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Represent or approximate geometric objects, functions.

=  High quality description of geometry.
1= High order of approximation of functions.

based on piecewise polynomial models.
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Spline functions



Univariate Bernstein representation

For any f(x) € R[x] of degree d, with
d

F)=> a <‘I’> (x — a)'(b— x)97( Ec, Bi\(x; a, b)
i=0

For ¢; € R¥, c = [cili=0,....d is the control polygon of f : [a, b] — Rk,

Properties:

e Yilo Bi(xia,b) =1 Yo o(a %5
° f(a) = Qp, f(b) = Cd,

o fl(x)=4d 27:_01 A(c); Bi_{(x; a, b) where A(c); = cip1 — ¢i;

® (X, f(x))xe[a,b] € convex hull of the points (a9 + b4, ¢j)i=0.d

o #{f(x)=0;x € [a,b]}=V(c) —2p,p € N. -

+ b L) Bi(x;a,b) = x




De Casteljau subdivision algorithm

c,-ozc,-, i=0,...,d,

cf(t) = =L (t) + =2 C,.’J:ll(t), i=0,...,d—r.
o ¢ (t) = (c§(t),c&(t),...,cd(t)) represents f on [a, t].

o ct(t) = (c§(t), c?7(t),...,c9(t)) represents f on [t, b].

The geometric point of view.  The algebraic point of view.

b




Proposition (Descartes’ rule)
For f :=(c,[a, b]), #{f(x) = 0;x € [a,b]} =V(c) —2p,p € N.

Theorem
V(c™)+ V(ch) < V(c).

Theorem (Vincent)

‘ _ Ifthere is no complex root in the disc D(3,3) c C,
then V(c) = 0.

Theorem (Two circles)

If there is no complex root in the union of the discs
1 .

D(3 i '2\[ f) C C except a simple real root,

then V(c) = 1.




Historical notes:
Pierre Bézier (1910-1999), Renault;

Paul de Casteljau (1930-), Citroén, 1959, 1963 (secret internal reports),
SMA Bézier Price 2012;



Distance between polynomials and their control polygons !

Let L9(t) be the hat function at a+ (b — a)L.

Proposition
On the interval [a, b],

DICIORE Neil < LEZCZD yaz)

C(d, P)IA%(©)llos — 12%(e) 1) < 1D (BF (1) = L{(t))cillp < C(d. p) [A%(€)]os

i

where C(p,1) = %5, C(d,2) = (2£=5543¢=1 1) C(d, 00) = Lpariy(d)

= Quadratic convergence of the control polygon to the function

(error x % when interval split at 232).

1 . o . " q q
U. Reif, Best bounds on the approximation of polynomials andsplines by their control structure, 2000



Optimal conditioning of Bernstein basis?

For ¢ = (¢, .. ., dq) a basis of R[t]g and f(t,c) = S0 cipi(t) € R[t]q,

|f(t,c+dc) — f(t,¢)| = |[f(t, 6c)| < Cy(f, 1) [|6¢]loo

Partial order on bases: ¢ < ¢ if ) = M¢ with M;; > 0.

Proposition
e If ¢, non-negative bases on [a, b] with ¢ <1 then
Co(f,t) < Cy(f,t) for t € [a, b].
e The Bernstein basis B = (BY(t; a, b)) on [a, b] is minimal for <.

e If ¢ non-negative basis s.t. ((t —a)') = ¢ < ((b—t)"), then ¢ ~ B.

2R.T. Farouki N.T. Goodman, On the Optimal Stability of the Bernstein Basis, 1996



Piecewise polynomial functions

Knots: tp <t; <--- <t eR
Polynomials py, ..., pi—1 € R[t]y4 of degree < d on the intervals [t;, ti+1].

