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Setting the Table

Solve f(x) = ; =0




Setting the Table

» Equilibrium and transition states

» Real enumerative geometry

fi(x1....

fn(xl, “ e

L XN )

XN )

» Mechanism design



Setting the Table

» Overview of homotopy continuation and num. alg. geom.

» Historical perspective

» Utilize Bertini but there are many other packages, e.g.:

» PHCpack, Hom4PS, NAG4M2, HomotopyContinuation. jl

® f(z) o HE®H)=0 » g(z)

H=(1-t)f(z)+tg(z)




Algebra vs. Geometry
Algebra:
» “Numerical Polynomial Algebra” by Hans Stetter

» Normal forms, eigenvectors/eigenvalues, border basis, ...

» K. Batselier, B. De Moor, P. Dreesen, B. Mourrain, S. Telen,
M. Van Barel, ...

Humerical
Folynomial
Algebra




Algebra vs. Geometry

Geometry:

» Homotopy continuation and numerical algebraic geometry

» Morgan (1987), Allgower-Georg (1990), Sommese-Wampler (2005)
Bates-H.-Sommese-Wampler (2013)

1 . " Introduction t - i
Solving Polynomial ) N A iuriericos SOMEOR
Numerical Continuation of Systems of Polynomials
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Algebra vs. Geometry

Generally speaking:

» Algebraic methods prefer vastly over-determined systems

» fewer “new’ polynomials to compute
» Bardet-Faugere-Salvy (2004)

» Numerical algebraic geometry prefers well-constrained systems
of low degrees with coefficients of roughly unit magnitude

» codimension = # equations
» stable under perturbations



Early
History of
Solving




Early History
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Early History

f(x) =ag + aix + axx® + -+ +agx? =0

» Abel-Ruffini Theorem (1824)

» No algebraic solution (using radicals) to general polynomial
equations of degree 5 or higher with arbitrary coefficients

» What does it mean to “solve x> —x +1=0"7



Early History

» What does it mean to “solve x> —x +1=20"7

Maple

> Sohfe(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+1, indexZZ), ROOfOf(_ZS — Z+1, indexZB),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)




Early History

» What does it mean to “solve x> —x +1=20"7

Maple
_> Sohfe(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+ 1, index = 2), ROOfOf(_ZS — Z+ 1, index = 3),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)

> ﬁot’ve(x5 —x + l);
-1.167303978




Early History

» What does it mean to “solve x> —x +1=20"7

Maple
_> Sohfe(xs —x + 1);
ROOfOf(_ZS — Z+ 1, index = 1), ROOfOf(_ZS — Z+ 1, index = 2), ROOfOf(_ZS — Z+ 1, index = 3),

RootOf(_Z5 — Z+ 1, index = 4), RootOf(_Z5 — Z+ 1, index = 5)

> ﬁot’ve(x5 —x + l);
-1.167303978

> eva{f(so[ve(xs —Xx+ 1) );
0.764884433600585 + 0.352471546031726 1, —-0.181232444469875 + 1.08395410131771 1,

—-1.16730397826142, —0.181232444469875 — 1.08395410131771 1, 0.764884433600585
— 0.352471546031726 1




Early History

» What does it mean to “solve x> —x +1=20"7

Maple

> evalf(so[ve(xs —x + l) );
0.764884433600585 + 0.352471546031726 1, —0.181232444469875 + 1.08395410131771 1,

—-1.16730397826142, -0.181232444469875 — 1.08395410131771 1, 0.764884433600585

— 0.352471546031726 1
Bertini finite_solutions
L 5
input

7.648844336005847e-01 -3.524715460317264e-01
variable_group X;

function f;
~ -1.812324444698754e-01 1.083954101317711e+00
f =x"b - x + 1;

7.648844336005849e-01 3.524715460317262e-01

-1.167303978261419e+00 -2.220446049250313e-16

-1.812324444698754e-01 -1.083954101317711e+00



Early History

Vast generalization of the meaning of “solve”:

