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A model problem

I Let Ω ⊂ Rd, d ≥ 1, denote an open bounded connected polytopal set

I Let f : Ω→ R denote a given source term

I We consider the Poisson problem: Find u : Ω→ R s.t.

−∆u = f in Ω,

u = 0 on ∂Ω

where we recall that the Laplace operator is defined as

∆u B
d∑
i=1

∂2u
∂x2i



Advantages of the weak formulation

I Let, for the moment being, d = 1 and Ω = (0, 1)

I The Poisson problem reads in this case: Find u : [0, 1] → R s.t.

−
d2u
dx2
= f in (0, 1),

u(0) = u(1) = 0

I This problem is meaningful if f ∈ C0([0, 1]) and u ∈ C2([0, 1])

I This is however not representative of real-life problems, where the
source term can be discontinuous!

I The weak formulation covers this (and other) important case(s)



Weak derivatives I

I For any function φ ∈ C∞(Ω), we define its support by

supp(φ) B {x ∈ Ω : φ(x) , 0}

I Denote by C∞0 (Ω) the set of functions with compact support in Ω

C∞0 (Ω) B {φ ∈ C∞(Ω) : supp(φ) is a compact subset of Ω} ,

i.e., functions in C∞0 (Ω) vanish near ∂Ω

I We define the set of locally Lebesgue integrable functions

L1
loc(Ω) B

{
f :

∫
K

| f (x)|dx < +∞ for all compact K ⊂ Ω
}



Weak derivatives II

Definition (Weak first partial derivative and weak gradient)
We say that v ∈ L1

loc(Ω) has weak partial derivative w.r. to the ith
variable if there exists w ∈ L1

loc(Ω) s.t.∫
Ω

w(x)φ(x)dx = −
∫
Ω

v(x)
∂φ(x)
∂xi

dx ∀φ ∈ C∞0 (Ω)

and we set
∂iv B w.

If v function has weak partial derivatives with respect to the ith variable
for any 1 ≤ i ≤ d, we define its weak gradient

∇v B
©­­«
∂iv
...
∂dv

ª®®¬



Hilbert spaces I

Definition (Inner product space)
A inner product space is a vector space V over R together with an inner
product (·, ·)V , i.e., a map (·, ·)V : V ×V → R s.t., for all (u, v, z) ∈ U3 and
all α ∈ R, the following properties hold:

(u, v)V = (v, u)V , (Symmetry)

(αu, v)V = α(u, v)V and (u + v, z)V = (u, z)V + (v, z)V , (Linearity)

(v, v)V ≥ 0 and (v, v)V = 0 iff v = 0. (Positivity)

We denote by ‖ · ‖V the norm induced by the inner product on V .

Lemma (Cauchy–Schwarz inequality)
Let (V, (·, ·)V ) be an inner-product space. Then, for all u, v ∈ V ,

|(u, v)V | ≤ ‖u‖V ‖v‖V .

A similar inquality is valid for any positive semi-definite bilinear form on
V × V .



Hilbert spaces II

Definition (Hilbert space)
A Hilbert space is an inner product space (V, (·, ·)V ) that is complete with
respect to the distance function defined by the norm, i.e., every Cauchy
sequence converges in V .

We recall that a Cauchy sequence in this context is a sequence
(φn)n∈N ∈ VN s.t., for all ε > 0, there exists N ∈ N s.t., for all n,m ≥ N,
‖φm − φn‖V < ε .



The space of finite energy functions for the Poisson
problem I

I Let ‖ · ‖L2(Ω) map a given function v : Ω→ R on

‖v‖L2(Ω) B

(∫
Ω

|v(x)|2dx
) 1

2

I We define the Lebesgue space of square-integrable functions

L2(Ω) B
{
v : Ω→ R : ‖v‖L2(Ω) < +∞

}
I The space of finite energy functions for the Poisson problem is

H1(Ω) B
{
v ∈ L2(Ω) : ∂iv ∈ L2(Ω) ∀1 ≤ i ≤ d

}



The space of finite energy functions for the Poisson
problem II

I We equip H1(Ω) with the following inner product:

(u, v)H1(Ω) B

∫
Ω

u(x)v(x)dx +
∫
Ω

∇u(x) · ∇v(x)dx

I The corresponding norm is

‖v‖H1(Ω) B
(
‖v‖2L2(Ω)

+ |v |2H1(Ω)

) 1
2

with |v |H1(Ω) B ‖∇v‖L2(Ω)d

I It can be proved that (H1(Ω), (·, ·)H1(Ω)) is a Hilbert space



Boundary conditions and Poincaré inequality

I Finite energy functions that vanish on ∂Ω are collected in the space

H1
0 (Ω) B

{
v ∈ H1(Ω) : v |∂Ω = 0

}
I A crucial result is the following Poincare inequality: There exists CΩ

only depending on Ω s.t.

