - 1$$

Bases  $\mathbf{G}_{\ell,T}^{c}$ ,  $\mathbf{G}_{\ell}^{c}(T)$  for  $\mathbf{R}_{\ell,T}^{c}$ ,  $\mathbf{R}_{\ell}^{c}(T)$  are obtained from their definitions

• grad :  $\mathcal{P}_{0,\ell+1}(T) \xrightarrow{\cong} \mathcal{G}_{\ell}(T)$  being an isomorphism, a basis  $\mathfrak{G}_{\ell,T}$  for  $\mathcal{G}_{\ell}(T)$  is

$$\mathbf{\mathfrak{G}}_{\ell,T} \coloneqq \left\{ \boldsymbol{\varphi}_{\mathcal{G},T}^{i} \coloneqq \mathbf{grad} \, \boldsymbol{\varphi}_{\mathcal{P},T}^{i+1} \, : \, i \in [0, N_{\mathcal{G},T}^{\ell}[ \right\} \right\}$$

•  $\operatorname{curl}: \mathcal{G}_{\ell+1}^c(T) \xrightarrow{\cong} \mathcal{R}_\ell(T)$  is an isomorphism, so a basis  $\mathfrak{R}_{\ell,T}$  for  $\mathcal{R}_\ell(T)$  is

$$\boldsymbol{\mathfrak{R}}_{\ell,T} \coloneqq \left\{ \boldsymbol{\varphi}_{\mathcal{R},T}^{i} \coloneqq \mathbf{curl} \, \boldsymbol{\varphi}_{\mathcal{G},T}^{i,\ell+1,c} : \, i \in [0, N_{\mathcal{G},T}^{\ell+1,c}[ \right\}$$

For spaces on faces, we proceed similarly using local orthogonal coordinates

## Local reconstructions I

• A basis  $\boldsymbol{\mathfrak{B}}^r_{\mathrm{div},T}$  for  $\underline{X}^r_{\mathrm{div},T}$  is obtained setting

$$\mathfrak{B}^{r}_{\mathrm{div},T} \coloneqq \mathfrak{G}_{r-1,T} \times \mathfrak{G}^{\mathrm{c}}_{r,T} \times \bigotimes_{F \in \mathcal{F}_{T}} \mathfrak{P}_{r,F}$$

• Let  $\underline{v}_T = (v_{\mathcal{G},T}, v_{\mathcal{G},T}^c, (v_F)_{F \in \mathcal{F}_T}) \in \underline{X}_{\mathrm{div},T}^r$  with coefficients vector

$$\underline{V}_{T} = \begin{bmatrix} \nabla_{\mathcal{G},T} \\ \nabla_{\mathcal{G},T}^{c} \\ V_{F_{1}} \\ \vdots \\ V_{F_{card}(\mathcal{F}_{T})} \end{bmatrix} \in \mathbb{R}^{N_{div,T}^{k}}$$
#### Local reconstructions II

• The coefficient vector  $\mathsf{D}_T \in \mathbb{R}^{N_{\mathcal{P},T}^r}$  of  $D_T^r \underline{v}_T$  solves

$$\mathbf{M}_{D,T}\mathbf{D}_{T} = -\mathbf{B}_{D,T}\mathbf{V}_{\mathcal{G},T} + \sum_{F \in \mathcal{F}_{T}} \omega_{TF}\mathbf{B}_{D,F}\mathbf{V}_{F},$$

with

$$\begin{split} \mathbf{M}_{D,T} &\coloneqq \left[ \int_{T} \varphi_{\mathcal{P},T}^{i} \varphi_{\mathcal{P},T}^{j} \right]_{(i,j) \in [0, N_{\mathcal{P},T}^{r}]^{2}}, \\ \mathbf{B}_{D,T} &\coloneqq \left[ \int_{T} \operatorname{grad} \varphi_{\mathcal{P},T}^{i} \cdot \varphi_{\mathcal{G},T}^{j} \right]_{(i,j) \in [0, N_{\mathcal{P},T}^{r}[\times [0, N_{\mathcal{G},T}^{r}]]}, \\ \mathbf{B}_{D,F} &\coloneqq \left[ \int_{F} \varphi_{\mathcal{P},T}^{i} \varphi_{\mathcal{P},F}^{j} \right]_{(i,j) \in [0, N_{\mathcal{P},T}^{r}[\times [0, N_{\mathcal{P},F}^{r}]]}. \end{split}$$