» Early history: find a solution and study local properties

» Late 20" century: find all isolated solutions

» Early 21%' century: describe all solutions
» isolated and positive-dimensional components



Early History

Lack of exact formula for solutions — iterative refinement

» Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)

» compute solution to arbitrary accuracy given approximation



Early History

Lack of exact formula for solutions — iterative refinement

» Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)
» compute solution to arbitrary accuracy given approximation
Newton's method:

» f:C" — C" with Jacobian Jf : C" — C"*"

» Given approximation xg, compute xj, X2. X3. ... via

Xg+1 = Xk — Jf(Xk)_lf(Xk)




Early History

Lack of exact formula for solutions — iterative refinement

» Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)
» compute solution to arbitrary accuracy given approximation
Newton's method:

» f:C" — C" with Jacobian Jf : C" — C"*"

» Given approximation xg, compute xj, X2. X3. ... via

Xg+1 = Xk — Jf(Xk)_lf(Xk)

If f(x*) =0, JF(x*)~! exists (nonsingular), and ||xo — x*|| small,

X, — X quadratically.



Example

Early History

Approximate x* = 1/2 by solving f(x) = x*> — 2 = 0 with xp = 1:

2

2 X

Xk+1 = Xk — Jf(X;()_lf(Xk) = Xj —

1

1.5
1.416666666666666666666666666666666666666666666666 7
1.4142156862745098039215686274509803921568627450930
1.4142135623746899106262955788901349101165596221157
1.4142135623730950488016896235025302436149819257762
1.4142135623730950488016887242096930785696718753772

1.4142135623730950488016887242096980785696718753769



Early History

Double-edged sword of Newton's method:
» Qudaratic convergence near nonsingular solutions
» Slow convergence or divergence near singular solutions

» Difficulty away solutions (chaos, limit cycles, etc)




Early History

Double-edged sword of Newton's method:
» Qudaratic convergence near nonsingular solutions
» Slow convergence or divergence near singular solutions

» Difficulty away solutions (chaos, limit cycles, etc)

Goal

» Use continuation methods to stay near solutions

» Use deflation to restore quadratic convergence for sing. solns.
» Ojika-Watanabe-Mitsui (1983), Ojika (1987),
Leykin-Verschelde-Zhao (2006,2008), Dayton-Zeng (2005),

Mantzaflaris-Mourrain (2011), Guisti-Yakoubsohn (2013),
H.-Wampler (2013), H.-Mourrain-Szanto (2017), ...



Early History

Continuation from complex analysis:
» Cauchy (1789-1857), Riemann (1826-1866), Mittag-Leffler (1846-1927)

» Implicit function theorem

» Analytic extension of functions (analytic continuation)

Big picture idea:

» solutions “continue’ locally under small parameter changes

x(p)



Example Early History

f(x;p) =x*—=p=0 x(p)

» Starting at (x.p) = (1,1), IFT provides that there is an
analytic function x(p) with x(1) = 1 such that f(x(p).p) = 0.

TJ

. ) .
P) =P = Z4”1—2n TR

n=—

peC

07 .

» converges for |[p — 1| <1




Example Early History
f(x;p)=x>—p=0
» Extend beyond original domain using continuation
Compute x(1 + 2/) = /1 + 2/ via the path x(1 + (1 —t) - 2i):
» t =1: x(1) =1 is known

» t =0: x(1+ 2i) is what we want to compute

peC




Early History
Compute x(1 + 2i) = /1 + 2i via the path x(1 + (1 —¢t) - 2i):
» t =1: x(1) =1 is known

» t =0: x(1+ 2/) is what we want to compute

1, x(1) =1

t 0.5-

0 x(1 + 2i) & 1.2720 + 0.7862i

1 0.5

real(x) 12 0 imag(x)



Early History
Numerically track along the path x(t) satisfying f(x(t).t) = 0:

» (Predictor) Estimate x(t + At) from x(t) by discretizing
using the Davidenko differential equation (1953):

f=0 — %f =0 —  x(t) = =L f(x(t). t) "1 LF(x(1). 1)

» Constant, Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg, ....

