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Outline

Basic notions



A model problem

» Let Q c R? d > 1, denote an open bounded connected polytopal set
» Let f: Q — R denote a given source term
» We consider the Poisson problem: Find u : Q — R s.t.

-Au=f in
u=20 on 0Q

where we recall that the Laplace operator is defined as

d
0%u
Au :=Z 5
i1 9%

o5



Advantages of the weak formulation

v

Let, for the moment being, d =1 and Q = (0,1)
The Poisson problem reads in this case: Find u : [0,1] — R s.t.

v

d2 .
—d—x'; = f in (0,1),
u)=u1)=0

v

This problem is meaningful if f € C°([0,1]) and u € C2([0, 1])

This is however not representative of real-life problems, where the
source term can be discontinuous!

v

v

The weak formulation covers this (and other) important case(s)



Weak derivatives |

» For any function ¢ € C*(Q), we define its support by

supp(¢) = {x € Q : ¢(x) # 0}
> Denote by C;°(€2) the set of functions with compact support in Q
Cy(Q) = {¢ € C7(Q) : supp(¢) is a compact subset of Q},

i.e., functions in C;°(€2) vanish near 9Q

> We define the set of locally Lebesgue integrable functions

Ly, (Q) = {f : /K | f(x)|dx < +oo for all compact K C Q}



Weak derivatives |l

Definition (Weak first partial derivative and weak gradient)

We say that v € Llloc(Q) has weak partial derivative w.r. to the ith
variable if there exists w € Llloc(Q) s.t.

/Qw(x)qﬁ(x)dx = —‘/Qv(x)ag—)(;)dx Vo € C(Q)

and we set
oV = w.

If v function has weak partial derivatives with respect to the ith variable

for any 1 <i < d, we define its weak gradient

(9iv

Vvi=| .
de



Hilbert spaces |

Definition (Inner product space)

A inner product space is a vector space V over R together with an inner
product (-, ")y, i.e., amap (- )y : VxV — Rs.t., for all (u,v,z) € U and
all @ € R, the following properties hold:

(u> V)V = (V, M)Vv (Symmetry)
(au,v)y = a(u,v)y and (u+v,2)y = (u, 2)v + (v, 2)v, (Linearity)
(v, v)y 20 and (v,v)y =0 iff v = 0. (Positivity)

We denote by || - ||y the norm induced by the inner product on V.

Lemma (Cauchy—Schwarz inequality)
Let (V,(-,-)v) be an inner-product space. Then, for all u,v € V,

@, vIv| < flully (Iv]lv.

A similar inquality is valid for any positive semi-definite bilinear form on
VxV.



Hilbert spaces Il

Definition (Hilbert space)

A Hilbert space is an inner product space (V, (-, -)y) that is complete with
respect to the distance function defined by the norm, i.e., every Cauchy
sequence converges in V.

We recall that a Cauchy sequence in this context is a sequence
(@n)nen € VN sit., for all € > 0, there exists N € N s.t., for all n,m > N,

”¢m - ¢n||V <e€.



The space of finite energy functions for the Poisson
problem |

> Let || - [lL2(@) map a given function v: Q — R on

1
oo = ( |v(x)|2dx)2
Q
> We define the Lebesgue space of square-integrable functions
L*(Q) = {v Q>R Y2 < +oo}
» The space of finite energy functions for the Poisson problem is

H'(Q) ={veL*Q): dvel*(Q) V1<i<d}



The space of finite energy functions for the Poisson
problem Il

» We equip H'(Q) with the following inner product:

(u, V) () = ‘/Qu(x)v(x)dx + /Q Vu(x) - Vv(x)dx

» The corresponding norm is

1

Wl = (W + W) with i) = V72

» It can be proved that (H'(Q), (-, )H1(q)) is a Hilbert space



Boundary conditions and Poincaré inequality

» Finite energy functions that vanish on dQ are collected in the space
Hi(Q):={ve H(Q) : vjsq = 0}

» A crucial result is the following Poincare inequality: There exists Cgq
only depending on Q s.t.