‖v‖L2(Ω) ≤ CΩ |v |H1(Ω) ∀v ∈ H1
0 (Ω)

I As a result, | · |H1(Ω) is a norm on H1
0 (Ω)



Weak formulation

I Let f ∈ L2(Ω), which includes possibly discontinuous source terms

I Set U B H1
0 (Ω) and let a : U ×U → R and ` : U → R be s.t.

a(u, v) B
∫
Ω

u(x)v(x)dx, `(v) B

∫
Ω

f (x)dx

I The weak formulation of our model problem reads:

Find u ∈ U s.t. a(u, v) = `(v) ∀v ∈ U

I It can be proved that u minimises the energy

Φ(v) B
1

2
a(v, v) − `(v)



Well-posedness I

Lemma (Lax–Milgram)
Given a Hilbert space (V, (·, ·)V ), assume that there exist strictly positive
real numbers α, γ, and L s.t.

α‖v‖2V ≤ a(v, v) ∀v ∈ V, (Coercivity)

|a(u, v)| ≤ γ‖u‖V ‖v‖V ∀(u, v) ∈ V2, (Boundedness of a)

|`(v)| ≤ L‖v‖V ∀v ∈ V . (Boundedness of `)

Then, the problem:

Find u ∈ V s.t. a(u, v) = `(v) ∀v ∈ V

admits a unique solution which satisfies the a priori estimate

‖v‖V ≤
L
α
.



Well-posedness II

Theorem (Well-posedness of the Poisson problem)
The Poisson problem is well-posed, and it holds

‖u‖H1(Ω) ≤
1

1 + C2
Ω

‖ f ‖L2(Ω).



Well-posedness III

I Using Poincare’s inequality, we have for all v ∈ U,

1

1 + C2
Ω

‖u‖2H1(Ω)
=

1

1 + C2
Ω

(
‖v‖2L2(Ω)

+ |v |2H1(Ω)

)
≤ ‖∇v‖2

L2(Ω)d
= a(v, v),

that is, a is coercive with α = 1/(1 + C2
Ω
)

I Moreover, for all (u, v) ∈ U2, using the Cauchy–Schwarz inequality,

|a(u, v)| ≤ ‖u‖L2(Ω)‖v‖L2(Ω) ≤ ‖u‖H1(Ω)‖v‖H1(Ω),

i.e., a is bounded with γ = 1

I Finally, using again Poincaré’s inequality, for all v ∈ U

|`(v)| =

����∫
Ω

f (x)v(x)dx
���� ≤ ‖ f ‖L2(Ω)‖v‖L2(Ω) ≤ ‖ f ‖L2(Ω)‖v‖H1(Ω),

which shows that ` is bounded with L = ‖ f ‖L2(Ω)
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Setting

Definition (Continuous problem)
Let a Hilbert space H, a continuous bilinear form a : H × H → R, and a
continuous linear form ` : H → R be given. The problem we aim at
approximating is

Find u ∈ H s.t. a(u, v) = `(v) ∀v ∈ H. (Π)

Definition (Discrete problem)
Let a vector space Xh with norm ‖ · ‖Xh

, a bilinear form
ah : Xh × Xh → R, and a linear form `h : Xh → R be given. The
approximation of problem (Π) is

Find uh ∈ Xh s.t. ah(uh, vh) = `h(vh) ∀vh ∈ Xh (Πh)

with h discretisation parameter s.t. convergence is expected when h→ 0.



Stability

Definition (Coercivity)
The bilinear form ah is coercive for ‖ · ‖Xh

if

∃γ > 0 s.t. γ‖vh ‖
2
Xh
≤ ah(vh, vh) ∀vh ∈ Xh .

A more general notion of stability is the following:

Definition (Inf–sup stability)
The bilinear form ah is inf–sup stable for ‖ · ‖Xh

if

∃γ > 0 s.t. γ‖uh ‖Xh
≤ sup

vh ∈Xh\{0}

ah(uh, vh)
‖vh ‖Xh

∀uh ∈ Xh .

Remark
For optimal error estimates, one usually needs γ to be independent of h.