X( f) correct

predict

e——




Early History
Numerically track along the path x(t) satisfying f(x(t).t) = 0:

» (Predictor) Estimate x(t + At) from x(t) by discretizing
using the Davidenko differential equation (1953):

f=0 — %f =0 —  x(t) = =L f(x(t). t) "1 LF(x(1). 1)

» Constant, Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg, ....

» (Corrector) for each t, apply Newton's method to f(e.t) =0

X( f) correct

predict

e——




Example

Early History

f(x;p)=x>—p=0

x(p) =P = Z4”1—2n)(n')( B

Track around a loop:

pecC

"(2n)!

X(EEQ)



Example Early History

peC

f(x;p) =x*—p=0 C.
f@)

Track around a loop:  x(e

real(x) imag(x)

cycle number = winding number = 2

Ish



Ish

Example Early History

peC

f(x;p)=x>—p=0 O
f@)

Track around a loop:  x(e

» monodromy action: permutation of solutions along loop

» compute other solutions
» decompose solution sets

< 2

real(x) imag(x)



Example Early HiStOI’y pec

f(x;p)=x*—p=0 C.
f@)
< )

real(x imag(x)

Track around a loop:  x(e

» Cauchy integral theorem: computing singular endpomts

» cycle number ¢
» sufficiently small radius r > 0

2T C

1 2mwc _
x(0) = / x(re'?)d
0

» Cauchy endgame: Morgan-Sommese-Wampler (1991)

Ish



Late 20th
Century

1970s — 1990s



Isolated Solutions

Find all isolated solutions of

f(x) =




Isolated Solutions

Find all isolated solutions of

f(x) =




Isolated Solutions

f(x) = 5 =0

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F



Isolated Solutions

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F

2. homotopy that describes the deformation of the parameters
» construct a deformation inside of F that ends at f

N




Isolated Solutions

Homotopy continuation requires (Morgan-Sommese (1989)):

1. parameters to “continue”

» think of f as a member of a family F

2. homotopy that describes the deformation of the parameters
» construct a deformation inside of F that ends at f

3. start points to track along paths as parameters deform
» parallelize computation — track each path independently

Ish




|solated Solutions
Theorem

For properly constructed homotopies, with finite endpoints S C C":

» each isolated solution is contained in S

» in fact, S contains a point on every connected component

» for square systems, multiplicity = number of paths if isolated.

» Local dimension test to identify nonisolated solutions
(Bates-H.-Peterson-Sommese (2009))

® f(z) . HEE.H=0 » g(2)

H=1{1-1t)f(z) +tg(z)




Isolated Solutions

Art in the construction of family F:

» number of start points

» ease to compute start points

easler

start  (A— — — — —

system

Coeflicient-Parameter

U ———U--—
Polynomial | Newton
Products : Polytopes
®--U-- U

Monomial Products

Linear Products

U

Multihomogeneous

U

Total Degree

specificity
(fewer paths)

® f(z) . HGE®.H)=0 » g(z)

nonsingular
endpoint

singular
endpoint

H=1(1-1)f(z) +tg(z)

ae
t

0

endgame (C 00
boundary t=1

Each method is sharp for generic members of F.
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Example

f =

Isolated Solutions

x% 4+ 2x — 8
xy +2x+4y —3



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Bézout family (total degree):

Pt e em [0

Number of paths = number of isolated solutions for g: 4

H=(1—-t)-f+~t-g

» v € C is used to create a general deformation

» avoid singularities that arise from tracking over real numbers

Ish



Example Isolated Solutions

£ x? 4+ 2x — 8
| xy+2x+4y —3

» Bézout family (total degree):

{80 =2} e=[50]]

