Introduction to Numerical Algebraic Geometry

Jonathan Hauenstein
March 2020

Setting the Table

Solve
$$f(x) = \begin{vmatrix} f_1(x_1, \dots, x_N) \\ \vdots \\ f_n(x_1, \dots, x_N) \end{vmatrix} = 0$$

Setting the Table

Solve

$$f(x) =$$

$$f(x) = \begin{bmatrix} f_1(x_1, \dots, x_N) \\ \vdots \\ f_n(x_1, \dots, x_N) \end{bmatrix} = 0$$

Equilibrium and transition states

Optimization

Solving differential equations

Real enumerative geometry

Mechanism design

Setting the Table

- Overview of homotopy continuation and num. alg. geom.
- Historical perspective
- Utilize Bertini but there are many other packages, e.g.:
 - PHCpack, Hom4PS, NAG4M2, HomotopyContinuation.jl

Algebra vs. Geometry

Algebra:

- "Numerical Polynomial Algebra" by Hans Stetter
- Normal forms, eigenvectors/eigenvalues, border basis, ...

K. Batselier, B. De Moor, P. Dreesen, B. Mourrain, S. Telen,

M. Van Barel, ...

Algebra vs. Geometry

Geometry:

- Homotopy continuation and numerical algebraic geometry
- Morgan (1987), Allgower-Georg (1990), Sommese-Wampler (2005)
 Bates-H.-Sommese-Wampler (2013)

Algebra vs. Geometry

Generally speaking:

- Algebraic methods prefer vastly over-determined systems
 - fewer "new" polynomials to compute
 - Bardet-Faugere-Salvy (2004)

- Numerical algebraic geometry prefers well-constrained systems of low degrees with coefficients of roughly unit magnitude
 - codimension = # equations
 - stable under perturbations

Early History of Solving

$$f(x) = a_0 + a_1x + a_2x^2 + \dots + a_dx^d = 0$$

$$d = 1$$
: $x = \frac{-a_0}{a_1}$

$$d = 2: x = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0a_2}}{2a_2}$$

$$A = \frac{3}{3v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d + \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{2}} \right]}{\frac{-5}{3v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{2}} \right]}}$$

$$= \frac{-5}{3v}$$

$$= \frac{1 + v\sqrt{4}}{3v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d + \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2} - 4(b^{2} - 3ac)^{2}} + \frac{1 - v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 - v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 - v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d + \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 - v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{2b^{2} - 9abc + 27a^{2}d - \sqrt{(2b^{2} - 9abc + 27a^{2}d)^{2}} - 4(b^{2} - 3ac)^{2}} + \frac{1 + v\sqrt{4}}{6v} \sqrt{\frac{1}{2} \left[\frac{a^{2} - abc}}{2a^{2} - a^{2}} + \frac{1}{2} \left[\frac{a^{2} - abc}}{$$

$$d=4^{\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} -$$

$$f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_dx^d = 0$$

- Abel-Ruffini Theorem (1824)
 - No algebraic solution (using radicals) to general polynomial equations of degree 5 or higher with arbitrary coefficients
 - ▶ What does it mean to "solve $x^5 x + 1 = 0$ "?

▶ What does it mean to "solve $x^5 - x + 1 = 0$ "?

Maple

```
> solve(x^5 - x + 1);

RootOf(\_Z^5 - \_Z + 1, index = 1), RootOf(\_Z^5 - \_Z + 1, index = 2), RootOf(\_Z^5 - \_Z + 1, index = 3),

RootOf(\_Z^5 - \_Z + 1, index = 4), RootOf(\_Z^5 - \_Z + 1, index = 5)
```


▶ What does it mean to "solve $x^5 - x + 1 = 0$ "?

Maple

```
> solve(x^5 - x + 1);

RootOf(\_Z^5 - \_Z + 1, index = 1), RootOf(\_Z^5 - \_Z + 1, index = 2), RootOf(\_Z^5 - \_Z + 1, index = 3),

RootOf(\_Z^5 - \_Z + 1, index = 4), RootOf(\_Z^5 - \_Z + 1, index = 5)
```

```
> fsolve(x^5 - x + 1); -1.167303978
```


▶ What does it mean to "solve $x^5 - x + 1 = 0$ "?

Maple

```
> solve(x^{5} - x + 1);

RootOf(Z^{5} - Z + 1, index = 1), RootOf(Z^{5} - Z + 1, index = 2), RootOf(Z^{5} - Z + 1, index = 3),

RootOf(Z^{5} - Z + 1, index = 4), RootOf(Z^{5} - Z + 1, index = 5)

> fsolve(x^{5} - x + 1);
```

-1.167303978

```
> evalf(solve(x^5 - x + 1));
0.764884433600585 + 0.352471546031726 I, -0.181232444469875 + 1.08395410131771 I, -1.16730397826142, -0.181232444469875 - 1.08395410131771 I, 0.764884433600585 - 0.352471546031726 I
```


▶ What does it mean to "solve $x^5 - x + 1 = 0$ "?