■  $D_T^r : \underline{X}_{\operatorname{div},T}^r \to \mathcal{P}_r(T)$  is represented by the matrix  $\mathbf{D}_T \in \mathbb{R}^{N_{\mathcal{P},T}^r \times N_{\operatorname{div},T}^k}$ whose *i*th column is the solution of the above problem for  $\underline{V}_T = \mathbf{e}_i$ ■  $\mathbf{P}_{\operatorname{div},T}^r : \underline{X}_{\operatorname{div},r}^r \to \mathcal{P}_r(T)$  is represented by  $\mathbf{P}_{\operatorname{div},T} \in \mathbb{R}^{3N_{\mathcal{P},T}^r \times N_{\operatorname{div},T}^k}$  • The matrix representing the discrete  $L^2$ -product in  $\underline{X}_{\text{div},r}^r$  is

$$\mathbf{L}_{\mathrm{div},T} \coloneqq \mathbf{P}_{\mathrm{div},T}^{\mathsf{T}} \mathbf{M}_{\mathrm{div},T} \mathbf{P}_{\mathrm{div},T} + \mathbf{S}_{\mathrm{div},T} \in \mathbb{R}^{N_{\mathrm{div},T}^{k} \times N_{\mathrm{div},T}^{k}}$$

where

- $\mathbf{M}_{\text{div},T} \in \mathbb{R}^{3N_{\mathcal{P},T}^{r+1} \times 3N_{\mathcal{P},T}^{r+1}}$  is the mass matrix of  $\mathcal{P}_r(T)$
- $S_{\operatorname{div},T}$  is the matrix representation of the stabilisation

# Local $L^2$ -product II

The stabilisation bilinear form penalises in a least-square the difference

$$\begin{split} & \boldsymbol{\Delta}_{\mathrm{div},T} \coloneqq \boldsymbol{\Pi}_{\mathcal{G},T}^{r-1} \boldsymbol{\mathsf{P}}_{\mathrm{div},T} - \left[ \boldsymbol{\mathsf{I}}_{N_{\mathcal{G},T}^{r-1}} \boldsymbol{\mathsf{0}} \cdots \boldsymbol{\mathsf{0}} \right], \\ & \boldsymbol{\Delta}_{\mathrm{div},F} \coloneqq \boldsymbol{\mathsf{T}}_{F} \boldsymbol{\mathsf{P}}_{\mathrm{div},T} - \left[ \boldsymbol{\mathsf{0}} \cdots \boldsymbol{\mathsf{I}}_{N_{\mathcal{P},F}^{r}} \cdots \boldsymbol{\mathsf{0}} \right], \end{split}$$

where

- $\prod_{\mathcal{G},T}^{r-1} \text{ represents } \pi_{\mathcal{G},T}^{r-1} \text{ applied to } \mathcal{P}_r(T)$
- **T**<sub>F</sub> represents the normal trace operator applied to  $\mathcal{P}_r(T)$
- Specifically, we can take

$$\mathbf{S}_{\mathrm{div},T} \coloneqq \mathbf{\Delta}_{\mathrm{div},T}^{\mathsf{T}} \mathbf{M}_{\mathcal{G},T} \mathbf{\Delta}_{\mathrm{div},T} + \sum_{F \in \mathcal{F}_{T}} h_{F} \mathbf{\Delta}_{\mathrm{div},F}^{\mathsf{T}} \mathbf{M}_{\mathcal{P},F} \mathbf{\Delta}_{\mathrm{div},F}$$

with  $\mathbf{M}_{\mathcal{G},T}$  and  $\mathbf{M}_{\mathcal{P},F}$  mass matrices of  $\mathcal{G}_r(T)$  and  $\mathcal{P}_r(F)$ 

### Outline

#### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

# Serendipity I



- Serendipity FEMs converge as standard FEM but with fewer DOFs
- It is possible to devise serendipity DDR sequences [DP and Droniou, 2023c]
- Ideas similar to [Beirão da Veiga et al., 2018]

#### Definition (Boundaries selection)

For each  $\tau \in \mathcal{T}_h \cup \mathcal{F}_h$ , we select a set  $\mathcal{B}_\tau$  of  $\eta_\tau \geq 2$  faces/edges

- that are not pairwise aligned;
- s.t.  $\tau$  lies on one side of the hyperplane  $H_{\sigma}$  spanned by each  $\sigma \in \mathcal{B}_{\tau}$ ;
- are "uniformly far" from each other: dist<sub> $\tau\sigma$ </sub>( $\mathbf{x}_{\sigma'}$ ) ≥ 1 for all  $\sigma' \in \mathcal{B}_{\tau} \setminus \{\sigma\}$ with dist<sub> $\tau\sigma$ </sub>( $\mathbf{x}$ ) :=  $h_{\tau}^{-1}(\mathbf{x} - \mathbf{x}_{\tau})\omega_{\tau\sigma} \cdot \mathbf{n}_{\sigma}$  scaled distance function to  $H_{\sigma}$ .

### Serendipity III

Setting

$$\ell_F \coloneqq k + 1 - \eta_F \quad \forall F \in \mathcal{F}_h, \qquad \ell_T \coloneqq k + 1 - \eta_T \quad \forall T \in \mathcal{T}_h,$$

