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Setting

m Let Q be an open connected (bg = 1) polyhedral domain of R? (b3 = 0)
m Assume, for the moment being, that Q has a trivial topology, i.e.,

m Q is not crossed by any “tunnel” (b1 =0)
m Q does not enclose any “void” (b2 = 0)

X X

L.

(bo,b1,b2,b3) =(1,1,0,0) (bo,b1,ba,b3)=(1,0,1,0)

m We consider PDE models that hinge on the vector calculus operators:

d1q 0a2v3 — d3v2
gradg =|0a2q |, curly =| 03v; — 01vs |, divw = dywy + daws + d3ws
63‘] 01vy — 0oV

forg: Q= R, v:Q—R3 and w : Q@ — R? smooth enough
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Some relevant Hilbert spaces

m For simplicity, we consider problems driven by forcing terms
m To allow for physical configurations, we focus on weak formulations

m These will be based on the following Hilbert spaces:

HY(Q) ={q € L*(Q) : gradg € L*(Q) = L*(Q)*},
H(curl; Q) := {v e L*(Q) : curly € LQ(Q)} ,
H(div; Q) = {w € L*(Q) : divw € L*(Q)}
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Three model problems
The Stokes problem in curl-curl formulation

m Given v > 0 and f € L%(Q), the Stokes problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

-vAu
v(curlcurlu — )+gradp =f in Q, (momentum conservation)
divu=0 inQ, (mass conservation)
curlu xn=0andu-n=0 on dQ, (boundary conditions)
Jop=0

m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. fgp =0 and

/vcurlu~curlv+/gradp-v:/f~v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q
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Three model problems
The magnetostatics problem

m For y > 0 and J€ curl H(curl; Q), the magnetostatics problem reads:
Find the magnetic field H : @ — R3 and vector potential A : Q@ — R? s.t.

uH —curlA =0 in Q, (vector potential)
curlH =J in Q, (Ampere's law)
divA=0 inQ (
AxXxn=0 on IQ (boundary condition)

Coulomb's gauge)

m Weak formulation: Find (H, A) € H(curl; Q) X H(div;Q) s.t.
/uH-T—/A-curlrzo V1 € H(curl; Q),
Q Q

/curlH-v+/divAdivv=/J-v Vv € H(div; Q)
Q Q Q
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Three model problems
The Darcy problem in velocity-pressure formulation

m Given x > 0 and f € L?(Q), the Darcy problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

«'u—gradp =0 in Q, (Darcy's law)
—divu = f in Q, (mass conservation)

p=0 on 0Q (boundary condition)

m Weak formulation: Find (u, p) € H(div; Q) x L%(Q) s.t.

/K_lu-v+/pdivv=0 Vv € H(div; Q),
Q Q

—/divuq:/fq Vg € L*(Q)
Q Q
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A unified view

m All of the above problems are mixed formulations involving two fields

m They can be recast into the abstract setting: Find (u,p) € VX Q s.t.

Au+B'p=f inV’,
-Bu+Cp=g inQ’

m Well-posedness for this problem holds under [Brezzi and Fortin, 1991]:

m The coercivity of A in Ker B
m The coercivity of C in H := Ker BT
m An inf-sup condition for B: 38 € R,

(Bv,q)

0<B= inf su _—
P= et 01 eio, TaliolViy

m Similar properties underlie the stability of numerical approximations
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A unified tool for well-posedness: The de Rham complex

Figure: Georges de Rham (Roche 1903-Lausanne 1990)
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A unified tool for well-posedness: The de Rham complex

grad curl

R — HY(Q) 5% H(cwrl; Q) —2% H(div; Q) 1% 12(Q) —2 {0}

m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
Imgrad c Ker curl,

Im curl c Ker div,

QcR3 (b3 =0) = Imdiv=L%Q) (Darcy, magnetostatics)
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A unified tool for well-posedness: The de Rham complex

R H'(Q) % H(ewl Q) - H(div;Q) 1% £2(@) — (0}
m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
no “tunnels” crossing Q (b1 =0) = Imgrad = Kercurl, (Stokes)
no “voids” contained in Q (b2 =0) = Imcurl = Kerdiv, (magnetostatics)