IVllz2) < Calvlimi@) Yv e Hy(Q)

» As a result, | - [g1(q) is a norm on H}(Q)



Weak formulation

v

Let f € L%(Q), which includes possibly discontinuous source terms
Set U:=Hj(Q)and let a: UxU - Rand €:U — R bes.t.

v

a(u,v) :=‘/Qu(x)v(x)dx, £(v) :=‘/Qf(x)dx

v

The weak formulation of our model problem reads:

FindueUs.t. a(uv)=£€v) VYvelU

v

It can be proved that u minimises the energy

D(v) = %a(v, v) —£(v)



Well-posedness |

Lemma (Lax—Milgram)

Given a Hilbert space (V, (-, -)y), assume that there exist strictly positive
real numbers «, y, and L s.t.

alvlly < a(v,v) Vv eV, (Coercivity)
la(u, v)| < yllullvivilv Y(u,v) € V2, (Boundedness of a)
[t(W)| < L|v|lv Vv e V. (Boundedness of £)

Then, the problem:
FindueV st. a(u,v)=£€v) VYveV

admits a unique solution which satisfies the a priori estimate

L
vily < —.
a



Well-posedness |l

Theorem (Well-posedness of the Poisson problem)

The Poisson problem is well-posed, and it holds

1
u < — .
i@y < e e



Well-posedness Il

» Using Poincare's inequality, we have for all v € U,
e lhe = e (I912210) + V1211 < 1991122 g0 = v, v,

that is, a is coercive with @ = 1/(1 + C2)

» Moreover, for all (u,v) € U2, using the Cauchy-Schwarz inequality,

la(u, V)| < |lullLz@)lViiLz) < lullar@llvIia: @),

i.e., a is bounded with y =1

» Finally, using again Poincaré’s inequality, for all v € U

< N Allezeliviice) < 1 llL2@lvlla @)

)] = ‘ /Q FOm(dx

which shows that £ is bounded with L = || f]lz2(q)



Outline

Abstract convergence analysis



Setting

Definition (Continuous problem)

Let a Hilbert space H, a continuous bilinear forma: HX H —» R, and a
continuous linear form £ : H — R be given. The problem we aim at
approximating is

Findue Hst. a(v)=4£6v) VveH. (11)

Definition (Discrete problem)

Let a vector space Xj, with norm || - [|x,,, a bilinear form
ap : Xp X X, > R, and a linear form €5, : X;, —» R be given. The
approximation of problem (II) is

Find up, € X, s.t.  an(up, vi) = th(v)) Vv, € Xp, (Hh)

with h discretisation parameter s.t. convergence is expected when 7 — 0.



Stability

Definition (Coercivity)
The bilinear form ay, is coercive for || - ||x, if

Ty > 0 s.t. y||vh||)2(h < ap(vp,vn) Vv € Xy,

A more general notion of stability is the following:
Definition (Inf-sup stability)
The bilinear form ay, is inf-sup stable for || - ||x, if

ap(up, v
Jy > 0 s.t. yllupllx, < sup M Yuy € Xp,.

weexm oy vallx;,

Remark
For optimal error estimates, one usually needs y to be independent of 4.



A priori bound on the discrete solution

Proposition (A priori bound on the discrete solution)

If ay, is inf-sup stable, my, : X, — R is linear, and wy, satisfies
an(wn, vi) = mp(ve)  VYvp € Xp,

: — 1 (Vi)
then, setting ||mh||X* = SUDy, ex,\ {0} %

Iwallx, <y~ llmllx=-
Proof.
Take v, € X, \{0} and write, by definition of || - ||X;,

an(Wn, va) _ (Vi)
Ve lx,, Ve llx;,

< llmallxy -

The proof is completed by taking the supremum over such vy,.



Consistency error and consistency

Definition (Consistency error and consistency)

Let u solve (IT) and take Iu € Xj,. The variational consistency error is
the linear form &, (u;-) : X — R defined by

En(u; ) = () — ap(Ipu, -).