the serendipity gradient and curl spaces are

$$\begin{split} \widehat{\underline{X}}_{\text{grad},h}^{r} &\coloneqq \left\{ \underline{q}_{T} = \left( (q_{T})_{T \in \mathcal{T}_{h}}, (q_{F})_{F \in \mathcal{T}_{h}}, (q_{E})_{E \in \mathcal{E}_{h}}, (q_{V})_{V \in \mathcal{V}_{h}} \right) :\\ q_{T} \in \mathcal{P}_{\ell_{T}}(T) \text{ for all } T \in \mathcal{T}_{h}, q_{F} \in \mathcal{P}_{\ell_{F}}(F) \text{ for all } F \in \mathcal{F}_{h}, \\ q_{E} \in \mathcal{P}_{r-1}(E) \text{ for all } E \in \mathcal{E}_{h}, \text{ and } q_{V} \in \mathbb{R} \text{ for all } V \in \mathcal{V}_{h} \right\}, \\ \widehat{\underline{X}}_{\text{curl},h}^{r} \coloneqq \left\{ \underline{v}_{T} = \left( (v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{h}}, (v_{E})_{E \in \mathcal{E}_{h}} \right) :\\ v_{T} \in \mathcal{R}_{k-1}(T) \oplus \mathcal{R}_{\ell_{T}+1}^{c}(T) \text{ for all } T \in \mathcal{T}_{h}, \\ v_{F} \in \mathcal{R}_{k-1}(F) \oplus \mathcal{R}_{\ell_{F}+1}^{c}(F) \text{ for all } F \in \mathcal{F}_{h}, \\ v_{E} \in \mathcal{P}_{k}(E) \text{ for all } E \in \mathcal{E}_{h} \right\} \end{split}$$

• Notice that, for  $\eta_F = \eta_T = 2$ , we recover the standard DDR spaces

## Serendipity IV

The serendipity DDR construction reads



with

$$\underline{\widehat{\boldsymbol{G}}}_{h}^{r} \coloneqq \underline{\widehat{\boldsymbol{R}}}_{\mathrm{curl},h} \underline{\boldsymbol{G}}_{h}^{r} \underline{\boldsymbol{E}}_{\mathrm{grad},h}, \qquad \underline{\widehat{\boldsymbol{C}}}_{h}^{r} \coloneqq \underline{\boldsymbol{C}}_{h}^{r} \underline{\boldsymbol{E}}_{\mathrm{curl},h}$$

 Homological and analytical properties are inherited through extension and reduction cochain maps

## Serendipity V



Figure: Comparison of local DDR and serendipity DDR (SDDR) spaces for r = 3

• We define the serendipity discrete  $L^2$ -product

$$[\cdot,\cdot]_{\operatorname{curl},h}\coloneqq (\underline{E}_{\operatorname{curl},h}\cdot,\underline{E}_{\operatorname{curl},h}\cdot)_{\operatorname{curl},h}$$

The serendipity DDR scheme reads: Find  $(\underline{H}_h, \underline{A}_h) \in \underline{\widehat{X}}_{\operatorname{curl},h}^r \times \underline{X}_{\operatorname{div},h}^r$  s.t.

$$\begin{split} & [\mu\underline{H}_{h},\underline{\tau}_{h}]_{\mathrm{curl},h} - (\underline{A}_{h},\underline{C}_{h}^{r}\underline{\tau}_{h})_{\mathrm{div},h} = 0 \qquad \forall \underline{\tau}_{h} \in \underline{X}_{\mathrm{curl},h}, \\ & (\underline{C}_{h}^{r}\underline{H}_{h},\underline{v}_{h})_{\mathrm{div},h} + \int_{\Omega} D_{h}^{r}\underline{A}_{h} D_{h}^{r}\underline{v}_{h} = l_{h}(\underline{v}_{h}) \quad \forall \underline{v}_{h} \in \underline{X}_{\mathrm{div},h}^{r} \end{split}$$

Analogous stability and convergence results as for the DDR scheme hold

#### Numerical tests: Magnetostatics

---- 
$$k = 1 \text{ (DDR)}$$
 ---  $k = 2 \text{ (DDR)}$  ---  $k = 3 \text{ (DDR)}$   
---  $k = 1 \text{ (SDDR)}$  ---  $k = 2 \text{ (SDDR)}$  ---  $k = 3 \text{ (SDDR)}$ 



Figure: Relative errors in the discrete  $H(\operatorname{curl}; \Omega) \times H(\operatorname{div}; \Omega)$  norm vs. *h*, for the standard DDR scheme (continuous lines) and the SDDR scheme (dashed lines).

#### Numerical tests: Stokes

--- 
$$k = 1 (DDR)$$
 --  $k = 2 (DDR)$  --  $k = 3 (DDR)$   
--  $k = 1 (SDDR)$  --  $k = 2 (SDDR)$  --  $k = 3 (SDDR)$ 



Figure: Relative errors in the discrete  $\boldsymbol{H}(\operatorname{curl};\Omega) \times L^2(\Omega)^d$  norm (for the couple velocity–gradient of the pressure) vs. h, for the standard DDR SDDR schemes.