QcR3 (b3 =0) = Imdiv = L%(Q) (Darcy, magnetostatics)
m When by # 0 or by # 0, de Rham's cohomology characterizes
Kercurl/Imgrad and Kerdiv/Im curl

m Key consequences are Hodge decompositions and Poincaré inequalities
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A unified tool for well-posedness: The de Rham complex

R H'(Q) % H(ewl Q) - H(div;Q) 1% £2(@) — (0}
m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
no “tunnels” crossing Q (b1 =0) = Imgrad = Kercurl, (Stokes)

no “voids” contained in Q (b2 =0) = Imcurl = Kerdiv, (magnetostatics)

QcR3 (b3 =0) = Imdiv = L%(Q) (Darcy, magnetostatics)
m When by # 0 or by # 0, de Rham's cohomology characterizes
Kercurl/Imgrad and Kerdiv/Im curl

m Key consequences are Hodge decompositions and Poincaré inequalities

m Emulating these properties is key for stable discretizations

10/41



The (trimmed) Finite Element way

Local spaces

m Let T c R3 be a tetrahedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T’}

m Fix £k > 0 and write, denoting by x7 a point inside T,

GH(T) GOR(T)

PK(T)3 = grad P (T) @ (x — x7) x PK1(T)3
= curl P N(T)3 @ (x — x7) P N(T)

R¥(T) REK(T)
m Define the trimmed spaces that sit between P*¥(T)3 and P*+1(T)3:
NYT) = g (T) @ GS*H(T)  [Nédélec, 1980]
RT(T) = RY(T) @ REF(T) [Raviart and Thomas, 1977]

m See also [Arnold, 2018]
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The (trimmed) Finite Element way

Global complex

m Let 7, = {T'} be a conforming tetrahedral mesh of Q and let k > 0
m Local spaces can be glued together to form a global FE complex:

R 3 Pl () B2y Nkl (g —wly kel (g vy ok gy 0y (0)

[ [ | [

R H'(©Q) —2% H(curl; @) —2 H(div;Q) —s 12(Q) —% (0}

m The gluing only works on conforming meshes (simplicial complexes)!
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The Finite Element way

Shortcomings

m Approach limited to conforming meshes with standard elements

= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

m Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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The discrete de Rham (DDR) approach |

m Key idea: replace both spaces and operators by discrete counterparts:

!é;mLh k ﬂiﬁ & !2ﬁ & l)ﬁ k 0
; Xgrad,h : Xcurl,h : Xdiv,h > P (7;’) : {O}

m Support of polyhedral meshes (CW complexes) and high-order
m Key exactness and consistency properties proved at the discrete level

m Several strategies to reduce the number of unknowns on general shapes
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The discrete de Rham (DDR) approach Il

m DDR spaces are spanned by vectors of polynomials
m Polynomial components enable consistent reconstructions of

m vector calculus operators
m the corresponding scalar or vector potentials

m These reconstructions emulate integration by parts (Stokes) formulas

15/41



References

Introduction of DDR [DP, Droniou, Rapetti, 2020]

Present sequence and properties [DP and Droniou, 2021a]
Application to magnetostatics [DP and Droniou, 2021b]
Bridges with VEM [Beirdo da Veiga, Dassi, DP, Droniou, 2021]

More recent developments include:

m Reissner—Mindlin plates [DP and Droniou, 2021c]
m The 2D plates complex and Kirchhoff-Love plates [DP and Droniou, 2022]

iv div

1 1 9 symrot . . d 9
RT(F) —— H (Q;R*) —— H(divdiv, Q;S) > L7 (Q)

~
o

m The 2D Stokes complex [Hanot, 2021]

di

R <3 H2(Q) %% HY(Q) ¥ 12(Q) — 23 0

m Polyhedral analysis tools: [DP and Droniou, 2020]
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The two-dimensional case

Continuous exact complex

m With F mesh face let, for ¢ : F — R and v : F — R? smooth enough,
rotr g := (gradp ¢)* rotp v = divg (v?)
m We derive a discrete counterpart of the 2D de Rham complex:

gradg, rotg

R —— H'(F) =5 H(rot; F) — L2(F) —— {0}
m We will need the following decompositions of P¥(F)?:

G~ (F) Gk (F)

PK(F)? = grad, P*1(F) & (x — xp) P 1(F)
=roty PKY(F) @ (x —xp) P 1 (F)

R (F) REF(F)
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The two-dimensional case
A key remark

WFE =

te nrE

m Let g € P**1(F). For any v € PX(F)?, we have

/gradFQ'VZ—/qdiVFV+ Z wFE/CHaF(V'nFE)
F F

EESF E
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The two-dimensional case
A key remark

WFE = 1
te nrE

m Let g € P**1(F). For any v € PX(F)?, we have

/gradFCI'VZ—/ﬂanqleFV+ Z wFE/(I\aF(V'"FE)
F F E

EESF
ePk-1(F)

m Hence, grad; ¢ can be computed given ﬂ’;, .q and q|oF
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The two-dimensional case
Discrete H'(F) space

m Based on this remark, we take as discrete counterpart of H'(F)

Xt = {4, = (ar.qor) = ar € PXH(F) and qor € PE ()

m Let I} p i CO(F) — Xg 4 p best, ¥g e CO(F),

k . - .
L rd = (T 14, qor) with

”é;,;?(‘lﬁF)\E = ”;}‘NE VE € Ep and gor(xv) = q(xv) YV € Vp

92080
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € EF, the edge gradient G . xk — PKE) is s.t.

—grad,F

G4, = (q0r)|g

m The full face gradient G : Xk — PK(F)2iss.t., Vv € PK(F)?,

“~grad,F

‘LGggF'V=—LQFdiVFV+ Z wFE/EQaF(V'nFE)

EcEr

m By construction, we have polynomial consistency:

Gk (Igrad rq)=gradpq Vg€ P*(F)
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—grad,F

G4, = (q0r)|g

m The full face gradient G : Xk — PK(F)2iss.t., Vv € PK(F)?,

“~grad,F

‘LGggF'V=—LQFdiVFV+ Z wFE/EQaF(V'nFE)

EcEr

m By construction, we have polynomial consistency:
Gk (Igrad rq)=gradpq Vg€ P*(F)

k+1 . yk k+1
m Similarly, we can reconstruct a scalar trace y}. X e F PUF) s.t.

Vi (Lgeard) =a Vg€ PHF)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N**L(F) = GK(F) @ G&F1(F), Vg € PX(F),

/I‘OtFVQZ/V' rotp g — Z wFE/(V'tE)Q\E
F F — E

EcEF
eRF1(F)

22/41



The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N**L(F) = GK(F) @ G&F1(F), Vg € PX(F),

/1'oth q:/ﬂf"_’,}ﬂv- rotr g — Z wFE/(v-tE)q|E
F F ———— E ~— —

Ec&EF
eRM(F) ePk(E)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N**L(F) = GK(F) @ G&F1(F), Vg € PX(F),

/1'oth q:/ﬂ’}e}v rotp g — wFE/(v ) q|E
F F ~——  Eecé&p
eRM(F) ePk(E)

m This leads to the following discrete counterpart of H(rot; F):

k . . .
lcurl,F = {KF = (V'R,F’V'CR,F’ (VE)EESF) :

vi.p € REU(F), vS, . € ROK(F), v € PX(E) VE € &F }

O & G

k=
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The two-dimensional case

. . k
Reconstructions in X¢ )

m The face curl operator CK : Xk — PK(F)isst.,

F ' ZcurLFF
/CéKF L]=/V(R,F rotp g — Z wFE/ ve q Vg € PH(F)
F F Ec&EF E
m Let I¥, . : H'(F)? — X%, - collect component-wise L?-projections

] Cll,i is polynomially consistent by construction:

CR(I5, pv) =rotpy Wy e NYI(F)
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m The face curl operator CK : Xk — PK(F)isst.,

F ' ZcurLFF
/CéKF L]=/V(R,F rotp g — Z wFE/ ve q Vg € PH(F)
F F Ec&EF E
m Let I¥, . : H'(F)? — X%, - collect component-wise L?-projections

] Cll,i is polynomially consistent by construction:

CR(I5, pv) =rotpy Wy e NYI(F)

m Similarly, we can construct a tangent trace yfF : lfurlF — PK(F)? sit.