Let now a family (Xp, ap, €h)n—o of spaces and forms be given, and
consider the corresponding discrete problems (IT;). Consistency holds if

16nss )l — 0 as b — 0.

Remark (Choice of Iju)

No particular property is required here on I,u; it could actually be any
element of Xj,. However, for the estimates that follow to be meaningful,
it is expected that Iu is computed from u, so that information on Iu
encodes meaningful information on u itself.



Abstract energy error estimate |

Theorem (Abstract energy error estimate and convergence)

Assume ay, inf-sup stable. Let u be a solution to (I1) and Iyu € Xy,. If uy,
is a solution to (I1j) then

-1
lan — Tnullx,, < ¥~ 118G e

As a consequence, letting a family (X, an, {n)n—o of spaces and forms be
given, if consistency holds, then we have convergence in the following
sense:

llup, — Inullx, — 0 as h — 0.



Abstract energy error estimate |l

Proof.
For any v, € Xj, the scheme (IT;,) yields

ap(up — Inu, viy) = ap(up, viy) — ap(Ipu, viy) = C,(vy) — ap(Ipu, vy).

Recalling the definition of the consistency error, the error uj, — Inu can
then be characterised as the solution to the following error equation:

ap(up — Inu, vy) = Ep(u; vy) Vv, € Xp. (Merr, )

The proof is completed by writing the a priori bound with my, = &;,(u; )
and wy, = uy — Ihu. O



Quasi-optimality of the error estimate

Remark
Let
|an (W, vi)

llanllx, xx, = —_—
wieXi\ (0} vn v\ (0} [Wallx, [Ivallx,

be the standard norm of the bilinear form aj. The error equation (ITeyy, )
shows that
16n (s lxxr < Nlanllx, xx;, Nlun = Inullx, -

Hence, if ||a||x, xx, and y remain bounded with respect to & as h — 0,
which is always the case in practice, the error estimate is quasi-optimal in
the sense that, for some C not depending on #, it holds that

CTHIERw; Mixx < Nun = Inullx, < ClIERw; ix-



Outline

Application to Hybrid High-Order methods



Features

v

Capability of handling general polyhedral meshes

v

Construction valid for arbitrary space dimensions

v

Arbitrary approximation order (including k = 0)

v

Robustness with respect to the variations of the physical coefficients

v

Reduced computational cost after hybridization

w[k+d-1
Naot,h = card(ﬁ)( d-1 )



Polyhedral meshes

Figure: Admissible meshes in 2d and 3d, and HHO solution on the
agglomerated 3d mesh



Model

problem

Let Q c R¥, d > 1, as before

For X c Q, we denote by (-, -)x the standard inner product of L?(X)
and set ||v]lx = vV(v,v)x. When X = Q, the subscript is omitted

We come back to the Poisson problem: Find u € H&(Q) s.t.
a(u,v) = (Vu, Vv) = (f,v) Vv € H&(Q)

Hereafter, a < b means a < Cb with C independent of h. a ~ b
meansa <b<a



Sobolev spaces

» For all p € [1, +o0] we set, for all x = (x1,...,x,) € R?,
1
d P
. (Z |xi|'°) if1<p <o
lxll, = { | &
max |x; if p=+co.
1sisd| d p

» Let X c R?. For all s € N, we define the Sobolev space
H¥(X) = {v e L*(X) : Ya € A3, 0%v € L*(X)}
with A% == {@ e N? : ||e||; < s}. By definition,
H°(X) = L*(X)
> The Sobolev norm ||-|lws.»(x) and seminorm |-|ys.»(x) are

Wllaseo = Y 10k, laseo = D 1197vlx

aeAy aeN" ||| =s



Projectors on local polynomial spaces |

» At the core of HHO are projectors on local polynomial spaces
» With X =T or X = F, the L’-projector n%l : LY(T) = Pl(X) is s.t.

(ﬂ?(’lv —v,w)x =0 for all w € PH(X)
» The elliptic projector 71'71-’1 s WLN(T) = PYT) is s.t.