Regularity r; at tj fori=1,...,/1—1.

pi — pi—1 = (t — ;)7 q; for some q; € R[t]y—r,—1

Definition (Spline space)
For d € N, t:(to,...,t/), r= (rl,...,r/,l),

Sy(t) = {lp] € R[tla | pi — pi-1 = (t — ;)" q;}

Dimension: d + 1+ Zf;i(d — i)+ (x4 = max{0, x})



Spline basis representation

Nodes: tp < t; <--- < t; € R (repeated d — r; times at t;).
Basis spline functions (b-spline):

lif; <t<t
(t)—{ P

N 0 otherwise.

NO

1

NE(t) = = e (g) AL T pydiyy

( = S | [
! tivg —ti ' tivdrl — tigr TE
e Basis of S;’r;
e Local support (supp(N?) = [ti, tivar1]);
e Positive functions;
e Sum to 1;

Open uniform knot vector: tj; 1 — t; constant for d + 1 <i</—d —1.



Examples of b-spline functions

10
08

06

02

[ .
00 02 04 06 08 10

Degree: 1; Knots: [02,0.2,0.4,0.6,0.8, 12]; Regularity: 0

00 02 04 06 08 1.0

Degree: 3; Knots: [0%,0.2,0.4,0.6,0.8,1%]; Regularity: 2

10



e Insertion of knot t, find the first k s.t. t,x <t < tx11 and compute:

5 = [ 6 = U
c§/+1) _ litd C/('I—)l i
tiyd — & tivd — &

fork—d+1<i<k.
e Evaluation at t (de Boor algorithm):
i+l _ titd—j =t ] =t U
e _ f=il . S}
tl+d—j ti tl+d—j tj

fork—j+1<i<k.
e Derivative of f(t) =), ¢c; N,-d(t;t):

_dz NL(t;t)

td+1+/ — t

11



Historical notes: Isaac J. Schoenberg (1946); Carl De Boor (1972-76);
Maurice G. Cox (1972); Richard Riesenfeld (1973); Wolfgang Boehm
(1980).

12



BS vs NURBS

Representation of rational curves:
Zi C"Nid(t)
> wilf(t)

(Non-Uniform Rational B-Spline function)

t € [to,...,t]—

Control points: [c;, wi]

Example of a circle as a NURBS curve:

P, =112)
w=2"2)p, P, > 00 =2"2)
P, P,
(n-zlrz; B=F % O i B=p, 1" il
(1—t22t) _ ((1—t)2+2t(1—t),2t(1—t)+2 t?) 13

1+t2 (A—t)2+2t(1—t)+2t2)



Geometric modeling



Tensor product B-splines

e Standard in Computer Aided Design (CAD);
e Define on rectangular domains;

e Grid of control points;

14



Tensor product b-spline functions:

(s,t) € [s0,51] X [to, tm] — Z ci N (s )N (¢ 1)

s d a
e Local support of N,"J'(S, t) = N,d (S)NJ t(t) In [S,', 5i+ds+1] X [tj, tj+dt+1]
o Insertion of knots in each direction;
e Derivation formula per variable on the grid of coefficients ¢; j;

15



Hierarchical b-splines

(D. Forsey, R. Bartels, 1988)

e Local refinement of the support of basis function;
e Offsets of b-spline parameterizations at different level;

e Not all possible T-mesh.

16



T-Splines

More control for complex geometry;

Not piecewise polynomial on the T-subdivision;

Span by some N(s; iy, ..., Siy,,) X N(titip, ., tj,,);

Partition of unity with rational functions;

Problems of linear independency;
e No characterisation of the span space.

3http://www.tsplines.com/ 17




Hierarchical triangular splines

(A. Yvart, S. Hahmann, G.-P. Bonneau, 2005)

e G! continuity;
o Piecewise quintic polynomials;

e Arbitrary topology;

18



From curves to surfaces

e Extrusion: (s, t) — (C(s),t) € R3

Surface of revolution: (s, t) — (c(t)Ci(s),s(t) Ci(s), Co(s)) with
c(t)® +s(t)?> =1

Swept surface: (s,t) — O(t) + M(t) C(s)

Interpolation surface: (s, t) — Ao(t) Co(s) + A1(t) Ci(s) with
Xo(t) +Ai(t) =1

19



Multi-patch trimmed models

Geometric model made of patches, glued together along intersection curves.