### Outline

#### 1 Motivation

- 2 Exterior calculus
- 3 The Discrete de Rham construction
- 4 Application to magnetostatics
- 5 Implementation
- 6 Serendipity
- 7 An example of advanced complex

$$\mathcal{RT}_1(\Omega) \longleftrightarrow H^1(\Omega; \mathbb{R}^2) \xrightarrow{\operatorname{sym}\,\operatorname{curl}} H(\operatorname{div}\,\operatorname{div}, \Omega; \mathbb{S}) \xrightarrow{\operatorname{div}\,\operatorname{div}} L^2(\Omega) \longrightarrow 0$$

This complex is relevant in solid mechanics (Kirchhoff-Love plates)
For Ω contractible, it is exact, i.e.,

Ker sym 
$$\operatorname{curl} = \mathcal{RT}_1(\Omega)$$
, Ker div  $\operatorname{div} = \operatorname{Im} \operatorname{sym} \operatorname{curl}$ ,  
Im div  $\operatorname{div} = L^2(\Omega)$ 

• Key novelty: algebraic constraint (symmetry) on spaces and operators

#### Mixed formulation for Kirchhoff-Love plates I



Figure: Image source: Wikipedia

With  $\Omega \subset \mathbb{R}^2$  polygonal middleplane and orthogonal load  $f : \Omega \to \mathbb{R}$ : Find the moment tensor  $\sigma : \Omega \to \mathbb{S}$  and the deflection  $u : \Omega \to \mathbb{R}$  s.t.

$$\sigma + \mathbb{A} \operatorname{hess} u = 0 \quad \text{in } \Omega,$$
$$-\operatorname{div} \operatorname{div} \sigma = f \quad \text{in } \Omega,$$
$$u = \partial_n u = 0 \quad \text{on } \partial \Omega$$

with  $\mathbb{A} \boldsymbol{\tau} = D \left[ (1 - \nu) \boldsymbol{\tau} + \nu \operatorname{tr}(\boldsymbol{\tau}) \boldsymbol{I}_2 \right]$  for all  $\boldsymbol{\tau} \in \mathbb{S}$ 

#### Mixed formulation for Kirchhoff-Love plates II

• The DDR approximation is based on the weak formulation: Find  $(\sigma, u) \in H(\operatorname{div} \operatorname{div}, \Omega; \mathbb{S}) \times L^2(\Omega)$  s.t.

$$\begin{split} \int_{\Omega} \mathbb{A}^{-1} \boldsymbol{\sigma} &: \boldsymbol{\tau} + \int_{\Omega} \operatorname{div} \operatorname{div} \boldsymbol{\tau} \, \boldsymbol{u} = 0 \qquad \forall \boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{div} \operatorname{div}, \Omega; \mathbb{S}), \\ &- \int_{\Omega} \operatorname{div} \operatorname{div} \boldsymbol{\sigma} \, \boldsymbol{v} = \int_{\Omega} f \boldsymbol{v} \quad \forall \boldsymbol{v} \in L^2(\Omega) \end{split}$$

• Well-posedness hinges on the inf-sup condition: For all  $q \in L^2(\Omega)$ ,

$$\|q\|_{L^{2}(\Omega)} \lesssim \sup_{\boldsymbol{\tau} \in \boldsymbol{H}(\operatorname{div} \operatorname{div}, \Omega; \mathbb{S}) \setminus \{0\}} \frac{\int_{\Omega} \operatorname{div} \operatorname{div} \boldsymbol{\tau} q}{\|\boldsymbol{\tau}\|_{L^{2}(\Omega; \mathbb{R}^{2\times 2})}}$$

expressing the surjectivity of div  $\operatorname{div} \operatorname{div} \operatorname{div}, \Omega; \mathbb{S}) \to L^2(\Omega)$ 

This corresponds to the exactness of the tail of the div-div complex

#### A crucial remark I

- Let  $(\mathcal{T}_h, \mathcal{F}_h, \mathcal{V}_h)$  denote a two-dimensional mesh of  $\Omega$
- The starting point is a local integration by parts formula for div-div
- For all  $T \in \mathcal{T}_h$  and all  $\tau : T \to \mathbb{S}$  and  $q : T \to \mathbb{R}$  smooth enough,

$$\begin{split} \int_{T} \operatorname{div} \operatorname{div} \tau \ q &= \int_{T} \tau : \operatorname{hess} q - \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \sum_{V \in \mathcal{V}_{E}} \omega_{EV} \tau(\mathbf{x}_{V}) \mathbf{n}_{E} \cdot \mathbf{t}_{E} \ q(\mathbf{x}_{V}) \\ &- \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} (\tau \mathbf{n}_{E} \cdot \mathbf{n}_{E}) \ \partial_{\mathbf{n}_{E}} q \\ &+ \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \left( \partial_{\mathbf{t}_{E}} (\tau \mathbf{n}_{E} \cdot \mathbf{t}_{E}) + \operatorname{div} \tau \cdot \mathbf{n}_{E} \right) q \end{split}$$

#### A crucial remark II

• Letting  $\ell \geq 1$ , taking  $q \in \mathcal{P}_{\ell-1}(T)$ , and inserting projectors, we have

$$\begin{split} \int_{T} \operatorname{div} \operatorname{div} \tau \ q &= \int_{T} \pi_{\mathcal{H},T}^{\ell-3} \tau : \operatorname{hess} q - \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \sum_{V \in \mathcal{V}_{E}} \omega_{EV} \left( \tau(\mathbf{x}_{V}) \mathbf{n}_{E} \cdot \mathbf{t}_{E} \right) \ q(\mathbf{x}_{V}) \\ &- \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \pi_{\mathcal{P},E}^{\ell-2} \left( \tau \mathbf{n}_{E} \cdot \mathbf{n}_{E} \right) \ \partial_{\mathbf{n}_{E}} q \\ &+ \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \pi_{\mathcal{P},E}^{\ell-1} \left( \partial_{t_{E}} \left( \tau \mathbf{n}_{E} \cdot \mathbf{t}_{E} \right) + \operatorname{div} \tau \cdot \mathbf{n}_{E} \right) q \end{split}$$

■ The discrete *H*(div div, *T*; S) space should contain the red polynomial components to have inf-sup through Fortin's argument!