Number of paths = number of isolated solutions for g: 4

Bertini finite_solutions
1
input
p 2.000000000000000e+00 0.000000000000000e+00
varxr 1ab1 e_gr Oup X , '-);r ; -1.666666666666667e-01 0.000000000000000e+00

function f1,f2;
fl = x"2 + 2%x - 8;
ish f2 = x*ky + 2%x + 4%y - 3;



Example Isolated Solutions

£ x? 4+ 2x — 8
| xy+2x+4y —3

» Multihomogeneous Bézout family (Morgan-Sommese (1987)):
F = {[ gl(X) ] : degx 81 — 2. }
g2(X_y) ' degx gy = degy g = 1

— X2_1 — _ . ~F .
g[(xz)(yl)] H=({1-1)-f+t-g

Number of paths = number of isolated solutions for g: 2

Ish



Example Isolated Solutions

£ x? 4+ 2x — 8
| xy+2x+4y —3

» Multihomogeneous Bézout family (Morgan-Sommese (1987)):

F = {[ gl(X) ] : degx 81 — 2. }
g2(X_y) ' degx gy = degy g = 1
Number of paths = number of isolated solutions for g: 2

Bertini
input Vvariable_group Xx;
variable_group y;
function f1,f2;
fl = x"2 + 2%xx - 8;
¥ £2 = xky + 2%xx + 4%y - 3;



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Polyhedral (BKK, Huber-Sturmfels (1995)):

2

aixX: + axx + a

F = ! 2 3 ca; € C
agxXy + asX + agy + ay

x? —1 |

Number of paths = number of isolated solutions for g: 2

Ish
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Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

» Extra structure in the coefficients of f.

x° — (a1 + a2)x + a1a>
f{p(x.y,a) [ (x —a1)y + asx + ag 'BEEC}

&= [ (x X21)y1 1 ]

Number of paths = number of isolated solutions for g: 1



Example Isolated Solutions

[ x% 4+ 2x — 8
| xy+2x+4y —3

_ x? — (a1 +a)x+a1a |
f_{p(x‘y,a)_[ (x —a1)y + asx + a4 'QEEC}

° [ (x le)yll ]

Since F is no longer linear, use a parameter homotopy:

H = p(x.y;a(t))

where  a(t) = (1 — 7(t))(—4.2.2,-3) + 7(t)(1,—1,0,—1)

/"\t
. m(t) = 5—
Iish 1 —t+~t
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Isolated Solutions
Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given
general points in the plane.




Isolated Solutions
Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given
general points in the plane.

» 8652 = 6 - 1442 (Wampler-Morgan-Sommese (1992))

Their polynomial system: 4 quadratics and 8 quartics

Bézout 1,048,576 = 2%.4°
M-hom Bézout | 286,720 = 2!2.(})
Polyhedral 79,135
Product decomp. 18,700
Actual 8,652




Isolated Solutions
Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given
general points in the plane.

» 8652 = 6 - 1442 (Wampler-Morgan-Sommese (1992))

Their polynomial system: 4 quadratics and 8 quartics

Bézout 1,048,576 = 2%.4°
M-hom Bézout | 286,720 = 2!2.(})
Polyhedral 79,135
Product decomp. 18,700
Actual 8,652

To date: only verification via numerical algebraic geometry

» \What structure can be exploited to prove 8,652 is correct?



Century



Witness Set

Describe all solutions of

fi(xi..... Xp)
f(x) =
| f(x, . Xp)
o
¢ o
o




Witness Set

Numerical irreducible decomposition:
» decompose into irreducible components

» provide a numerical description of each irreducible component



Witness Set

How to represent an irreducible algebraic variety A on a computer?

A



Witness Set

How to represent an irreducible algebraic variety A on a computer?

A

» algebraic: prime ideal I(A) = {g | g(a) =0 for all a € A}

» Hilbert Basis Theorem (1890): there exists f{,.. .. f, such that



Witness Set

How to represent an irreducible algebraic variety A on a computer?