20



Intersection of b-spline surfaces

represented by b-spline curves in the parameter domains of the two surfaces
and/or by their image on the two surfaces.
o For generic surfaces of bi-degree (di, d») and (dj, d%),
o degree of surface 2 did>, 2d;ds,
o degree of intersection curve 4 dyda>d;jd5, of genus
8 dydadldy — 2 dyd(dy + d) — 2 dld(dy + db) + 1, is not rational.

e Approximate representation of

the intersection curve and gaps o
in the models. \

e Base point for rational param. (s, t) [ggzg, EE s1) ;28 3] fi(s0, to) = 0.

Reduce the degree 2d;d> — p, the genus, ... 21




Other geometric operations

e Blending surfaces

o Selfintersection

e Reparametrisation =
o Offsets
e Constructive Solid Geometry (CSG)

@

/N

VAR
Qe

N\

e Silhouet 37

22



Isogeometric Analysis




e Finite Element Analysis (FEA) developed to improve analysis in
Engineering.

e FEA was developed before the NURBS theory;

e FEA evolution started in the 1940s and was given a rigorous
mathematical foundation around 1970 (E.g, ,1973: Strang and Fix's An
Analysis of The Finite Element Method)

e An early believe that higher order representations in most cases did not
contribute to better solutions

e Computer Aided Design (CAD) developed to improve the design
process.

e CAD (NURBS) and FEA evolved in different communities.

e B-splines, 1972: DeBoor-Cox Calculation, 1980: Oslo Algorithm

e Representation adapted to performance of earlier computers

e Few information exchange between CAD and FEA.

23



Design Solid Model Analysis Solid Model Geometry
Creation and/or Edit Creation and/or Edit Decomposition
Start e —
4%
| o |
. B 2 Assign Model
Meshing Mesh Manipulation Parameters
e 6% 6% _
Assemble Simulation Run Simulation Post-process
Model Results
—> % e 5% T
A | | e | | . |
Archive
Artifacts
Sto;
> .

(Isogeometric Analysis: Toward Integration of CAD and FEA - J. A. Cottrell, T.J. R. Hughes, Y.
Bazilevs, 2009)

1z |[soGeometric Analysis aims at a seamless integration of Design

and Analysis. 0



Historical perspective:

—l Finite Element Analysis }

1970 1980 1990

1

Cox de Boor
Algorithm

|

2000

‘ Ethernet | l Internet ‘

Oslo Algorithm

Strang & Fix: An
Analysis of The Finite
Element Method

Forsey & Bartels,

refinement.

Hierarchical B-spline

2010 I 2020
G”k-splines... .

LR-splines
THB-splines ...

PHT-splines
(Deng)

T. Sederberg,
T-splines

T. Hughes,
Isogeometric analysis

25



What is isogeometric analysis ?

26



e Choose a parametrization o : P — Q of a "computational" domain €.
e Use finite dimensional function space spanned by

¢ :P —- R

to express the approximate solution S : Q — R? of a system of
differential equations as

— (Z i d>,-> oo (x) with \; € RY.

e Pull back the solutions of the differential equations by the
parameterization o and project onto the space spanned by
&:),'(X) =®;0 071

/QE(S)~.( dx_/ Z)\d) (u) J; Y (u)du

(Isoparametric elements: B. Irons, O. Zienkiewicz, 1968, ...; T. Hughes, Y. Bazilevs, ...2005)
27



Elliptic problem

Consider the following two-dimensional heat diffusion example as an
illustrative model problem:

—Au(x) = f(x) in QCR?
u(x) =g on 0€2p (1)
&,u(x) =h on 0y

where

e A is the Laplacian operator,
e () is the computational domain parameterized by o : P — Q,
e u(x) is the unknown heat field,

e f(x) is the heat source function.