yf’F(gfuﬂ,Fv) =y vy € PX(F)?
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The two-dimensional case
Exact local two-dimensional DDR complex

m We need a discrete gradient operator from Xgr @F to XCM]F
: . vk
m To this end, IetQF.Xgrad’F wrl, F be s.t., Vq eXgmdF,

Q;Q (”7” (G- q,) ”(R F(G q,); (GE‘] )E<Er) elcurlF
m If F is simply connected, the following 2D DDR complex is exact:

ﬁmd E

7F Cllf‘ k 0
R gradF 1 —curlF > P (F) > {O}
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The two-dimensional case
Summary

Agrad F,

Cck
R gradF 71‘ curl F . 7 Pk(F) 0 ? {0}

Space ‘ V (vertex) E (edge) F (face)
X el F R PEHE) PEL(F)
X PHE)  REHF) x RE(F)
PH(F) PE(F)

m Interpolators = component-wise L2-projections

m Discrete operators = L2-projections of full operator reconstructions
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The three-dimensional case

Local three-dimensional DDR complex and exactness

Ly Gk ck Dk
R =% XK oar — XEr —— X5 — 21 — {0}

Space |V E F T (element)
X{g(rad,T R Pk_l(E) Pk_l(F) pk—l(T)
Xewnir PHE)  RMUF)xREK(F)  REL(T) x REM(T)
Xfiiv,T PE(F) G U(T) x <K (T)
Pk(T) 7)1\' (T)

If the element T has a trivial topology, this complex is exact.
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The three-dimensional case

Local commutation properties

R C(T) % 09(T)° 2 91 5 ¢ (T) — {0}

k k k .
llgrad,T llcurl,T lldiv,T \L’T
Ik Gk k k

—grad,h

G C D. 0
R ’ X{g(rad,T — Xfurl,T —— X} — PHT) — {0}

=div,T

m Crucial property for adjoint consistency (see below)

m Compatibility of projections with Helmholtz—Hodge decompositions
= Robustness of DDR numerical schemes with respect to the physics
(cf. [Beirdo da Veiga, Dassi, DP, Droniou, 2021], [DP and Droniou, 2022])
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The three-dimensional case
Local discrete L2-products

m Emulating integration by part formulas, we define the local potentials

k+1 . vk k+1
Pgrad,T . Xgrad,T - P (T)’

Pt Xt o — PR3,

curl, T : Zcurl,T

P<kliv,T : Xﬁiv,T — PX(T)?

m Based on these potentials, we construct local discrete L?-products

()_CT,}’T).,T = / Perxp -P.,TyT +SeT (J_CT,yT) Ve € {grad, curl, div}
Y - Y 2

consistency stability

m The L2%-products are built to be polynomially exact
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The three-dimensional case
Global DDR complex

Lorad, i G) X c, " Dy X 0
R— X — X — X — P(T) —> {0}

“—grad,h curl,h =

Let 75, be a polyhedral mesh with elements and faces of trivial topology
Global DDR spaces are defined gluing boundary components:

k k k
Xgrad,h’ lcurl,h’ Xdiv,h

m Global operators are obtained collecting local components:
k. yk k k. yk k k. yk k
Qh . Xgrad,h - X gh X - Kdiv,h’ Dh . Xdiv,h - P (7;1)

Zcurl,h? “curl,h

m Global L?-products (-, )., are obtained assembling element-wise
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Exactness of the global three-dimensional DDR complex

k
Lgrad,h

D}, 0
R > X gradh 1 url,h —> Xdlvh E— Pk((];l) — {0}
m The global DDR complex satisfies:

Q connected (bg=1) = Im!{g‘rad’h = KerQ';l,
no “tunnels” crossing Q (b =0) = Im Gk = Keer
no “voids” contained in Q (b2 =0) = Im Ck Ker DF,

QCR? (b3=0) = ImDk = P*(75)

m The latter results can be generalized to non-trivial topologies

30/41



Exactness of the global three-dimensional DDR complex

k
Lgrad,h

Dk 0
R > X gradh 1 url, 2 —> Xdlvh —h> Pk((ﬁz) — {0}

m The global DDR complex satisfies:

Q connected (bg=1) = Im!{g‘rad’h = KerQ';l,
no “tunnels” crossing Q (b =0) = Im Gk = Keer
no “voids” contained in Q (b2 =0) = Im Ck Ker DF,
QcR? (b3 =0) = ImDf =P*(7p)
m The latter results can be generalized to non-trivial topologies

m We next discuss other key results focusing on magnetostatics
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Discrete uniform Poincaré inequalities

m Let (Ker Ck)l be the orthogonal of KerCh in X for (-, )eurl,h. Then,

—curlh
by =0 = Cj : (KerC})* — Ker D} is an isomorphism
m If, moreover, by = 0, there is C > 0 independent of & s.t.
2y lleurtn < CICHYllaiva V2, € (Ker C3)*

with |[||le., norm induced by (-,-)e.» ON th
m Similar results can be proved for the gradient and the divergence
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Adjoint consistency

Adjoint consistency measures the failure to satisfy a global IBP. For the curl,
/w~cur1v—/curlww=0ifwxn:Oon 0Q
Q Q

Theorem (Adjoint consistency for the curl)

Let Ecurt.n ¢ (CO(Q)% N Hy(curl; Q)) ngwl’h — R bes.t.

(7K k k
Ecut,h(W,v,,) = (ldiv’hw,ghgh)div,h - /chrlw “Pean¥n

Then, for all w € C°(Q)> N Hy(curl; Q) s.t. w € H**2(7,)3: Yy, € XX

curl,h’

(Eeurtss 9, 2,)1 < CH (112 leartn + ICER, laivan)
with C independent of h.

Similar results can be proved for the gradient and the divergence
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Discrete problem |

m With u =1, we seek (H, A) € H(curl; Q) x H(div; Q) s.t.
/H-T—/A-curlrzo V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q
m The DDR scheme is obtained substituting

H(div; Q) « X*

) k
H(curl; Q) « X Xivn

Zcurl,h?

and

k
/H-T — (H,,T;)curl,h> /curlr~v — (Ch7ys V) div. ks
Q Q

/divw divv<—/Dflmh Dl;lgh, /J-v(—/J'Pl:iiv,hKh
Q Q Q Q
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Discrete problem Il

= The discrete problem reads: Find (H,,A,) € X, x X5, st.

=div,

(ﬂh’zh)curl,h - (Ahagzzh)div,h =0 vzh € X

Zcurl,h’

(Qiﬂh»zh)div,h*‘/l) A, Div, =1y(v,) Vv, ezléiv,h

m Stability hinges on the exactness of the portion

—curl h

—d1v h

which requires by =0

m For by # 0, we need to add orthogonality to harmonic forms

Dy 0
— Pk(T) —— {0},
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Analysis |

Theorem (Stability)

Let Q c R? be an polyhedral connected domain s.t. by = b, = 0 and set

An((oy, 1), (T),))) =

(gh’zh)curl,h - (Eh’gzzh)div,h + (gzgh’zh)div,h +/ Dzzh Dzzh
Q

Then, it holds: ¥(a,,u,) € X5\, x X5,
An((ay.up,), (T,,v,))
(e u)lla < € sup T T
@) XX 0oy T )l

with C independent of h and

k
s v )W = 1Ty s + NCRT Wi+ 12 i + IDGYL 113 2 -
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Analysis |

Theorem (Error estimate for the magnetostatics problem)

Assume b1 = by=0, HeC%(Q)3>N H**2(7;)3, A€ C°(Q)3x H*2(T,)3.
Then, we have the following error estimate:

WI(H,, - I H Ay = IS Al < CHE,

with C > 0 independent of h.
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Numerical examples
Energy error vs. meshsize
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Open-source implementation available in HArDCore3D
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https://github.com/jdroniou/HArDCore

Conclusions and perspectives

m Novel approach to approximate PDEs relating to the de Rham complex
m Key features: support of general polyhedral meshes and high-order

m Novel computational strategies made possible
L]

Natural extensions to variable coefficients and nonlinearities

Formalization using differential forms (ongoing)

Development of novel complexes (e.g., elasticity, Hessian,...)

Applications (possibly beyond continuum mechanics)
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