A priori bound on the discrete solution

Proposition (A priori bound on the discrete solution)
If ah is inf–sup stable, mh : Xh → R is linear, and wh satisfies

ah(wh, vh) = mh(vh) ∀vh ∈ Xh,

then, setting ‖mh ‖X?
h
B supvh ∈Xh\{0}

|mh (vh ) |
‖vh ‖Xh

,

‖wh ‖Xh
≤ γ−1‖mh ‖X?

h
.

Proof.
Take vh ∈ Xh\{0} and write, by definition of ‖ · ‖X?

h
,

ah(wh, vh)

‖vh ‖Xh

=
mh(vh)

‖vh ‖Xh

≤ ‖mh ‖X?
h
.

The proof is completed by taking the supremum over such vh. �



Consistency error and consistency

Definition (Consistency error and consistency)
Let u solve (Π) and take Ihu ∈ Xh. The variational consistency error is
the linear form Eh(u; ·) : Xh → R defined by

Eh(u; ·) = `h(·) − ah(Ihu, ·).

Let now a family (Xh, ah, `h)h→0 of spaces and forms be given, and
consider the corresponding discrete problems (Πh). Consistency holds if

‖Eh(u; ·)‖X?
h
→ 0 as h→ 0.

Remark (Choice of Ihu)
No particular property is required here on Ihu; it could actually be any
element of Xh. However, for the estimates that follow to be meaningful,
it is expected that Ihu is computed from u, so that information on Ihu
encodes meaningful information on u itself.



Abstract energy error estimate I

Theorem (Abstract energy error estimate and convergence)
Assume ah inf–sup stable. Let u be a solution to (Π) and Ihu ∈ Xh. If uh
is a solution to (Πh) then

‖uh − Ihu‖Xh
≤ γ−1‖Eh(u; ·)‖X?

h
.

As a consequence, letting a family (Xh, ah, `h)h→0 of spaces and forms be
given, if consistency holds, then we have convergence in the following
sense:

‖uh − Ihu‖Xh
→ 0 as h→ 0.



Abstract energy error estimate II

Proof.
For any vh ∈ Xh, the scheme (Πh) yields

ah(uh − Ihu, vh) = ah(uh, vh) − ah(Ihu, vh) = `h(vh) − ah(Ihu, vh).

Recalling the definition of the consistency error, the error uh − Ihu can
then be characterised as the solution to the following error equation:

ah(uh − Ihu, vh) = Eh(u; vh) ∀vh ∈ Xh . (Πerr,h)

The proof is completed by writing the a priori bound with mh = Eh(u; ·)
and wh = uh − Ihu. �



Quasi-optimality of the error estimate

Remark
Let

‖ah ‖Xh×Xh
B sup

wh ∈Xh\{0},vh ∈Yh\{0}

|ah(wh, vh)|

‖wh ‖Xh
‖vh ‖Xh

be the standard norm of the bilinear form ah. The error equation (Πerr,h)
shows that

‖Eh(u; ·)‖X?
h
≤ ‖ah ‖Xh×Xh

‖uh − Ihu‖Xh
.

Hence, if ‖ah ‖Xh×Xh
and γ remain bounded with respect to h as h→ 0,

which is always the case in practice, the error estimate is quasi-optimal in
the sense that, for some C not depending on h, it holds that

C−1‖Eh(u; ·)‖X?
h
≤ ‖uh − Ihu‖Xh

≤ C‖Eh(u; ·)‖X?
h
.
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Features

I Capability of handling general polyhedral meshes

I Construction valid for arbitrary space dimensions

I Arbitrary approximation order (including k = 0)

I Robustness with respect to the variations of the physical coefficients

I Reduced computational cost after hybridization

Ndof,h = card(F i
h )

(
k + d − 1

d − 1

)



Polyhedral meshes

Figure: Admissible meshes in 2d and 3d, and HHO solution on the
agglomerated 3d mesh



Model problem

I Let Ω ⊂ Rd, d ≥ 1, as before

I For X ⊂ Ω, we denote by (·, ·)X the standard inner product of L2(X)
and set ‖v‖X B

√
(v, v)X . When X = Ω, the subscript is omitted

I We come back to the Poisson problem: Find u ∈ H1
0 (Ω) s.t.

a(u, v) B (∇u,∇v) = ( f , v) ∀v ∈ H1
0 (Ω)

I Hereafter, a . b means a ≤ Cb with C independent of h. a ' b
means a . b . a



Sobolev spaces

I For all p ∈ [1,+∞] we set, for all x = (x1, . . . , xn) ∈ Rd,

‖x‖p B


(

d∑
i=1

|xi |p
) 1

p

if 1 ≤ p < +∞,

max
1≤i≤d

|xi | if p = +∞.