28



Weak /variational formulation, Galerkin method

Green formula:
—/Auvdx:/Vu-Vvdx+ Oyuvdy
Q Q o0

Variational formulation:
Find u € V with ujpq, = g s.t. Vv € V with vjgq, =0,

a(u,v) = b(v)

where a(u,v) = [ Vu-Vvdxand b(v) = [ofvdx— [,q hvdy.

If V= (¢j) =(Nioo™), u= 3, ci¢i,
Ac=0b
where

A,-,J-z/vgz),--v(;sj dx:/ VN P IV N |, |t dp
JQ P

bi:/fog_lN,-‘JU|_ldp—/ hOJ_lN,"JU|_1dS 29
Q oQn



IGA with Truncated Hierarchical Bsplines (THB)*

Nested spaces of b-splines functions Vo C V4 C -+ C V; with bases b/(x).

Nested subdomains Q¢ D Q7 D --- D £, and recursive subdivision

Truncated basis:

THB-splines: An effective mathematical technology foradaptive refinement in geometric design andisogeometric,
analysis — Carlotta Giannelli, Bert Jiittler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh

30



Linear elasticity with local refinement?®

Zajor,-j +f;=00n Q;u; =g on aQDi;ZU;ju; = g; on 0y,

10000
# dof.

THB-splines: An effective mathematical technology for adaptive refinement in geometric design andisogeometric

analysis — Carlotta Giannelli, Bert Jiittler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh

31



(Singular) splines on general topology®

Yo Vo

v vy vy g

e Take a set of square faces.
e Glue them along edges.

e Choose orthogonal change of coordinates between adjacent faces.

6
Hermite type Spline spaces over rectangular meshes with complex topological structures — Meng Wu, BM, André
Galligo, Boniface Nkonga, 2017

32



Splines on M

The space S3(M) of piecewise polynomial functions on M, which are C!
of bi-degree (3, 3) is spanned by:

e for a vertex « of valence 4: the Hermite basis functions dual to
f = [F(7), 0uf(7), 0uf(7), 0uOV F(7)].

e for a vertex v of valence 2: the first and last Hermite basis functions
with vanishing derivatives d,, 0, at .

o for a vertex «y of valence ¢ {2,4}: the first Hermite basis function

with vanishing derivatives 0, 9,, 0,0, at 7.

Dimension:
dim S%(M) = 4(Nb + No) + 2N + N3

where Np is the number of boundary vertices and Ny is the number of

interior basis vertices with deg(v) mod 4 = k.
33



Experimentation

Fixed-boundary Grad-Shafranov equation:
—V(R(r)Vu) = —g(r)f(u,r,z) in Q, @)
u=0 on 09,

where g(r) € L?(Q) is a function of r and

ao [ &) 0
RU_( 0 g(r)>'

Solved iteratively the (i + 1)—th iteration solution ujy1(r,z) from the

solution u;(r, z):

—V(R(r)Vujti(r,z)) = —g(r)f(ui(r,z),r,z) in Q,
uir1 =0 on 09,

34



Elliptic boundary value problem on a square

g(r)=1/(r+2)? f(u,r,z) = G(r,z) + u? where
G(r,2) = —(1— r2)2(1 — 22) + 2(1 — 22) — 8(1 — 22)/(r +2) — 2(1 — r).

Errors with the L?-norm and H-norm:

35




Elliptic problem on a more complex domain

g(r) =1, f = A(u*) with u* = (r+2)(r + 1)N?F(r, z)/10* and [, Fi(r,z) =0

Errors with the L2-norm and H-norm:

36




Spline spaces




Splines over a subdivision

A e A decomposition of a (simply connected) domain
M C R" into polygonal connected regions (cells).

e A regularity function r along the interior edges.

Definition
S5(M) = vector space of piecewise polynomial functions of degree < d on
each cell and of regularity r across the interior edges.

