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Setting |

m Let Q be an open connected (b = 1) polyhedral domain of R? (b3 = 0)
m Assume, for the moment being, that Q has a trivial topology, i.e.,

m It is not crossed by any “tunnel” (b1 =0)
X

(bo,b1,b2,b3) = (1,1,0,0)

m |t does not enclose any “void” (b2 = 0)
X

(bo,b1,b2,b3) =(1,0,1,0)
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Setting I

We consider PDE models that hinge on the vector calculus operators:

O1q 02v3 — O3va
gradg = d2q |, curly = | d3vy — 01vs |, divw = dywq + daws + 3w
536] 01vg — 02vy

for smooth enough functions

q:Q—-R, v:Q—>R3, w:Q —R3
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Some relevant Hilbert spaces

m For simplicity, we consider problems driven by forcing terms
m To allow for physical configurations, we focus on weak formulations

m These will be based on the following Hilbert spaces:

HY(Q) ={q € L*(Q) : gradq € L*(Q) = L*(Q)*},
H(curl; Q) = {v e L*(Q) : curly € LQ(Q)} ,
H(div; Q) = {w € L*(Q) : divw € L*(Q)}
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Three model problems
The Stokes problem in curl-curl formulation

m Given v > 0 and f € L?(Q), the Stokes problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

-vAu
v(curlcurlu — )+gradp = f in Q, (momentum conservation)
divu=0 inQ, (mass conservation)
curlu xn=0andu-n=0 on dQ, (boundary conditions)
Jop=0

m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. fgp =0 and

/vcurlu-curlv+/gradp-v:/f-v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q

6/43



Three model problems
The magnetostatics problem

m For u > 0 and Je curl H(curl; Q), the magnetostatics problem reads:

Find the magnetic field H : @ — R3 and vector potential A : @ — R? s.t.

uH —curlA =0 in Q, (vector potential)
curlH =J in Q, (Ampere's law)
divA=0 inQ (
AxXn=0 on IQ (boundary condition)

Coulomb’s gauge)

m Weak formulation: Find (H, A) € H(curl; Q) x H(div; Q) s.t.
/uH-T—/A-curlrzo V1 € H(curl; Q),
Q Q

/curlH-v+/divAdivv=/J-v Vv € H(div; Q)
Q Q Q
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Three model problems
The Darcy problem in velocity-pressure formulation

m Given x > 0 and f € L?(Q), the Darcy problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

K 'u—gradp =0 in Q, (Darcy's law)
—divu = f in Q, (mass conservation)

p=0 on 0Q (boundary condition)

m Weak formulation: Find (u, p) € H(div; Q) x L%(Q) s.t.

/K_lu'v+/p divv =0 Vv € H(div; Q),
Q Q

—/divuq:/fq Vg € L*(Q)
Q Q
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A unified view

m All of the above problems are mixed formulations involving two fields

m They can be recast into the abstract setting: Find (u,p) € V X Q s.t.

Au+B'p=f inV’,
-Bu+Cp=g inQ’

m Well-posedness for this problem holds under [Brezzi and Fortin, 1991]:
m The coercivity of A in Ker B
m The coercivity of C in H := Ker BT
m An inf-sup condition for B: 3B € R,
(Bv,q)

0<B= inf su _—
P= et 01, o, Taliolviy

m Similar properties underlie the stability of numerical approximations
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A unified tool for well-posedness: The de Rham complex

Figure: Georges de Rham (Roche 1903-Lausanne 1990)
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A unified tool for well-posedness: The de Rham complex

grad curl

R — HY(Q) 5% H(cwrl; Q) —2% H(div; Q) 1% 12(Q) —2 {0}

m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
Imgrad c Ker curl,

Im curl c Ker div,

QcR3 (b3 =0) = Imdiv=L%Q) (Darcy, magnetostatics)

11/43



A unified tool for well-posedness: The de Rham complex

grad

R — HY(Q) 5% H(cwrl; Q) —2% H(div; Q) 1% 12(Q) —2 {0}

m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
no “tunnels” crossing Q (b1 =0) = Imgrad = Kercurl, (Stokes)

no “voids” contained in Q (b2 =0) = Imecurl = Kerdiv, (magnetostatics)

QcR3 (b3 =0) = Imdiv=L%Q) (Darcy, magnetostatics)