#### Discrete $H(\operatorname{div} \operatorname{div}, T; \mathbb{S})$ space

Based on the previous remark, the discrete  $H(\operatorname{div} \operatorname{div}, T; \mathbb{S})$  space is

$$\begin{split} \underline{\Sigma}_{T}^{\ell} \coloneqq \left\{ \underline{\tau}_{T} = \left( \tau_{\mathcal{H},T}, \tau_{\mathcal{H},T}^{c}, (\tau_{E}, D_{\tau,E})_{E \in \mathcal{E}_{T}}, (\tau_{V})_{V \in \mathcal{V}_{T}} \right) : \\ \tau_{\mathcal{H},T} \in \mathcal{H}^{\ell-3}(T) \text{ and } \tau_{\mathcal{H},T}^{c} \in \mathcal{H}^{c,\ell}(T), \\ \tau_{E} \in \mathcal{P}^{\ell-2}(E) \text{ and } D_{\tau,E} \in \mathcal{P}^{\ell-1}(E) \text{ for all } E \in \mathcal{E}_{T}, \\ \tau_{V} \in \mathbb{S} \text{ for all } V \in \mathcal{V}_{T} \right\} \end{split}$$

The meaning of the components is provided by the interpolator

$$\begin{split} \underline{I}_{\Sigma,T}^{\ell} \tau \coloneqq & \left( \pi_{\mathcal{H},T}^{\ell-3} \tau, \pi_{\mathcal{H},T}^{c,\ell} \tau, \\ & \left( \pi_{\mathcal{P},E}^{\ell-2} (\tau n_E \cdot n_E), \pi_{\mathcal{P},E}^{\ell-1} \left( \partial_{t_E} (\tau n_E \cdot t_E) + \operatorname{div} \tau \cdot n_E \right) \right)_{E \in \mathcal{E}_T} \cdot \\ & \left( \tau(x_V) \right)_{V \in \mathcal{V}_T} \end{split}$$

Mimicking the above integration by parts formula, we let

$$\mathsf{DD}_T^{\ell-1}: \underline{\Sigma}_T^\ell \to \mathcal{P}^{\ell-1}(T)$$

be s.t., for all  $\underline{\tau}_T\in\underline{\Sigma}_T^\ell$  and all  $q\in\mathcal{P}^{\ell-1}(T)$ ,

$$\int_{T} \mathsf{D}\mathsf{D}_{T}^{\ell-1} \underline{\tau}_{T} \ q = \int_{T} \boldsymbol{\tau}_{\mathcal{H},T} : \mathbf{hess} \ q - \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \sum_{V \in \mathcal{V}_{E}} \omega_{EV} \left( \boldsymbol{\tau}_{V} \boldsymbol{n}_{E} \cdot \boldsymbol{t}_{E} \right) q(\boldsymbol{x}_{V}) - \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \left( \int_{E} \boldsymbol{\tau}_{E} \ \partial_{\boldsymbol{n}_{E}} q - \int_{E} \boldsymbol{D}_{\boldsymbol{\tau},E} \ q \right)$$

#### Discrete div-div operator II

• Let 
$$\tau \in H^2(T; \mathbb{S})$$
. We have, for all  $q \in \mathcal{P}^{\ell-1}(T)$ ,

$$\begin{split} &\int_{T} \mathsf{D} \mathsf{D}_{T}^{\ell-1} \underline{I}_{\Sigma,T}^{\ell} \tau \ q \\ &= \int_{T} \pi_{\mathcal{H},T}^{\ell-\mathcal{S}} \tau : \operatorname{hess} q - \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \sum_{V \in \mathcal{V}_{E}} \omega_{EV} \left( \tau(\mathbf{x}_{V}) \mathbf{n}_{E} \cdot \mathbf{t}_{E} \right) q(\mathbf{x}_{V}) \\ &- \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \pi_{\mathcal{P},E}^{\ell-\mathcal{Z}} \left( \tau \mathbf{n}_{E} \cdot \mathbf{n}_{E} \right) \partial_{\mathbf{n}_{E}} q \\ &+ \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \pi_{\mathcal{P},E}^{\ell-\mathcal{Z}} \left( \partial_{\mathbf{t}_{E}} \left( \tau \mathbf{n}_{E} \cdot \mathbf{t}_{E} \right) + \operatorname{div} \tau \cdot \mathbf{n}_{E} \right) q = \int_{\Omega} \operatorname{div} \operatorname{div} \tau q \end{split}$$