37



Problems:

e Determine its dimension;
e Compute a basis of the space S(M), s.t.
e the functions are positive,
e the functions sum to one,
e with small support,
e reproduces 1,s,t,...
e with good power of approximation,
e with local refinement capabilities,



One dimensional topology

Let M:to <t <--- <ty €R, 7 =[t;, tiy1], vi = ti.

For each edge 7 For each vertex ~y
F(7i) = Rlu] F(vi) = R[u]/T (v)
J(7i) = (0) I(vi) = ((u—t:)*)
0 K— P IrFr) 2 P hlF() 20
TEMY yeEMG

with d1([7i]p) = [vis1] p — [vil p i [7i] = [vi,7i41] and [y0] = [v] = 0.
p=) [rlpickerdy iff  pi—pi1=0 mod (u—t;)"
= K = kerd) = S'(M) and im &1 = @, g F(7) 1.
dimSHM) — Y dimF(r)g + Y dim F(7) =0.

TEM; ",ref\/lg
dim S (M) = fi(d + 1) — f2(min(r, d) + 1) with f = [M]|, @ = |[Mg|.
39



Two dimensional topology

e 0 € M> set of faces of dimension 2 or cells.

o 7€ Mj (resp. M) set of (resp. interior) faces dimension 1 or edges.

e v € My (resp. Mg) set of (resp. interior) faces of dimension 0 or
vertices.

Definitions:

e For 7 €¢ My,

e (.(s,t) =0 be the equation of the line supporting 7.
o Jf(r) = (£,

e For v € M,,
T(Y) = Y, I(7) = (6571 5.
Lemma

Let 7 € My be an edge and let p1, po € R. Their derivatives coincide
along T up to order r(7) iff p1 — p2 € 3"(7). 40




Topological chain complex and quotients’

0 0
1 4

o0 = @reagllT() o @iepghlT() = 0
1 s 1

R: @U@Vlz[a]R — @TeMg[T]R — EquMg[”/]R — 0
1 4 1

F ' @eerullR > DrensllR/T() = @yerghlR() = 0
4 4 4
0 0 0

7
Billera, L.J. — Homology of smooth splines: generic triangulations and a conjecture of Strang, 1988; Billera, L.J.,
Rose, L.L. — A dimension series for multivariate splines, 1991.

41



R is the ring of polynomials in s, t.

Vo € M> with its counter-clockwise boundary formed by edges
T1 = d1d2,...,Ts — dsdl,

(o)) =[nl® &[] =[a1a] B - & [asa1].

VT = 7172 € M$ with 1,7, € Mo,

o([]) = [n] = el
where [y] =0 if v & M¢;
vy € Mg, do([+]) = 0.

For 7 € My, ¢,(s,t) =0 is the equation of the line supporting 7,
7(r) = (&),

For v € Mo, 3'(v) =>_ 5. 3"(7).
The image of the map 9; in §" is taken modulo J".

Ty

42



Homology

Definition: H;(€) = ker9;/im dj41.
Long exact sequence:

<o = Hi(R) = Hi(F") = Ho(3") = Ho(R) — - - -

Euler characteristics: for a “degree” d,

> (-1) dim Y =" (~1) dim H;(FY)

i i

Properties:
o Ho(R) = Hi(R) =0
* Ho(3") =0
o Hi(F") = Ho(3")
o Ha(Fy) = Fa(M)

43



Splines on T-meshes




Splines on T-subdivisions

T-subdivision:

Regularity distribution: A map r from the horizontal and vertical nodes
{s1,.--ySnm }, {t1,..., tn, } to N, which specifies the regularity along the
corresponding vertical or horizontal lines.

Spline space: Let S] (M) be the vector space of functions which are
polynomials of degree < min s, < m on each cell 0 € M and globally of
class C*(7) along any interior edge T of M. 44



e R =K]s, t] polynomials in s, t, with coefficient in K.
® Rpmn = polynomials of degree < min's, < m'in t.