11/43



A unified tool for well-posedness: The de Rham complex

R H'(Q) % H(ewl Q) - H(div;Q) 1% £2(@) — (0}
m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
no “tunnels” crossing Q (b1 =0) = Imgrad = Kercurl, (Stokes)

no “voids” contained in Q (b2 =0) = Imecurl = Kerdiv, (magnetostatics)
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m When b1 # 0 or by # 0, de Rham's cohomology characterizes
Kercurl/Imgrad and Kerdiv/Im curl

m Key consequences are Hodge decompositions and Poincaré inequalities
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A unified tool for well-posedness: The de Rham complex

R H'(Q) % H(ewl Q) - H(div;Q) 1% £2(@) — (0}
m We have key properties depending on the topology of Q:

Q connected (bg =1) = Kergrad =R,
no “tunnels” crossing Q (b1 =0) = Imgrad = Kercurl, (Stokes)
no “voids” contained in Q (b2 =0) = Imecurl = Kerdiv, (magnetostatics)

QcR3 (b3 =0) = Imdiv=L%Q) (Darcy, magnetostatics)
m When b1 # 0 or by # 0, de Rham's cohomology characterizes
Kercurl/Imgrad and Kerdiv/Im curl

m Key consequences are Hodge decompositions and Poincaré inequalities

m Emulating these properties is key for stable discretizations
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The (trimmed) Finite Element way

Local spaces

m Let T ¢ R? be a tetrahedron and set, for any k > -1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T’}

m Fix k > 0 and write, denoting by x7 a point inside T,

G- (1) Gk (T)

PK(T)3 = grad P (T) @ (x — x7) x PK1(T)?
= curl P N(T)3 @ (x — x7) P N(T)

RK(T) REK(T)
m Define the trimmed spaces that sit between P*(T)3 and P*+1(T)3:
NYT) = GH(T) @ GS*H(T)  [Nédélec, 1980]
RT(T) = R¥(T) @ REF(T) [Raviart and Thomas, 1977]

m See also [Arnold, 2018]
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The (trimmed) Finite Element way

Global complex

m Let 7, = {T'} be a conforming tetrahedral mesh of Q and let £ > 0
m Local spaces can be glued together to form a global FE complex:

R 3 plH(qy) 22wkl (g —owly kel (g vy ok gy 0y (0)

[ [ [ [

R H'(Q) —20 H(curl; @) — H(div;Q) —EYs 12(Q) —% {0}

m The gluing only works on conforming meshes (simplicial complexes)!
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The Finite Element way

Shortcomings

m Approach limited to conforming meshes with standard elements

= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

m Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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The discrete de Rham (DDR) approach |

m Key idea: replace both spaces and operators by discrete counterparts:

k
Lgrad, h

G c Dy 0
; X{gcrad,h : X : Xgiv,h — Pk(‘ﬁl) — {0}

—curl,h

m Support of polyhedral meshes (CW complexes) and high-order
m Key exactness and consistency properties proved at the discrete level

m Several strategies to reduce the number of unknowns on general shapes
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The discrete de Rham (DDR) approach Il

m DDR spaces are spanned by vectors of polynomials
m Polynomial components enable consistent reconstructions of

m vector calculus operators
m the corresponding scalar or vector potentials

m These reconstructions emulate integration by parts (Stokes) formulas
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R H2(Q) —%5 HY(Q) -2 12(0) —25 0
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The two-dimensional case

Continuous exact complex

m With F mesh face let, for ¢ : F — R and v : F — R? smooth enough,
rotr g := (gradp ¢)* rotp v == divg (v?)
m We derive a discrete counterpart of the 2D de Rham complex:

gradg, rotg

R «—— H'(F) =5 H(rot; F) — L2(F) —— {0}
m We will need the following decompositions of P*(F)?:

G~ (F) Gk (F)

PK(F)? = grad, P*(F) @ (x — xp)* P 1(F)
=roty PKY(F) @ (x —xp) P 1 (F)

R (F) REF(F)
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The two-dimensional case
A key remark

WFE =

te nrE

m Let g € P(F). For any v € P*(F)?, we have

/gradpq~v:—/qdivFv+ Z wFE/Q\BF(V'nFE)
F F

EESF E
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The two-dimensional case
A key remark

WFE = 1
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The two-dimensional case
A key remark