(V(rp'v = v), Vw)r = 0 for all w € P/(T) and (z)'v = v, 1)y = 0



Projectors on local polynomial spaces Il

Theorem (Optimal approximation properties of projectors)
Foré € {0,1} and s € {&,...,1+ 1}, it holds for all T € Ty, and v € H*(T),

J -
v — ﬂf Vlgmry < by " vIEs @) vm € {0,...,s},
and, if s > 1,
&l s=m=3
|V—7I'T V|H"‘(‘TT) < hT |V|HS(T) Vm € {O,...,S—l},

where H™(Fr) = {v € L?(dT) : v\r € H™(F) VF € Fr} is the broken
Sobolev space on the boundary of T.

Proof.
See [Di Pietro and Droniou, 2017a, Di Pietro and Droniou, 2017b]. O



Computing ﬂ;’kﬂ from L?-projections of degree k

v

The following integration by parts formula is valid for all w € C®(T):

(Vv, Vw)r = —(v, Aw)r + Z v, Vw - nrp)r
Fe¥Fr

v

Specializing it to w € PK*(T'), we can write
1Lk+1 _ 0.k 0,k
(Vr v, Vw)r = =(n" v, Aw)r + Z (g viE, VW - nrE)F
Fe¥r

» Moreover, it can be easily seen that

1,k+1 Lk+1 0,k
(m * v=v,Dr = (7] * v—nv,r =0

Lk+1 k k
» Hence, n; **v can be computed from ng’ v and (7710,’ VIF)Fer !



Discrete unknowns

Figure: Q; for k € {0, 1,2}

> Let a polynomial degree k > 0 be fixed

» For all T € 7, we define the local space of discrete unknowns
Uk ={v; = or,(vF)Fres;) : vr € PX(T) and vp € PX(F) VF € 7}

> The local interpolator IX : HY(T) — Uk is s.t., for all v € H(T),

k 0,k
L&y = (225, 2% v per)



Local potential reconstruction

> Let T € 7;,. We define the local potential reconstruction operator
r;i»l :g’l; - Pk+1(T)

s.t. forall v, € Q; (r%”gT —vr,1)7 =0 and

(Vr%‘,HKT, Vw)r = —(vp, Aw)r + Z (e, Vw-nrp)r  Yw € PXYYT)
Fefr

» By construction, we have

k+1

k _ _Lk+1
rroolp=m

T

> r%*l o ﬁ has therefore optimal approximation properties in PK+1(T)



Stabilization |

» We would be tempted to approximate

k+1

ar(u,v) ~ (Vg uy, Vst )y

» This choice, however, is not stable in general. We consider instead

aT(ET’KT) = (Vr%("+1

g, Vg v +st(ug vy)

» The role of sy is to ensure ||-||1

1
2 . 2 2
lpllE 7 = IveliE + ) o llve = vrll7

T-coercivity with

Fe¥r F

k
Vv, € Uy



Stabilization I

Assumption (Stabilization bilinear form)

The bilinear form sz : Q’; X Q? — R satisfies the following properties:
(S1) Symmetry and positivity. sy is symmetric and positive semidefinite.
(S2) Stability. It holds, with hidden constant independent of & and T,

1
ar(vy,vp)? = llvplhr Vv € Uy
. . k+1 k
(S3) Polynomial consistency. For all w € P**/(T') and all v, € U7,

st(Lpw,vy) = 0.



Stabilization Il

Proposition (Consistency of sr)

Let T € T, and let sy denote a stabilisation bilinear form satisfying
assumptions (51)—(53). Let r € {0,...,k}. Then, there is a real number
C > 0 independent of both h and T s.t., for all v € H"**(T),