This shows that it holds:

$$\mathsf{DD}_T^{\ell-1}(\underline{I}_{\Sigma,T}^\ell\tau) = \pi_{\mathcal{P},T}^{\ell-1}(\operatorname{div}\operatorname{div}\tau) \quad \forall \tau \in H^2(T;\mathbb{S})$$

 $\blacksquare$  The surjectivity of  $\mathsf{DD}_T^{\ell-1}:\underline{\Sigma}_T^\ell\to \mathcal{P}^{\ell-1}(T)$  follows

Discrete  $H^1(\Omega; \mathbb{R}^2)$  space I

$$\mathcal{RT}_1(T) \xrightarrow{\underline{I}_{V,T}^k} \underline{V}_T^k \xrightarrow{\underline{C}_{\text{sym},T}^{k-1}} \underline{\Sigma}_T^{k-1} \xrightarrow{\text{DD}_T^{k-2}} \mathcal{P}^{k-2}(T) \xrightarrow{0} 0.$$

• When 
$$au = \operatorname{sym} \operatorname{\mathbf{curl}} v$$
, we have

$$\begin{split} \underline{I}_{\Sigma,T}^{k-1}(\operatorname{sym}\operatorname{\mathbf{curl}} \boldsymbol{\nu}) &= \left( \pi_{\mathcal{H},T}^{k-4}(\operatorname{sym}\operatorname{\mathbf{curl}} \boldsymbol{\nu}), \pi_{\mathcal{H},T}^{c,k-1}(\operatorname{sym}\operatorname{\mathbf{curl}} \boldsymbol{\nu}), \\ & \left( \pi_{\mathcal{P},E}^{k-3}(\partial_{t_E}\boldsymbol{\nu}\cdot\boldsymbol{n}_E), \pi_{\mathcal{P},E}^{k-2}(\partial_{t_E}^2\boldsymbol{\nu}\cdot\boldsymbol{t}_E) \right)_{E \in \mathcal{E}_T}, \\ & \left( \operatorname{sym}\operatorname{\mathbf{curl}} \boldsymbol{\nu}(\boldsymbol{x}_V) \right)_{V \in \mathcal{V}_T} \right) \end{split}$$

•  $\underline{V}_T^k$  must allow to reconstruct all these quantities!

Discrete  $H^1(\Omega; \mathbb{R}^2)$  space II

We consider the following space:

$$\underline{V}_{T}^{k} \coloneqq \left\{ \underline{\mathbf{v}}_{T} = \left( \mathbf{v}_{T}, (\mathbf{v}_{E})_{E \in \mathcal{E}_{T}}, (\mathbf{v}_{V}, \mathbf{G}_{\mathbf{v}, V})_{V \in \mathcal{V}_{T}} \right) : \\
\mathbf{v}_{T} \in \mathcal{P}^{k-2}(T; \mathbb{R}^{2}), \\
\mathbf{v}_{E} \in \mathcal{P}^{k-4}(E; \mathbb{R}^{2}) \text{ for all } E \in \mathcal{E}_{T}, \\
\mathbf{v}_{V} \in \mathbb{R}^{2} \text{ and } \mathbf{G}_{\mathbf{v}, V} \in \mathbb{R}^{2 \times 2} \text{ for all } V \in \mathcal{V}_{T}$$

- Vertex components are readily available as  $\mathbb{C}G_{\nu,V}$
- Edge components come from  $v_{\mathcal{E}_T} \in \mathcal{P}^k(\mathcal{E}_T; \mathbb{R}^2) \cap C^0(\partial T; \mathbb{R}^2)$  s.t.

$$\forall E \in \mathcal{E}_T, \ \pi_{\mathcal{P},E}^{k-4}(v_{\mathcal{E}_T})|_E = v_E \text{ and } \partial_{t_E}(v_{\mathcal{E}_T})|_E(x_V) = G_{v,V}t_E \ \forall V \in \mathcal{V}_E,$$
  
and  $v_{\mathcal{E}_T}(x_V) = v_V \ \forall V \in \mathcal{V}_T$ 

Discrete 
$$H^1(\Omega; \mathbb{R}^2)$$
 space III

• Element components come from  $\mathbf{C}^{k-1}_{\operatorname{sym},T}: \underline{V}^k_T \to \mathcal{P}^{k-1}(T; \mathbb{S})$  s.t.

$$\int_{T} \mathbf{C}_{\text{sym},T}^{k-1} \underline{\boldsymbol{\nu}}_{T} : \boldsymbol{\tau} = -\int_{T} \boldsymbol{\nu}_{T} \cdot \mathbf{rot} \, \boldsymbol{\tau} + \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \int_{E} \boldsymbol{\nu}_{\mathcal{E}_{T}} \cdot (\boldsymbol{\tau} \, \boldsymbol{t}_{E}) \quad \forall \boldsymbol{\tau} \in \mathcal{P}^{k-1}(T; \mathbb{S})$$