WFE = 1
te nrE

m Let g € P(F). For any v € P*(F)?, we have

/gradFCI'VZ—/ﬂp Fq dive v + Z wFE/(I\aF(V'"FE)
F F E

EESF
ePk-1(F)

m Hence, grady g can be computed given né, .q and q|oF
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The two-dimensional case
Discrete H'(F) space

m Based on this remark, we take as discrete counterpart of H!(F)

Xt = {4, = ar.q0r) + ar € PXH(F) and qor € PE ()

m Let /X : CY(F) - Xk

Lot be s.t., Vg € CO(F),

“—grad,F

lérad,FCI = (ﬂI}f}pq,%F) with

”é;,é(‘lﬁF)\E = ”I%}CI\E VE € Ep and gor(xv) = q(xv) YV € Vp

92080
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € EF, the edge gradient Gk adF PK(E) is s.t.

g

GZ“QF = (CIOF)|/E

m The full face gradient G — PK(F)?iss.t., Vv € PK(F)2,

grad F

/FGIZQF'V=—/FC[FdiVFV+ Z U)FE/EQ()F(V'”FE)

Ee€&Ep

m By construction, we have polynomial consistency:

Gk (Igrad rq)=gradpq Vg e P(F)
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grad F

/FGIZQF'V=—/FC[FdiVFV+ Z U)FE/EQ()F(V'”FE)

Ee€&Ep

m By construction, we have polynomial consistency:
Gk (Igrad rq)=gradpq Vg e P(F)

= Similarly, we can reconstruct a scalar trace y&*! : X{g‘radF — PKHI(F) st

Vi (Lgard) =a Vg e PH(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N**L(F) = GK(F) @ G&*1(F), Vg € PX(F),

/rotpqufv- rotr g — Z wFE/(V‘tE)CI\E
F F —_— E

Ec&EF
eRF1(F)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N**L(F) = GK(F) @ G&*1(F), Vg € PX(F),

/I’OtFV q:/ﬂ{;{,}‘v- rotp g — Z wFE/ (v te)qE
F F ———— E ~— —

EcEF
eRK1(F) ePF(E)
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The two-dimensional case
Discrete H(rot; F) space

m We start from: Vv € N (F) = GK(F) @ g% (F), Vq € PK(F),

/I’Otpv q:/ﬂ'lk}v rotp g — a)FE/(v ) q|E
F F ——  Ec&p
eRFL(F) ePH(E)

m This leads to the following discrete counterpart of H(rot; F):

k ,
XewlF = {"F = (V'R,F’V;Q’F’ (VE)Eegy) *

i p € REU(F), vS, . € ROK(F), v € PX(E) VE € &F }

O & G

k=
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The two-dimensional case

Reconstructions in Xcmrl 7

m The face curl operator C Xum1 F PK(F) is s.t.,

/CJIEKF q=/V7€,F'I‘0tF61— Z wFE/vK Vg € PK(F)
F F

Ec&EF E

m Let IX

| :HY(F)? — Xfuﬂf collect component-wise L?-projections

[ CI’§ is polynomially consistent by construction:

Cr(I5, pv) =rotpy Wy e NI(F)
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The two-dimensional case

Reconstructions in Xcmrl 7

m The face curl operator C Xum1 P PK(F) is s.t.,

/CJIEKF q=/V7€,F'I‘0tF61— Z wFE/vK Vg € PK(F)
F F

Ec&EF E

m Let IX

| :HY(F)? — Xfuﬂf collect component-wise L?-projections

[ CI’§ is polynomially consistent by construction:

Cr(I5, pv) =rotpy Wy e NI(F)

m Similarly, we can construct a tangent trace yt F . Xk — PK(F)? st

“curl, F

yf,F(gfm,,Fv) =y vy € P (F)?
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The two-dimensional case
Exact local two-dimensional DDR complex

—grad,F to Xcurl F

be s.t., Vq e Xk

m We need a discrete gradient operator from X*

m To this end, IetG Xde—>XcmlF

—grad,F’
Gha, = (7)1 (Grg, ), 73 (Gra,), (GEa,JEeer) € X

m If F is simply connected, the following 2D DDR complex is exact:

ﬁmd E

7F Cllf‘ k 0
R gradF 1 curlF ? P (F) ? {O}
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The two-dimensional case
Summary