I Let X ⊂ Rd. For all s ∈ N, we define the Sobolev space

Hs(X) B
{
v ∈ L2(X) : ∀α ∈ As

d, ∂
αv ∈ L2(X)

}
with As

d B
{
α ∈ Nd : ‖α‖1 ≤ s

}
. By definition,

H0(X) = L2(X)

I The Sobolev norm ‖·‖W s,p (X) and seminorm |·|W s,p (X) are

‖v‖H s (X) B
∑

α∈As
d

‖∂αv‖X, |v |H s (X) B
∑

α∈Nn, ‖α ‖1=s

‖∂αv‖X



Projectors on local polynomial spaces I

I At the core of HHO are projectors on local polynomial spaces

I With X = T or X = F, the L2-projector π0,lX : L1(T) → Pl(X) is s.t.

(π0,lX v − v,w)X = 0 for all w ∈ Pl(X)

I The elliptic projector π1,lT : W1,1(T) → Pl(T) is s.t.

(∇(π1,lT v − v),∇w)T = 0 for all w ∈ Pl(T) and (π1,lT v − v, 1)T = 0



Projectors on local polynomial spaces II

Theorem (Optimal approximation properties of projectors)
For ξ ∈ {0, 1} and s ∈ {ξ, . . . , l + 1}, it holds for all T ∈ Th and v ∈ Hs(T),

|v − π
ξ,l
T v |Hm(T ) . hs−m

T |v |H s (T ) ∀m ∈ {0, . . . , s},

and, if s ≥ 1,

|v − π
ξ,l
T v |Hm(FT ) . h

s−m− 1
2

T |v |H s (T ) ∀m ∈ {0, . . . , s − 1},

where Hm(FT ) B
{
v ∈ L2(∂T) : v |F ∈ Hm(F) ∀F ∈ FT

}
is the broken

Sobolev space on the boundary of T .

Proof.
See [Di Pietro and Droniou, 2017a, Di Pietro and Droniou, 2017b]. �



Computing π1,k+1
T from L2-projections of degree k

I The following integration by parts formula is valid for all w ∈ C∞(T):

(∇v,∇w)T = −(v,∆w)T +
∑
F ∈FT

(v,∇w · nTF )F

I Specializing it to w ∈ Pk+1(T), we can write

(∇π1,k+1T v,∇w)T = −(π0,kT v,∆w)T +
∑
F ∈FT

(π0,kF v |F,∇w · nTF )F

I Moreover, it can be easily seen that

(π1,k+1T v − v, 1)T = (π
1,k+1
T v − π0,kT v, 1)T = 0

I Hence, π1,k+1T v can be computed from π0,kT v and (π0,kF v |F )F ∈FT !



Discrete unknowns
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Figure: Uk
T

for k ∈ {0, 1, 2}

I Let a polynomial degree k ≥ 0 be fixed

I For all T ∈ Th, we define the local space of discrete unknowns

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ P

k(T) and vF ∈ P
k(F) ∀F ∈ FT

}
I The local interpolator IkT : H1(T) → Uk

T is s.t., for all v ∈ H1(T),

IkT v B (π
0,k
T v, (π0,kF v |F )F ∈FT )



Local potential reconstruction

I Let T ∈ Th. We define the local potential reconstruction operator

rk+1T : Uk
T → P

k+1(T)

s.t. for all vT ∈ Uk
T , (rk+1T vT − vT , 1)T = 0 and

(∇rk+1T vT ,∇w)T = −(vT ,∆w)T +
∑
F ∈FT

(vF,∇w · nTF )F ∀w ∈ Pk+1(T)

I By construction, we have

rk+1T ◦ IkT = π
1,k+1
T

I rk+1T ◦ IkT has therefore optimal approximation properties in Pk+1(T)



Stabilization I

I We would be tempted to approximate

a |T (u, v) ≈ (∇rk+1T uT ,∇rk+1T vT )T

I This choice, however, is not stable in general. We consider instead

aT (uT , vT ) B (∇rk+1T uT ,∇rk+1T vT )T + sT (uT , vT )

I The role of sT is to ensure ‖·‖1,T -coercivity with

‖vT ‖
2
1,T B ‖∇vT ‖2T +

∑
F ∈FT

1

hF
‖vF − vT ‖

2
F ∀vT ∈ Uk

T



Stabilization II

Assumption (Stabilization bilinear form)
The bilinear form sT : Uk

T ×Uk
T → R satisfies the following properties:

(S1) Symmetry and positivity. sT is symmetric and positive semidefinite.