1
sT(ll}v, [’}v)? < Ch?r1 [V]gr+2(T)-



Stabilization IV

» The following stable choice violates polynomial consistency:

hd _
St g@T’ vr) = Z hFl(“F —ur, Ve — VT)F
Fe¥fr

» To circumvent this problem, we penalize the high-order differences

k k gk k+1
(5TKT’ (5TFKT)F67”T) = !TrT+ Yr—Yr

» The classical HHO stabilization bilinear form reads

sr(ug,vy) = D hp (605 = 65 pug, (6F = 6 p)vp)r
Fefr




Discrete problem

» Define the global space with single-valued interface unknowns
Uk = {v, = Or)rer, p)Fer,) -
vr € BX(T) VT € T, and vp € BK(F) VF ¢ ﬂ}
and its subspace with strongly enforced boundary conditions
QZ,O = {Kh EQZ tvp=0 VFEe ﬁb}

» The discrete problem reads: Find u, € Q’;lo s.t.

an(w,v,) = > arlupvy) = Y (fve)r Yy, €Uk,

TeTn TeT

» Well-posedness follows from coercivity and discrete Poincaré



Properties of ay |

Lemma (Properties of ay)
The bilinear form ay, enjoys the following properties:
(i) Stability and boundedness. For all v, € QZ’O it holds

. 1
“Kh”Lh = ”KhHa,h with ||Kh||a,h = ah(Kh’Kh)2~

(ii) Consistency. For allr € {0,...,k} and w € H3(Q) N H™*%(Q) s.t.
Aw € L3(Q),

sup |8h(W,Eh)| < hr+1 |W|H"+2(Q)»
vy UL v =1

where the hidden constant is independent of w and h, and the linear
form &, (w; ) : Q’Z o — R representing the conformity error is s.t.

En(w;v,) = —(Bw,vi) = an(Lyw, v,,)-



Properties of ay Il

v

Point (i) is an immediate consequence of the assumptions on sr

v

Letv, € Qlf;,o be s.t. ||y, llan = 1. For the sake of brevity, we let

y Lk+1
Wr = r%“[?w‘r = nT’k+ wr VT €T,

v

Integrating by parts element by element, we infer that

2

TeT,

2,

TeT,

—(Aw, vp,)

(Vw, Vvr)r — Z (Vw - nrF, VT)F)
Fe¥Fr

(Vw, Vvpr)r + Z (Vw - nrp,vr — VT)F)
Fe¥fr

» To insert vg into the second term, we have used the fact that vp =0
for all F € ﬂb while, for all F € F, s.t. F C 0Ty N 3Tz, Th # Tz,

(VW) -nrp + (YW1, - n1,p = 0



Properties of a Il

» Expanding ay then r#“gT according to the respective definitions,

we get

an(lfw,v,) = Z ((VWT, Vvr)r + Z (VWwr -nrp,vp — VT)F)

TeT; FeFr
+ Sh(lﬁW, Zh)

» Combining the above relations, we get

1En(w; vl
= Z ( Z (Vw —wr) - nrr,ve - VT)F) +sn (LW, v,,)
Te7;, \Fery

<

1 _1
D0 T BRIV =)l kg v = vrle

TeT, Fefr

K
+ |sn(Lw, vl




Properties of a; IV

> Repeated applications of the Cauchy-Schwarz inequality give

1En0w; )| < (Z Bl V0w wr)nzT) (Z IleiaT)

T e, T e
1 1
+sp(Ihw, [iw) 28, (v, )2

» Using the approximation properties of n;’kﬂ and of sy, we infer

1

1 2
1En(w; vl < B e (Z ww) + 1yl
TeT,

N

> Recalling that ||y, |lo,» = 1, the definition of a;, and the coercivity
property in point (i), the terms involving v,. and v, above are
bounded by a constant independent of 4 and point (ii) follows

O



Convergence |

Theorem (Energy error estimate)

Let (Mp,)neq denote a regular mesh sequence. Let a polynomial degree
k >0 be fixed. Letu € H&(Q) denote the exact solution, for which we
assume the additional regularity u € H™*2(Q) for somer € {0,...,k}. For
all h e H, let u, € g’;l’o denote the discrete solution with stabilisation
bilinear forms sy, T € Ty, satisfying assumptions (51)—(53). Then,

k 1
”Zh _Zhu”a,h <h™ |M|H’+2(Q)
where the hidden constant is independent of h and u.

