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Elasticity Strain Complex

» Continuous metrics:

H2(U, V) =20 HL (U, S) 2% HO(U, R).

sven

with:

Hien(U,S) = {u € HY(U,S) : svenu € HO(U,R)}.

v

Exactness and rigid motions.

v

Saint Venant compatibility and linearized curvature.

v

Lower regularity and partitions of unity.



New finite element

symgrad & 74 rotrot
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Figure: Strain complex with continuous metrics.



Spaces

» Vector valued Clough Tocher:
A’(T) = CIP*(R(T), V), (3)
» Continuous P? metrics with integrable sven (cont. d,ut - 7):
AN(T) = CaenP*(R(T),S), (4)
DoFs: — values at vertices (3 x 3),
— pairings with M(E) ~ RM for each edge E (3 x 3),

— integral against normal vector on edges (3 x 2).

» Piecewise constants:
A*(T) =P%R(T),R), (5)

DoFs: integration against affine functions (- =~ RM).
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grad curI
HZ(U7V) sven(U M) ngrlT (U’V)v (6)
skew T
HY(U,R) —22S HO (U, V") - HO(U, R).



Discrete BGG

7 (Qpu) -7 | SK€ < (Opu) - T
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Finite element systems [C. 08, C.-Hu 18]

» Fix a cellular complex 7.

> A finite element system A is
AK(T) for k € Nand T € T of all dimensions.
— differentials: d : AK(T) — AAHL(T).
— restrictions: T/ C T gives r: AK(T) — AK(T).
— de Rham map.
commutation relations.

» Associated global space:

ATy ={ue @G AYT) : T'C T = ur|lr=up}
TET

Encodes continuity.

» — FES is a contravariant functor
from a cellular complex to differential complexes.
— Global space is the inverse limit.



Induced operators (on faces)

r(T.7) —— % [(T.5) — " r(T.R)
u u
1
(u-T,u-v,00u-7,00u-v) (ur - 7yut - v,uv -V, OpuT - T)
u
1 M(E,R? x R?) ME,R3 xR)
(u,grad u)

(u,v,u',v') = (0-u, %(u' +04v), v, 0-u")

(ut + v, Orurt” + Orvur” 4 d' V" + V")

(0, v, w, k)

urt’ +v(tvt + ") +wr”
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(u,v) — sym(v)

r(v,s)



Cochains with coefficients

» Foreach T € T, a vectorspace L(T). A discrete vectorbundle.

» When T’ is a codim 1 face of T, an isomorphism
trr : L(T') — L(T). A discrete connection.

> Flatness:
trootry e =ttt ()
» Cochains CK(T,L): (u(T))rer« such that u(T) € L(T).
» Differential 6% : CK(T, L) — CK*1(T, L) defined by:
(Gfu)(T)= > ofT, T)trru(T). (8)

/4T

> Flatness gives 65 o 6k = 0.



FES and cochains

» e: AK(T) — L(T). Generalized Stokes: For u € AA=1(T):

erdru = Z O(T, T’)tTT/eT/rT/Tu.
T'edT

» Commutes with differentials:

e: A(T') = C*(T', L).



Example

> Spaces:
M(T): affine functions, on T.
M(E): (u,v) with u affine, v constant, on E.
M(V): R? x R.
> Restrictions:
M(T) — M(E): u— (u,0,u) on E.
M(E) — M(V): (u,v) — (v — Oruv,u) on V.
> Vectorbundle with discrete connection by duality.
Check flatness.



de Rham theorem

» The evaluation map e : A*(7T") — C*(T", L)
induces isomorphisms on cohomology groups.

» Proof: Induction on dimension: add top dimensional cells.
Write Mayer Vietoris short exact sequences for A and C,
and connect them by e.

Deduce long exact sequences that are connected by e.
Use five lemma.



Bianchi identity

» Drop requirement of flatness, and introduce curvature:
(T, T") = £(trtryre — trotr o). (11)

> Then 68 o 6ku(T) = i (T, T u(T").

> Introduce cubical complex,
and discrete connection on endomorphisms.

» Bianchi:
The covariant exterior derivative of the curvature is 0.
Combinatorial identity attached to cubes.
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