(S2) Stability. It holds, with hidden constant independent of h and T ,

aT (vT , vT )
1
2 ' ‖vT ‖1,T ∀vT ∈ Uk

T .

(S3) Polynomial consistency. For all w ∈ Pk+1(T) and all vT ∈ Uk
T ,

sT (IkTw, vT ) = 0.



Stabilization III

Proposition (Consistency of sT )
Let T ∈ Th and let sT denote a stabilisation bilinear form satisfying
assumptions (S1)–(S3). Let r ∈ {0, . . . , k}. Then, there is a real number
C > 0 independent of both h and T s.t., for all v ∈ Hr+2(T),

sT (IkT v, IkT v)
1
2 ≤ Chr+1T |v |Hr+2(T ).



Stabilization IV

I The following stable choice violates polynomial consistency:

shdgT (uT , vT ) B
∑
F ∈FT

h−1F (uF − uT , vF − vT )F

I To circumvent this problem, we penalize the high-order differences

(δkT vT , (δ
k
TFvT )F ∈FT ) B IkT rk+1T vT − vT

I The classical HHO stabilization bilinear form reads

sT (uT , vT ) B
∑
F ∈FT

h−1F ((δ
k
T − δ

k
TF )uT , (δ

k
T − δ

k
TF )vT )F



Discrete problem

I Define the global space with single-valued interface unknowns

Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ P
k(T) ∀T ∈ Th and vF ∈ P

k(F) ∀F ∈ Fh
}

and its subspace with strongly enforced boundary conditions

Uk
h,0 B

{
vh ∈ Uk

h : vF ≡ 0 ∀F ∈ F b
h

}
I The discrete problem reads: Find uh ∈ Uk

h,0
s.t.

ah(uh, vh) B
∑
T ∈Th

aT (uT , vT ) =
∑
T ∈Th

( f , vT )T ∀vh ∈ Uk
h,0

I Well-posedness follows from coercivity and discrete Poincaré



Properties of ah I

Lemma (Properties of ah)
The bilinear form ah enjoys the following properties:

(i) Stability and boundedness. For all vh ∈ Uk
h,0

it holds

‖vh ‖1,h ' ‖vh ‖a,h with ‖vh ‖a,h B ah(vh, vh)
1
2 .

(ii) Consistency. For all r ∈ {0, . . . , k} and w ∈ H1
0 (Ω) ∩ Hr+2(Ω) s.t.

∆w ∈ L2(Ω),

sup
vh ∈U

k
h,0
, ‖vh ‖a,h=1

|Eh(w; vh)| . hr+1 |w |Hr+2(Ω),

where the hidden constant is independent of w and h, and the linear
form Eh(w; ·) : Uk

h,0
→ R representing the conformity error is s.t.

Eh(w; vh) B −(∆w, vh) − ah(Ikhw, vh).



Properties of ah II
I Point (i) is an immediate consequence of the assumptions on sT
I Let vh ∈ Uk

h,0
be s.t. ‖vh ‖a,h = 1. For the sake of brevity, we let

w̌T B rk+1T IkTw |T = π
1,k+1
T w |T ∀T ∈ Th

I Integrating by parts element by element, we infer that

−(∆w, vh) =
∑
T ∈Th

(
(∇w,∇vT )T −

∑
F ∈FT

(∇w · nTF, vT )F

)
=

∑
T ∈Th

(
(∇w,∇vT )T +

∑
F ∈FT

(∇w · nTF, vF − vT )F

)
I To insert vF into the second term, we have used the fact that vF = 0

for all F ∈ F b
h

while, for all F ∈ F i
h

s.t. F ⊂ ∂T1 ∩ ∂T2, T1 , T2,

(∇w) |T1 · nT1F + (∇w) |T2 · nT2F = 0



Properties of ah III

I Expanding aT then rk+1T vT according to the respective definitions,
we get

ah(Ikhw, vh) =
∑
T ∈Th

(
(∇w̌T ,∇vT )T +

∑
F ∈FT

(∇w̌T · nTF, vF − vT )F

)
+ sh(Ikhw, vh)

I Combining the above relations, we get

|Eh(w; vh)|

=

����� ∑
T ∈Th

( ∑
F ∈FT

(∇(w − w̌T ) · nTF, vF − vT )F

)
+ sh(Ikhw, vh)