A
T2
o1l M 4 B2
O3
B
. 3 02 3 o1 9o
R, m @,‘:1[07]Rm,m’ - @f:l[ﬁiVI]Rm,m’ — ['Yl]Rm,m’ — 0

o 02([o1]) = [v1B1] + [B3n1], 92([02]) = [B1v1] + [11B2], 92([o3]) = [v1B3] + [B271],
o 01([B1m]) = [n], 01([B271]) = [1a], 01([B371] = [l

e Oo([n]) =0. 110
[52]_( 0 —I /),[81]_(/ I /)

i ® =l

where [ is the (m 4 1)(m’ + 1) x (m + 1)(m’ 4 1) identity matrix. 549



P

a3

8

S @RalolRy = @LalBmlR, /T (Biva) = IRy /T (1) = 0

o 30w (Br71) = Thy i (B3m1) = (s771) N R,
O jl;n,m’(BTYl) = (t +1) O R,
o I (1) = (s t" ) N Ry

—My My 0
[02] = 0 —I2 Mo ,[61] = ( Pi P> P3 )
M3 0 -3

where IT; (resp. P;) is the projection matrix of Ry, v (resp. Ry /37 (Bi71)) on
Rm,m’ /3:77,m’ (Bim1) (resp. Rm,m’ /j:n’m/ (1))

46



Splines on planar T-meshes

> dim F(0)mm = (m + 1) (m' + 1)

(m+ 1) x (min(r’,m’)+1) if 7 is horizontal

di =
> dim F(7) m,m) { (min(r,m) +1) x (m" +1) if 7 is vertical

> dim F(7)[m,m) = (min(m, (7)) + 1) x (min(r(7s), m') + 1).

47



Dimension formula

Theorem
dimFy (M) = (m+1)(m' + 1)k
— (m+1)(F + 1D = (m' +1)(r + 1)’
+ (r+1)(F+Dfy
+ :‘n,m’(M)

where
e f> is the number of 2-faces € M,
o f" (resp. 1) is the number of horizontal (resp. vertical) interior edges
€ M3,
e fo is the number of interior vertices € M§.
o B (M) = dim Ho(3%, ) > 0.




The bad and good news.

The dimension of F) (M) may depends on the geometry:

‘yx ‘}/2 t|
7o Yo " ¢
—_— S
i
i 8
Vs i | 7
¥a
td
5, 8,8 S, 55
2

49



Definitions:

e A maximal segment is a maximal union of edges of M that form a
segment.

e It is a maximal interior segment if it does not intersect the
boundary.

e MIS(M) is the set of maximal interior segments of M,

S S I .......... Ii
B |
o b
G R

50



Definitions:

e The maximal interior segments are ordered in some way: p1, p2, ...

e For a horizontal (resp. vertical) maximal interior segment p;,

w(pi) =3 ,er(m+1—=r(p)) (resp. > cr (m' +1—r(p)))
where R; is the set of maximal segments, which are not a maximal
interior segment p; of bigger index j > /.

Theorem

Let M be a hierarchical T-subdivision. Then

(M) < D (AL —w(p))y x (m' =)

PEMIS,(M)

+ Y (m=r)x(m +1-w(p),

pEMIS, (M)

51




m,m’

Cases where h' (M) =0

If all maximal segments intersect the boundary, then h* (M) = 0.

m,m’

Corollary J

Definition: a subdivision is (k, k")-regular for an ordering of the maximal
interior segments if all the horizontal (resp. vertical) maximal interior
segments are of weight > k (resp. > k’).

Theorem
If M is (m~+1,m" + 1)-regular. Then h'_ (M) =0.

m,m’

Proposition
Ifm>=2r+1and m >2r' +1, then h' (M) =0.

m,m’

52




Biquadratic C! T-splines

dim 75 (M) = 9% — 6f + 4fy + hy5(M).

Neighborhood: N'!(o) is the smallest rectangle of M that contains o in
its “interior”.