• The discrete sym curl  $\underline{C}^{k-1}_{sym,T}: \underline{V}^k_T \to \underline{\Sigma}^{k-1}_T$  is, therefore,

$$\underline{C}_{\mathrm{sym},T}^{k-1} \underline{\nu}_{T} \coloneqq \left( \pi_{\mathcal{H},T}^{k-4} (\mathbf{C}_{\mathrm{sym},T}^{k-1} \underline{\nu}_{T}), \pi_{\mathcal{H},T}^{c,k-1} (\mathbf{C}_{\mathrm{sym},T}^{k-1} \underline{\nu}_{T}), \\ \left( \pi_{\mathcal{P},E}^{k-3} (\partial_{t_{E}} \boldsymbol{\nu}_{\mathcal{E}_{T}} \cdot \boldsymbol{n}_{E}), \partial_{t_{E}}^{2} \boldsymbol{\nu}_{\mathcal{E}_{T}} \cdot \boldsymbol{t}_{E} \right)_{E \in \mathcal{E}_{T}}, \\ \left( \mathbb{C} \boldsymbol{G}_{\boldsymbol{\nu},V} \right)_{V \in \mathcal{V}_{T}} \right)$$

#### Theorem (Local complex property and exactness)

The following sequence is a complex, which is exact if T is contractible:

$$\mathcal{RT}_1(T) \xrightarrow{\underline{I}_{V,T}^k} \underline{V}_T^k \xrightarrow{\underline{C}_{\mathrm{sym},T}^{k-1}} \underline{\Sigma}_T^{k-1} \xrightarrow{\mathrm{DD}_T^{k-2}} \mathcal{P}^{k-2}(T) \xrightarrow{0} 0.$$

## Local tensor potential and A-weighted product in $\underline{\Sigma}_T^\ell$ I

For all  $E \in \mathcal{E}_T$ ,  $P_{\Sigma, E}^{\ell} \underline{\tau}_E \in \mathcal{P}^{\ell}(E)$  is the unique polynomial that satisfies

$$P_{\Sigma,E}^{\ell}\underline{\tau}_{E}(\boldsymbol{x}_{V}) = \boldsymbol{\tau}_{V}\boldsymbol{n}_{E} \cdot \boldsymbol{n}_{E} \text{ for all } V \in \mathcal{V}_{E} \text{ and } \boldsymbol{\pi}_{\mathcal{P},E}^{\ell-2}(P_{\Sigma,E}^{\ell}\underline{\tau}_{E}) = \boldsymbol{\tau}_{E}.$$

• We define  $P_{\Sigma,T}^{\ell}: \underline{\Sigma}_{T}^{\ell} \to \mathcal{P}^{\ell}(T; \mathbb{S})$  s.t.,  $\forall (q, \upsilon) \in \mathcal{P}^{\ell+2}(T) \times \mathcal{H}^{c,\ell}(T)$ ,

$$\begin{split} &\int_{T} \boldsymbol{P}_{\boldsymbol{\Sigma},T}^{\ell} \underline{\boldsymbol{\tau}}_{T} : (\mathbf{hess} \, q + \boldsymbol{\upsilon}) \\ &= \int_{T} \mathsf{DD}_{T}^{\ell-1} \underline{\boldsymbol{\tau}}_{T} \, q + \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \sum_{V \in \mathcal{V}_{E}} \omega_{EV}(\boldsymbol{\tau}_{V} \boldsymbol{n}_{E} \cdot \boldsymbol{t}_{E}) \, q(\boldsymbol{x}_{V}) \\ &+ \sum_{E \in \mathcal{E}_{T}} \omega_{TE} \left( \int_{E} P_{\boldsymbol{\Sigma},E}^{\ell} \underline{\boldsymbol{\tau}}_{E} \, \partial_{\boldsymbol{n}_{E}} q - \int_{E} D_{\boldsymbol{\tau},E} \, q \right) + \int_{T} \boldsymbol{\tau}_{\mathcal{H},T}^{c} : \boldsymbol{\upsilon} \end{split}$$

The discrete A-weighted product in  $\underline{\Sigma}_T^{\ell}$  is s.t.

$$a_T(\underline{\boldsymbol{\upsilon}}_T,\underline{\boldsymbol{\tau}}_T) \coloneqq \int_T \mathbb{A}^{-1} \boldsymbol{P}_{\Sigma,T}^{\ell} \underline{\boldsymbol{\upsilon}}_T : \boldsymbol{P}_{\Sigma,T}^{\ell} \underline{\boldsymbol{\tau}}_T + \frac{1}{D(1+\nu)} s_{\Sigma,T}(\underline{\boldsymbol{\upsilon}}_T,\underline{\boldsymbol{\tau}}_T)$$

where the stabilization bilinear form is, e.g., s.t.