» geometric: witness set {f, L. W} where

» f is polynomial system where A is an irred. component of V(f)
» L is a linear space with codim £ = dim A

» W =LnNAwhere #W = deg A

A




Witness Set

Example

A= {[s3. 5%t st?. t°] | [s.t] € P!} C P® - twisted cubic curve

» [(A) = (><12 — X0X2, X1 X2 — X0X3. X22 — X1X3) A



Witness Set

Example
A= {[s3. 5%t st?. t°] | [s.t] € P!} C P® - twisted cubic curve

» [(A) = (x12 — X0X2. X1 X2 — X0X3. x22 — X1X3)

A
» {f. L, W} where

> f[ X12—X0X2 ]

X1 X2 — XpX3

L

» L = {[X{]:X]_EXQ:Xg] e p3 ‘ bxg — 6x1 — 2x0 + x3 = 0} c p3
» codim £L =dim A=1

( 1,3.2731,10.7130, 35.0644]. )
» W =< [1,0.8596,0.7389,0.6351]. >
\ 1,—2.1326,4.5481, —9.6995] )
» deg A =3

ish



Witness Set

Example
A= {[s3. 5%t st?. t°] | [s.t] € P!} C P® - twisted cubic curve

» [(A) = (x12 — X0X2. X1 X2 — X0X3. x22 — X1X3)

o[ e A

X1 X2 — XpX3
V(f):AU{X{):Xl:O} L

» Witness sets “localize” computations to A effectively ignoring
the other irreducible components.

» Sample points from A by moving the linear slice L.

ish



Example

|

Witness Set

) Bertini
X0 input
X1 X2 — Xp0X3 P

CONF IG
TrackType: 1;
END;

INPUT

hom_variable_group x0,x1,x2,%x3;
function f1,f2;

fl1 = x172 - x0%x2;

f2 = x1xx2 - x0%xx3;

END;

Dimension 1: 2 classified components

degree 1: 1 component
degree 3: 1 component



Ish

Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

» membership testing: is x* € A?

> decide if g(x*) =0 for every g € [(A) without knowing /(A)

A ‘/ }
_---'0//
homotopy \ /—Z

/(/



Witness Set

» projection: m(A)

» perform computations on 7(A) without knowing any

polynomials that vanish on 7(A)

A T (L)

homotopy >




Witness Set

» intersection: AN B

» special case is regeneration
> V(f,..., fi, k1) = V(f1, . ... fk) N V(fis1) via witness sets

» compute Aging
» compute critical points of optimization problem

. xT

min ||[x* — a||> such that a€ ANR"



Witness Set

Test other algebraic properties of A
» is A arithmetically Cohen Macaulay?
» is A arithmetically Gorenstein?

» is A a complete intersection?

Ish



Witness Set

Example
A=04(C3 xC>xC* cP®

» dim A = 31
» deg A = 345

» [(A) contains 10 poly. of degree 6 and 20 poly. of degree 9
» Bates-Oeding (2011), Friedland-Gross (2012)

» used sampling to show that A was aCM and that these
polynomials generate /(A)

- N.S. Daleo and J.D. Hauenstein,
r Numerically deciding the arithmetically Cohen-Macaulayness of a projective scheme.
1“ J. Symb. Comput., 72, 128-146, 2016.



Future?

» Specialized/structured homotopies

» Real solutions especially over parameter spaces

» Certification for singular and positive-dimensional sets

» Many applications in math, stats, science, and engineering

» Local methods (too many solutions to find all of them?)



Summary

Numerical algebraic geometry provides a toolbox for solving
polynomial systems.

» “If a problem was easy, someone else would have solved it.”
» Grobner basis computation probably did not terminate

» think carefully about what information you want/need
» art in building efficient homotopies that incorporate structure

» preconditioning is important

» transform problem into form suitable for num. computations

Ish
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