Agrad F,

Cck
R gradF 71‘ curl F . 7 Pk(F) 0 ? {0}

Space ‘ V (vertex) E (edge) F (face)
X el F R PEHE) PEL(F)
X PHE)  REHF) x RE(F)
PH(F) PE(F)

m Interpolators = component-wise L2-projections

m Discrete operators = L2-projections of full operator reconstructions
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The three-dimensional case

Local three-dimensional DDR complex and exactness

Ly Gk ck Dk
R =% XK oar — XEr —— X5 — 21 — {0}

Space |V E F T (element)
X{g(rad,T R Pk_l(E) Pk_l(F) pk—l(T)
Xewnir PHE)  RMUF)xREK(F)  REL(T) x REM(T)
Xfiiv,T PE(F) G U(T) x <K (T)
Pk(T) 7)1\' (T)

If the element T has a trivial topology, this complex is exact.
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The three-dimensional case
Local commutation properties

grad div

R — C™(T) =5 c=(T)3 2Ly ¢~(T)? -5 c=~(T) —2 {0}

k k k .
llgrad,T llcurl,T lldiv,T \L’T
Ik k k k

—grad,h

R xk Sy xk S xk P ok 2 (o)

—grad,T —curl,T =

m Crucial property for adjoint consistency (see below)
m Compatibility of projections with Helmholtz—Hodge decompositions

= Robustness of DDR numerical schemes with respect to the physics
(cf. [Beirdo da Veiga, Dassi, DP, Droniou, 2021], [DP and Droniou, 2022])
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The three-dimensional case
Local discrete L2-products

m Emulating integration by part formulas, we define the local potentials

k+1 . vk k+1
Pgrad,T . Kgrad,T - P (T)’

Pty XA o PR,

curl,7 * Zcurl,T

P<kliv,T : Lﬁiv,T — PX(T)?

m Based on these potentials, we construct local discrete L?-products

(J_CT,}’T).,T = / Perxp 'P.,TyT +SeT ()_CT,yT) Ve € {grad, curl, div}
Y T Y 2

consistency stability

m The L?-products are built to be polynomially exact
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The three-dimensional case
Global DDR complex

¥ Gk ck Dk
=grad,h k —h k =h k h k 0
R : Xgrad,h : lcu:rl,h : Xdiv,h : P (77’) : {O}
m Let 75, be a polyhedral mesh with elements and faces of trivial topology
m Global DDR spaces are defined gluing boundary components:
k k k
Xgrad, h’ Xcurl, h’ Xdiv, h

m Global operators are obtained collecting local components:

k . vk k k. yk k k. vk k
Qh ' Xgrad,h - X gh .4 - Xdiv,h’ Dh . Xdiv,h - P (7;1)

Zcurl,h? “curl,h

m Global L?-products (-, "), ), are obtained assembling element-wise
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Exactness of the global three-dimensional DDR complex

k
Lgrad,h

Dk 0
R > X gradh 1 url, 2 —> Xdlvh —h> Pk((ﬁz) — {0}

m The global DDR complex satisfies:

Q connected (bg=1) = Im]{g‘rald

n= KerQ';l,
no “tunnels” crossing Q (b =0) = ImQZ’ = Kergf’,
no “voids” contained in Q (b2 =0) = Imgﬁ = Ker DF,

Q cR? (b3 =0) = Im Dk = PX(75)

m The latter results can be generalized to non-trivial topologies
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Exactness of the global three-dimensional DDR complex

k
Lgrad,h

Dk 0
R > X gradh 1 url, 2 —> Xdlvh —h> Pk((ﬁz) — {0}

m The global DDR complex satisfies:

Q connected (bg=1) = Im]grald h= KerQ';l,
no “tunnels” crossing Q (b =0) = ImQZ = Kergf’,
no “voids” contained in Q (b2 =0) = Imgﬁ = Ker DF,
QcR? (b3 =0) = ImDf =P*7p)
m The latter results can be generalized to non-trivial topologies

m We next discuss other key results focusing on magnetostatics
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Discrete uniform Poincaré inequalities

m Let (Ker Ck)l be the orthogonal of Ker Ch in Xk

Leurl,h
by =0 = Cj : (KerC})* — Ker D} is an isomorphism
m If, moreover, by =0, there is C > 0 independent of & s.t.
2y lleurtn < CICHYllaivn V2, € (Ker C1)*

with [||le.n, norm induced by (-,-)e.» 0N g’jh
m Similar results can be proved for the gradient and the divergence

for (-, )eurl,n. Then,
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Adjoint consistency

Adjoint consistency measures the failure to satisfy a global IBP. For the curl,
/w~cur1v—/curlww=0ifwxn:Oon 0Q
Q Q

Theorem (Adjoint consistency for the curl)

Let Ecurt.n ¢ (CO(Q)% N Hy(curl; Q)) ngwl’h — R bes.t.