$$s_{\Sigma,T}(\underline{\boldsymbol{\upsilon}}_T,\underline{\boldsymbol{\tau}}_T) \coloneqq [\underline{\boldsymbol{I}}_{\Sigma,T}^{\ell} \boldsymbol{P}_{\Sigma,T}^{\ell} \underline{\boldsymbol{\upsilon}}_T - \underline{\boldsymbol{\upsilon}}_T, \underline{\boldsymbol{I}}_{\Sigma,T}^{\ell} \boldsymbol{P}_{\Sigma,T}^{\ell} \underline{\boldsymbol{\tau}}_T - \underline{\boldsymbol{\tau}}_T]_{\Sigma,T}$$

with  $[\cdot, \cdot]_{\Sigma,T}$  denoting the component  $L^2$ -product in  $\underline{\Sigma}_T^\ell$ 

#### A DDR scheme for Kirchhoff–Love plates

- Global spaces, operators, and inner products assembled as usual
- The DDR scheme for the Kirchhoff–Love plate problem reads: Find  $(\underline{\sigma}_h, u_h) \in \underline{\Sigma}_h^{\ell} \times \mathcal{P}^{\ell-1}(\mathcal{T}_h)$  s.t.

$$\begin{split} a_h(\underline{\sigma}_h,\underline{\tau}_h) + b_h(\underline{\tau}_h,u_h) &= 0 \qquad & \forall \underline{\tau}_h \in \underline{\Sigma}_h^\ell, \\ -b_h(\underline{\sigma}_h,v_h) &= \int_{\Omega} f \, v_h \qquad & \forall v_h \in \mathcal{P}^{\ell-1}(\mathcal{T}_h), \end{split}$$

where

$$a_h(\underline{\boldsymbol{\upsilon}}_h,\underline{\boldsymbol{\tau}}_h) \coloneqq \sum_{T \in \mathcal{T}_h} a_T(\underline{\boldsymbol{\upsilon}}_T,\underline{\boldsymbol{\tau}}_T), \quad b_h(\underline{\boldsymbol{\tau}}_h,\boldsymbol{v}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \int_T \mathsf{DD}_T^{\ell-1} \underline{\boldsymbol{\tau}}_T \, \boldsymbol{v}_T$$

#### Error estimate

#### Theorem (Error estimate)

Assume  $\sigma \in H^2(\Omega; \mathbb{S}) \cap H^{\ell+1}(\mathcal{T}_h; \mathbb{S})$  and  $u \in C^1(\overline{\Omega}) \cap H^{\ell+3}(\mathcal{T}_h)$ . Then, it holds

$$\begin{split} \|\underline{I}_{\Sigma,h}^{\ell}\sigma - \underline{\sigma}_{h}\|_{\Sigma,h} + \|\pi_{\mathcal{P},h}^{\ell-1}u - u_{h}\|_{L^{2}(\Omega)} \\ \lesssim \gamma^{-1}h^{\ell+1}\left(\frac{1}{D(1-\nu)}|\sigma|_{\boldsymbol{H}^{\ell+1}(\mathcal{T}_{h})} + |u|_{H^{\ell+3}(\mathcal{T}_{h})}\right), \end{split}$$

where

$$\gamma := \left[ D^2 \left( 1 + \frac{1}{D^2 (1-\nu)^2} \right)^2 + 1 \right]^{-\frac{1}{2}}$$

and, denoting by  $[\cdot, \cdot]_{\Sigma,h}$  the global component  $L^2$ -product,

$$\|\underline{\boldsymbol{\tau}}_h\|_{\boldsymbol{\Sigma},h} \coloneqq [\underline{\boldsymbol{\tau}}_h, \underline{\boldsymbol{\tau}}_h]_{\boldsymbol{\Sigma},h}^{1/2}$$

#### Convergence: Energy error vs. meshsize



#### References I



#### Arnold, D. (2018).

Finite Element Exterior Calculus. SIAM.



Arnold, D. N., Falk, R. S., and Winther, R. (2006).

Finite element exterior calculus, homological techniques, and applications. Acta Numer., 15:1-155.



Beirão da Veiga, L., Brezzi, F., Dassi, F., Marini, L. D., and Russo, A. (2018).

Serendipity virtual elements for general elliptic equations in three dimensions. *Chin. Ann. Math. Ser. B*, 39(2):315–334.



Bonaldi, F., Di Pietro, D. A., Droniou, J., and Hu, K. (2023).

An exterior calculus framework for polytopal methods. In preparation.



Di Pietro, D. A. and Droniou, J. (2021).

An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence. J. Comput. Phys., 429(109991).



Di Pietro, D. A. and Droniou, J. (2023a).

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency. Found. Comput. Math., 23:85–164.



Di Pietro, D. A. and Droniou, J. (2023b).

A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem. Math. Comp., 92(339):51–77.



#### Di Pietro, D. A. and Droniou, J. (2023c).

Homological- and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method. ESAIM: Math. Model Numer. Anal., 57(1):191–225.



#### Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).

Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra. Math. Models Methods Appl. Sci., 30(9):1809–1855.



Nédélec, J.-C. (1980).

Mixed finite elements in R<sup>3</sup>. Numer. Math., 35(3):315-341.



Raviart, P. A. and Thomas, J. M. (1977).

A mixed finite element method for 2nd order elliptic problems. In Galligani, I. and Magenes, E., editors, Mathematical Aspects of the Finite Element Method. Springer, New York.