Construction of 4-regular subdivisions (hé;(/\/l) =0):

ts e Choose 0 € M5 and split it by an edge 7.

ta

e Extend the edge 7 on both side so that the maximal
7381 SRD] ARARRRSL Ap A AR RN dr----q . . 1
segment p that contains 7 splits V(o).
2

ty

S1 ED) 83 Sa
Basis functions associated to a cell o:

No(s, t) := N(s;si—1,Si-1, i, Si» Si+1) N(t; tj—1, tj—1, tj, tj, tjr1)

53



Bicubic C! T-splines

dim C33(M) = 166, — 81 + 4fy = 4(fy" + 7).

Construction of 5-regular subdivisions:
t3

e Choose a point v on an edge which is not a crossing
vertex;

e Split the adjacent(s) cell(s) at .

t1

S$1 S2 §3
Basis functions associated to a crossing vertex ~:

NS’O(S, t) = N(s;si—1,Si-1,5i,5Si,Si+1) N(t; tji—1, tj—1, tj, tj, tj+1)
0,1

N’Y/ (57 t) ( )N(t; tj—lvtyatjatj—i-l»tj-‘rl)

Ny(s,t) = N(sisi—1,Si,5i, Siv1, Siv1) N(ti tjio1, tjo1, £, 8, tii1)
1,1

Ny~ (s, t) ( ) N( )

= N(s;si—1,Si-1,5i,Si, Si+1

= N(s;si—1,si,Si, Si+1,Si+1) N(t; -1, £, tj, tj11, tj11

54



Triangular splines




Triangular splines

A

e A decomposition of a (simply connected) domain M into triangular
cells (or polygonal regions).
e A regularity function r along the interior edges.

Definition
S! (M) = vector space of piecewise polynomial functions of degree < n on
each cell and of regularity r.
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The bad and good news.

The dimension may depend on the coordinates of the vertices:
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Algebraic ingredients

For d €N, ¢y = Id,

> dim F(0)g = dimR[u, v] = (73?)

» dim F(7)y = dimR[u, v]/(£7F1) = (dJ2F2) = (‘”2_2(’*1))

r+1

» For computing the dimension of F(v)y = R/(KT, ..., I[™), we use

the resolution
0= R(-Q-1)" a8 R(-Q)” > & R(—r—1) = R— R/J(7) = 0

where t is the number of different slopes of the edges containing v and
Q= LﬁJ +1, a=t(r+1)+(1-1)Q, b=t—1-a

d+2(r+1)>b<d+2Q>a<d+2(Q+1)>

d|m]~"(7)dt< 5 5 )
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Lower bound for splines on triangulations

Theorem
The dimension of S/(M) is bounded below by

amsji)=(32) + (YY)

_Z{ (d+2_ r+1)) _bi(d+22—Q,-)_ai (d+2—2(Q,-+1)>]7

where
e F? is the number of interior edges,
e Fg is the number of interior vertices,

e t; is the number of different slopes of the edges containing the vertex
i, and

ti
Q; = \‘t' rlJ-i-l, a,-:t,-(r+1)+(1—t,-)Q,- and b=t —1— a;.




Upper bound for splines on triangulations

Let us fix an ordering 71, .. . s V89 for the interior vertices.

Theorem
The dimension of S};(M) is bounded by

dim (M) <(d+2> +F1°(d+2_(’+1)> o (d+2—(r+1)>

2 2 4 2
i, =1
B i {E<d+2—(r+1)>_5 <d+2—fz,~> . <d+2—(f2,~+1)>}
. = 1 2 1 2 1 2 9
i=1,f>2

where t; is the number of edges with different slopes attaching the vertex

~; to vertices on the boundary or of lower index, and

J—‘r]., 5;:fi(r—|—l)+(1—l~'i)£~2;, B,':E,'—l—é,‘.
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(M. Powell, M. Sabin, 1977)

e Quadratic C%, using 6 sub-triangles.

e Dimension = 3 V, where V, is the number of (conformal) vertices of

M.
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Volumetric splines




Splines on tridimensional topological space

A similar topological complex and boundary maps:

0= SiM) = P FO) 2 P Flo) 2 P Fin) 2 P Fn) 20

LEM3 oeMS$ TeM? yEMS

We get:

dimSy(M) = > dimF(t)a— > dimF(o)g+| Y dim F(r)q

1eMS ceEMS reM?