(7K k k
Ecut,h(W,v,,) = (ldiv’hw,ghgh)div,h - /chrlw “Pean¥n

Then, for all w € C°(Q)> N Hy(curl; Q) s.t. w € H**2(7,)3: Yy, € XX

curl,h’

(Eeurtss 9, 2,)1 < CH (112 leartn + ICER, laivan)
with C independent of h.

Similar results can be proved for the gradient and the divergence
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Three model problems and their well-posedness

Discrete de Rham (DDR) complexes

Application to magnetostatics
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Discrete problem |

m With u =1, we seek (H,A) € H(curl; Q) x H(div; Q) s.t.
/H-T—/A-curlT=O V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q
m The DDR scheme is obtained substituting

H(curl; Q) « li‘ur]’h, H(div; Q) « lfiiv,h

and

/H ‘T & (E}ﬂzh)curl,h, /Clll‘l‘l' V= (g;ﬁzh,zh)div,h’
Q Q

/divw divv<—/DZﬁh Dl,‘lgh, /J-v(—/J'P]:iiv,hKh
Q Q Q Q
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Discrete problem Il

m The discrete problem reads: Find (H,,A,) € XX, x X% . st.

curl,h " =div,

(Eh’zh)curl,h - (éhagzzh)div,h =0 vzh € Xk

Zcurl,h?

(Qiﬂh»lh)diwh + /Q széh Dﬁ!h =1n(v,) Vv, € Xﬁiv,h

m Stability hinges on the exactness of the portion

k

which requires by =0

m For by # 0, we need to add orthogonality to harmonic forms
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Analysis |

Theorem (Stability)

Let Q c R? be an polyhedral connected domain s.t. by = b, = 0 and set

An((oy, 1), (T),))) =

(gh’zh)curl,h - (Eh’gzzh)div,h + (gzgh’zh)div,h +/ Dzzh Dzzh
Q

Then, it holds: ¥(a,,u,) € X5\, x X5,
An((ay.up,), (T,,v,))
(e u)lla < € sup T T
@) XX 0oy T )l

with C independent of h and

k
s v )W = 1Ty s + NCRT Wi+ 12 i + IDGYL 113 2 -
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Analysis |

Theorem (Error estimate for the magnetostatics problem)

Assume b1 = by=0, HeC%(Q)3>N H**2(7;)3, A€ C°(Q)3x H*2(T,)3.
Then, we have the following error estimate:

WI(H,, - I H Ay = IS Al < CHE,

with C > 0 independent of h.
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Numerical examples
Energy error vs. meshsize
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Open-source implementation available in HArDCore3D

107‘0.5 1010.6 1010.4 1010.2
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https://github.com/jdroniou/HArDCore

A glance at the general case

Let n denote the ambient dimension and Q a polytopal set of R”

m For k =0,...,n, we define the DDR space

n
= X Pt
d=r e€7:1’h
with P%~A4"(e) trimmed polynomial space of (d — r)-forms
m Ford =k+1,...,n, the discrete differential d¥_ : X';,e — PEA™1(e) is s.t.

V(W,, He) € X]If,e % pkAd—r_l(e)
k _ k+1 k
/dr,eﬂe A pre = (=1) /*we A dyte +/ PY 5e@ge A trae e
€ e Oe

k

r,e

The discrete potential Py is intrinsically available or defined similarly

Unified proofs of homological and stability properties!
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Conclusions and perspectives

Novel approach to approximate PDEs relating to the de Rham complex
Key features: support of general polyhedral meshes and high-order

Novel computational strategies made possible

Natural extensions to variable coefficients and nonlinearities

Formalization using differential forms (ongoing work with F. Bonaldi)

Development of novel complexes (e.g., elasticity, Hessian,...)

Applications (possibly beyond continuum mechanics)
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