Proof.

We invoke the abstract result with H = Hj (Q), a(u,v) = (Vu, Vv),

) =(f,v), X = Q’;l’o endowed with the norm ||+||a.pn, an = ap,

tp(v),) = (f,vn) and Iyu = [ﬁu. We notice that ay, is obviously coercive
for ||-|la.n with constant 1 and, since —Au = f, the consistency error is
exactly & (u; -). Hence, the error estimate follows using (ii). m]



Static

v

v

v

v

condensation |

Fix a basis for Q;‘l o With functions supported by only one T or F

Partition the discrete unknowns into element- and interface-based:

U, =

v
Ugi

h

h

Uy, solves the following linear system:

Azl

Uq,

h

F7.
0

Ugs

Aq; 7, is block-diagonal and SPD, hence inexpensive to invert



Static condensation I

This remark suggests a two-step solution strategy:

» Element unknowns are eliminated solving the local balances
» Face unknowns are obtained solving the global transmission problem
sc X T -
A} U?,‘, A'thA 7.7, F 7
with global system matrix

SC ._ T
A = Ag5 — Ag, ﬁ,Aﬁ,ﬁATh Fn

A;° is SPD and its stencil involves neighbours through faces



Numerical examples

2d test case, smooth solution, uniform refinement

100 F T T
102 T
10 3 -
107°F, 7
107 1 N
10 8 {
1079 1 4
lofH . {
—12
10 10-14 -
107 1072
107I -
107 7
1073 1
1070 3. 1 10 l
k=0
1077 F4.09 k=1 »
k=2 10 I
1079 519 k=3
——k=4 10712
1071 L . : E| . . :
1072.5 ]072 ]071.5 ]072.5 ‘1072 ]071.3

Figure: 2d test case, trigonometric solution. Energy (left) and L2-norm (right)
of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom)
mesh families



Numerical examples |

3d industrial test case, adaptive refinement, cost assessment

Figure: Geometry (left), numerical solution (right, top) and final adaptive mesh
(right, bottom) for the comb-drive actuator test case
[Di Pietro and Specogna, 2016]



Numerical examples Il

3d industrial test case, adaptive refinement, cost assessment

-m- k=0un
&k =0ad
-e-k=1un
——k=1ad
-x-k=2un
——k=2ad

104

10°

108

(a) Capacitance vs. Ngof

3.5

-m-k=0un ||
—a—k=0ad

-e-k=1un
——k=1ad
-%x-k=2un

——k=2ad

10°

10!

10%

10%

(b) Capacitance vs. computing

time

Figure: Results for the comb drive benchmark.




Numerical examples Il

3d industrial test case, adaptive refinement, cost assessment

T T T T . . . . T T T
1,500 || =3 pre-processing 1,500 | [E=3 pre-processing | 1,500 |{E=3 pre-processing

=1 assembling m assembling == assembling

=  solution = solution = solution

B post-processing B post-processing B post-processing
1,000 |- 1,000 1,000 -

500 500 500
. . . .

(c) k=2

Figure: Computing wall time (s) vs. number of DOFs for the comb drive
benchmark, AGMG solver.



Numerical examples |

3d test case, singular solution, adaptive coarsening

Figure: Fichera corner benchmark, adaptive mesh coarsening
[Di Pietro and Specogna, 2016]



Numerical examples Il

3d test case, singular solution, adaptive coarsening

-m- k=0un -®-k=0un |-

o —m—k=0ad . 3 =0ad
10707 ¢ ce-k=lun|  107°F ce-k=lu |-
——k=1ad N —o—k=1ad |-
1071 - gt 1
1073 N -
o ut
- 3
\.\ ]
10-15 |- e, 4 '\. 1

.“ ‘e
I I 1074 b . | =

10° 106 10° 108
(a) Energy-error vs. Nyofs (b) L2-error vs. Nypdof

Figure: Error vs. number of DOFs for the Fichera corner benchmark, adaptively
coarsened meshes
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