- Z dim F()q |+ dim H1(F)g — dim Ho(F)4

= A0
yeEM
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» For edges 7:

F(T) = Rlu, v, w]/(¢5T, ... 05t

as lines trough a point.

» For vertices ~y, by apolarity:

dim F(7)g = dim R/, ., 65+) g = dim(1{ ")

where IL(dfr) = ﬂlemg__r is the fat point ideal.

Lower bound on dim F(~) from generic polynomials,
using Froberg conjecture, proved in P? by D. Anick.
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Upper bound in the tetrahedral case
We use:

dimSj(M) =dimRy+ > dim J(0)g — dimim (82)q
O'EMg

Theorem

The dimension of S;(M) is bounded above by

dim S5(M) < (d;“”) +f20(d+3—3(r+1))

—Z[ <d+3—(r+1)>_5i(d+3—§~2- ?

3 > _§i(d+3—3(9,-+1)ﬂ

1,3 =5(r+1)+(—-5) and b =5 —1—-35 if§ > 1,
0 when 5; =1 or 0.

with Q; = |
and 3; = b;

Lm

|+
Q =

64



Lower bound on the dimension

F'(t,d, k); = Z(—l)idim Rj_d,-<f>, F(t,d, k) =|F'(t,d, k)|

1

Froberg conjecture: F(t,d,k); =dimR;/(p1,...,pt); for generic
polynomials p1, ..., p; of degree d in k variables.

= [ ower bound for Hilbert functions of t polynomials of deg. d in k var.
Weak Lefschetz Property: x/¢: M; — M;;1 has maximal rank Vi € N.

v If the WLP for [ fails for R/(LL™, ... Li™Y) in k variables, then
dim R, /(Li™, . L), > F(t,r + 1, k),

For k =4, t =5,6,7,8, WLP fails when r +1 > 3,27,140,704 (cf. H.
Schenck et al).
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Apolarity: (Li™,... Li*1)L = {p € Ry which vanishes with order d — r
“at” Ly,... L.},

For r = d — 2, by Alexander-Hirschowitz theorem, the dimension for
generic linear forms L; is “as expected” except for
(t,d, k) = (5,4,3),(9,4,4),(14,4,5), (7,3,6).

Segre-Harbourne-Gimigliano-Hirschowitz conjecture: dimension as
expected iff there is no (-1)-special curve in the blow-up of P? at Ly, ..., L.

Known for ¢t < 9 [Nagata’60], Vt if d — r < 12 [Ciliberto-Miranda’98].
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Lower bound in the tetrahedral case

dim S4 (M) —dIde+Z Z dlmj (B)dg + dimim (01)qg
i=18eMy_,;
Theorem
The dimension of S, (M) is bounded below by

dimS[,(M)Z<d;’3)+f20(d+3_3(r+1))
721: d+3f (r+1) b d+3-Q; . d+3—(Qi+1)
{ ( . ) < 3 ) < 3 )]
- fé’(d?) - Z(; F(<f7r+1.,3)j>

i=1 +

with Q; = [£55] +1, ai = si(r + 1) + (i — 5;), and b; = s; — 1 — a;, and where
where F((;, r + 1,3) is the Froberg sequence for ¢; = min(3, t;).

y
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No time to talk about

e Lower and upper bound for 3D-splines.

e Geometrically regular splines on surface of arbitrary topology.
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A picture is worth a thousand words
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598 patches

G! Spline Surface with 3000 patches.
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Problems which look for a solution

e Dimension and basis for low degree, higher regularity.

Construction of “good"” basis functions associated to vertices, edges,

faces.

Tridimensional extensions.

Applications in fitting, isogeometric analysis.

Thanks for your attention
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