Conforming finite element sequences for strain and curvature.

Snorre H. Christiansen

Department of Mathematics University of Oslo

joint work with Kaibo Hu

Outline

- ► Elasticity complexes : strain and curvature
- New finite element discretization
- Finite element systems : sheaves
- Vector bundles : RM cochains
- de Rham theorem and Bianchi identity

Elasticity Strain Complex

Continuous metrics:

$$\mathrm{H}^2(U,\mathbb{V}) \xrightarrow{\mathsf{def}} \mathrm{H}^1_{\mathsf{sven}}(U,\mathbb{S}) \xrightarrow{\mathsf{sven}} \mathrm{H}^0(U,\mathbb{R}).$$
 (1)

with:

$$\mathrm{H}^1_{\mathsf{sven}}(U,\mathbb{S}) = \{ u \in \mathrm{H}^1(U,\mathbb{S}) : \mathsf{sven} \ u \in \mathrm{H}^0(U,\mathbb{R}) \}.$$
 (2)

- Exactness and rigid motions.
- Saint Venant compatibility and linearized curvature.
- Lower regularity and partitions of unity.

New finite element

Figure: Strain complex with continuous metrics.

Spaces

Vector valued Clough Tocher:

$$A^{0}(T) = C^{1}P^{3}(\mathcal{R}(T), \mathbb{V}), \tag{3}$$

▶ Continuous P^2 metrics with integrable sven (cont. $\partial_{\nu}u\tau \cdot \tau$):

$$A^{1}(T) = C_{\text{sven}}^{0} P^{2}(\mathcal{R}(T), \mathbb{S}), \tag{4}$$

DoFs: – values at vertices (3×3) ,

- pairings with $M(E) \approx RM$ for each edge E (3 × 3),
- integral against normal vector on edges (3 \times 2).
- Piecewise constants:

$$A^{2}(T) = P^{0}(\mathcal{R}(T), \mathbb{R}), \tag{5}$$

DoFs: integration against affine functions ($\cdot \approx RM$).

BGG

Discrete BGG

Finite element systems [C. 08, C.-Hu 18]

- Fix a cellular complex T.
- ▶ A finite element system A is $A^k(T)$ for $k \in \mathbb{N}$ and $T \in \mathcal{T}$ of all dimensions.
 - differentials: $d: A^k(T) \to A^{k+1}(T)$.
 - restrictions: $T' \subseteq T$ gives $r : A^k(T) \to A^k(T')$.
 - de Rham map.
 commutation relations.

Associated global space:

$$A^k(\mathcal{T}) = \{ u \in \bigoplus_{T \in \mathcal{T}} A^k(T) : T' \subseteq T \Rightarrow u_T|_{T'} = u_{T'} \}.$$

Encodes continuity.

- FES is a contravariant functor from a cellular complex to differential complexes.
 - Global space is the inverse limit.

Induced operators (on faces)

$$\Gamma(T, \mathbb{V}) \xrightarrow{\text{def}} \Gamma(T, \mathbb{S}) \xrightarrow{\text{sven}} \Gamma(T, \mathbb{R})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow$$

Cochains with coefficients

- ▶ For each $T \in \mathcal{T}$, a vectorspace L(T). A discrete vectorbundle.
- ▶ When T' is a codim 1 face of T, an isomorphism $t_{TT'}: L(T') \to L(T)$. A discrete connection.
- Flatness:

$$t_{TT_0'}t_{T_0'T''} = t_{TT_1'}t_{T_1'T''}. (7)$$

- ▶ Cochains $C^k(T, L)$: $(u(T))_{T \in T^k}$ such that $u(T) \in L(T)$.
- ▶ Differential $\delta^k_t : \mathcal{C}^k(\mathcal{T}, L) \to \mathcal{C}^{k+1}(\mathcal{T}, L)$ defined by:

$$(\delta_{\mathsf{t}}^{k} u)(T) = \sum_{T' \leq T} \mathrm{o}(T, T') \mathsf{t}_{TT'} u(T'). \tag{8}$$

▶ Flatness gives $\delta_{t}^{k+1} \circ \delta_{t}^{k} = 0$.

FES and cochains

▶ e : $A^k(T) \rightarrow L(T)$. Generalized Stokes: For $u \in A^{k-1}(T)$:

$$e_{\mathcal{T}}d_{\mathcal{T}}u = \sum_{\mathcal{T}' \in \partial \mathcal{T}} o(\mathcal{T}, \mathcal{T}') t_{\mathcal{T}\mathcal{T}'} e_{\mathcal{T}'} r_{\mathcal{T}'\mathcal{T}} u. \tag{9}$$

Commutes with differentials:

$$e: A^{\bullet}(\mathcal{T}') \to \mathcal{C}^{\bullet}(\mathcal{T}', L).$$
 (10)

Example

Spaces:

M(T): affine functions, on T. M(E): (u, v) with u affine, v constant, on E. M(V): $\mathbb{R}^2 \times \mathbb{R}$.

Restrictions:

$$M(T) \to M(E)$$
: $u \mapsto (u, \partial_{\nu}u)$ on E .
 $M(E) \to M(V)$: $(u, v) \mapsto (v\tau - \partial_{\tau}u\nu, u)$ on V .

Vectorbundle with discrete connection by duality.
 Check flatness.

de Rham theorem

- ► The evaluation map $e: A^{\bullet}(\mathcal{T}') \to \mathcal{C}^{\bullet}(\mathcal{T}', L)$ induces isomorphisms on cohomology groups.
- ▶ Proof: Induction on dimension: add top dimensional cells. Write Mayer Vietoris short exact sequences for A and C, and connect them by e. Deduce long exact sequences that are connected by e. Use five lemma.

Bianchi identity

Drop requirement of flatness, and introduce curvature:

$$c_{t}(T, T'') = \pm (t_{TT'_{0}} t_{T'_{0}T''} - t_{TT'_{1}} t_{T'_{1}T''}). \tag{11}$$

- ▶ Then $\delta_t^{k+1} \circ \delta_t^k u(T) = \sum_{T''} c_t(T, T'') u(T'')$.
- Introduce cubical complex, and discrete connection on endomorphisms.
- ▶ Bianchi:

The covariant exterior derivative of the curvature is 0. Combinatorial identity attached to cubes.