�����
≤

����� ∑
T ∈Th

∑
F ∈FT

h
1
2

F ‖∇(w − w̌T )‖F h
− 1

2

F ‖vF − vT ‖F

����� + |sh(Ikhw, vh)|



Properties of ah IV

I Repeated applications of the Cauchy–Schwarz inequality give

|Eh(w; vh)| ≤

( ∑
T ∈Th

hT ‖∇(w − w̌T )‖
2
∂T

) 1
2
( ∑
T ∈Th

|vT |
2
1,∂T

) 1
2

+ sh(Ikhw, Ikhw)
1
2 sh(vh, vh)

1
2

I Using the approximation properties of π1,k+1T and of sT , we infer

|Eh(w; vh)| . hr+1 |w |Hr+2(Ω)


( ∑
T ∈Th

|vT |
2
1,∂T

) 1
2

+ |vh |s,h


I Recalling that ‖vh ‖a,h = 1, the definition of ah and the coercivity

property in point (i), the terms involving vT and vh above are
bounded by a constant independent of h and point (ii) follows �



Convergence I

Theorem (Energy error estimate)
Let (Mh)h∈H denote a regular mesh sequence. Let a polynomial degree
k ≥ 0 be fixed. Let u ∈ H1

0 (Ω) denote the exact solution, for which we
assume the additional regularity u ∈ Hr+2(Ω) for some r ∈ {0, . . . , k}. For
all h ∈ H , let uh ∈ Uk

h,0
denote the discrete solution with stabilisation

bilinear forms sT , T ∈ Th, satisfying assumptions (S1)–(S3). Then,

‖uh − Ikhu‖a,h . hr+1 |u|Hr+2(Ω)

where the hidden constant is independent of h and u.

Proof.
We invoke the abstract result with H = H1

0 (Ω), a(u, v) = (∇u,∇v),
`(v) = ( f , v), Xh = Uk

h,0
endowed with the norm ‖·‖a,h, ah = ah,

`h(vh) = ( f , vh) and Ihu = Ik
h
u. We notice that ah is obviously coercive

for ‖·‖a,h with constant 1 and, since −∆u = f , the consistency error is
exactly Eh(u; ·). Hence, the error estimate follows using (ii). �



Static condensation I

I Fix a basis for Uk
h,0

with functions supported by only one T or F
I Partition the discrete unknowns into element- and interface-based:

Uh =

[
UTh
UFi

h

]
I Uh solves the following linear system:[

AThTh ATh Fi
h

AFi
h
Th

AFi
h
Fi
h

] [
UTh
UFi

h

]
=

[
FTh

0

]
I AThTh is block-diagonal and SPD, hence inexpensive to invert



Static condensation II

This remark suggests a two-step solution strategy:

I Element unknowns are eliminated solving the local balances

UTh = A−1ThTh

(
FTh − ATh Fi

h
UFi

h

)
I Face unknowns are obtained solving the global transmission problem

Asc
h UFi

h
= −AT

Th Fh
A−1ThTh FTh

with global system matrix

Asc
h B AFh Fh − AT

Th Fh
A−1ThTh ATh Fh

Asc
h is SPD and its stencil involves neighbours through faces



Numerical examples
2d test case, smooth solution, uniform refinement
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Figure: 2d test case, trigonometric solution. Energy (left) and L2-norm (right)
of the error vs. h for uniformly refined triangular (top) and hexagonal (bottom)
mesh families



Numerical examples I
3d industrial test case, adaptive refinement, cost assessment

u = 0V

u = 1V5µm

Figure: Geometry (left), numerical solution (right, top) and final adaptive mesh
(right, bottom) for the comb-drive actuator test case
[Di Pietro and Specogna, 2016]



Numerical examples II
3d industrial test case, adaptive refinement, cost assessment
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Figure: Results for the comb drive benchmark.



Numerical examples III
3d industrial test case, adaptive refinement, cost assessment
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Figure: Computing wall time (s) vs. number of DOFs for the comb drive
benchmark, AGMG solver.



Numerical examples I
3d test case, singular solution, adaptive coarsening

Figure: Fichera corner benchmark, adaptive mesh coarsening
[Di Pietro and Specogna, 2016]



Numerical examples II
3d test case, singular solution, adaptive coarsening
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Figure: Error vs. number of DOFs for the Fichera corner benchmark, adaptively
coarsened meshes
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