Maple

```
\rightarrow evalf(solve(x^5-x+1));
0.764884433600585 + 0.352471546031726 \text{ I}, -0.181232444469875 + 1.08395410131771 \text{ I},
   -1.16730397826142, -0.181232444469875 - 1.08395410131771 I, 0.764884433600585
    - 0.352471546031726 I
                                         finite_solutions
  Bertini
                                          5
    input
                                          7.648844336005847e-01 -3.524715460317264e-01
        variable_group x;
                                          7.648844336005849e-01 3.524715460317262e-01
        function f;
                                          -1.812324444698754e-01 1.083954101317711e+00
        f = x^5 - x + 1;
                                          -1.167303978261419e+00 -2.220446049250313e-16
                                          -1.812324444698754e-01 -1.083954101317711e+00
```


Vast generalization of the meaning of "solve":

Early history: find a solution and study local properties

▶ Late 20th century: find all isolated solutions

- ► Early 21st century: describe all solutions
 - isolated and positive-dimensional components

Lack of exact formula for solutions — iterative refinement

- Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)
- compute solution to arbitrary accuracy given approximation

Lack of exact formula for solutions --- iterative refinement

- Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)
- compute solution to arbitrary accuracy given approximation

Newton's method:

- ▶ $f: \mathbb{C}^n \to \mathbb{C}^n$ with Jacobian $Jf: \mathbb{C}^n \to \mathbb{C}^{n \times n}$
- Given approximation x_0 , compute $x_1, x_2, x_3, ...$ via

$$x_{k+1} = x_k - Jf(x_k)^{-1}f(x_k)$$

Lack of exact formula for solutions --- iterative refinement

- Newton (1643-1727), Raphson (1648-1715), Simpson (1710-1761)
- compute solution to arbitrary accuracy given approximation

Newton's method:

- ▶ $f: \mathbb{C}^n \to \mathbb{C}^n$ with Jacobian $Jf: \mathbb{C}^n \to \mathbb{C}^{n \times n}$
- Given approximation x_0 , compute $x_1, x_2, x_3, ...$ via $x_{k+1} = x_k Jf(x_k)^{-1}f(x_k)$

If
$$f(x^*) = 0$$
, $Jf(x^*)^{-1}$ exists (nonsingular), and $||x_0 - x^*||$ small, $x_k \to x^*$ quadratically.

Example

Approximate $x^* = \sqrt{2}$ by solving $f(x) = x^2 - 2 = 0$ with $x_0 = 1$: $x_{k+1} = x_k - Jf(x_k)^{-1}f(x_k) = x_k - \frac{x_k^2 - 2}{2x_k}$ X_0 = 1.5 X_1 X_2 1.4142156862745098039215686274509803921568627450980 X_3 1.4142135623746899106262955788901349101165596221157 X_4

$$x_6 = 1.4142135623730950488016887242096980785696718753772$$

 $\sqrt{2} = 1.4142135623730950488016887242096980785696718753769$

1.4142135623730950488016896235025302436149819257762

*X*5

Double-edged sword of Newton's method:

- Qudaratic convergence near nonsingular solutions
- Slow convergence or divergence near singular solutions
- Difficulty away solutions (chaos, limit cycles, etc)

$$f(x) = x^4 - 1$$

Double-edged sword of Newton's method:

- Qudaratic convergence near nonsingular solutions
- Slow convergence or divergence near singular solutions
- Difficulty away solutions (chaos, limit cycles, etc)

Goal

- Use continuation methods to stay near solutions
- Use deflation to restore quadratic convergence for sing. solns.
 - Ojika-Watanabe-Mitsui (1983), Ojika (1987),
 Leykin-Verschelde-Zhao (2006,2008), Dayton-Zeng (2005),
 Mantzaflaris-Mourrain (2011), Guisti-Yakoubsohn (2013),
 H.-Wampler (2013), H.-Mourrain-Szanto (2017), ...

Continuation from complex analysis:

- Cauchy (1789-1857), Riemann (1826-1866), Mittag-Leffler (1846-1927)
- Implicit function theorem
- Analytic extension of functions (analytic continuation)

Big picture idea:

solutions "continue" locally under small parameter changes

$$f(x; p) = x^2 - p = 0$$

Starting at (x, p) = (1, 1), IFT provides that there is an analytic function x(p) with x(1) = 1 such that f(x(p), p) = 0.

$$x(p) = \sqrt{p} = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{4^n (1-2n)(n!)^2} (p-1)^n$$

▶ converges for $|p-1| \le 1$

$$f(x; p) = x^2 - p = 0$$

Extend beyond original domain using continuation

Compute
$$x(1 + 2i) = \sqrt{1 + 2i}$$
 via the path $x(1 + (1 - t) \cdot 2i)$:

- ▶ t = 1: x(1) = 1 is known
- \blacktriangleright t=0: x(1+2i) is what we want to compute

Compute $x(1 + 2i) = \sqrt{1 + 2i}$ via the path $x(1 + (1 - t) \cdot 2i)$:

- ▶ t = 1: x(1) = 1 is known
- \blacktriangleright t=0: x(1+2i) is what we want to compute

Numerically track along the path x(t) satisfying f(x(t), t) = 0:

▶ (Predictor) Estimate $x(t + \Delta t)$ from x(t) by discretizing using the Davidenko differential equation (1953):

$$f=0 \longrightarrow \frac{d}{dt}f=0 \longrightarrow \dot{x}(t)=-J_xf(x(t),t)^{-1}J_tf(x(t),t)$$

► Constant, Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg,

Numerically track along the path x(t) satisfying f(x(t), t) = 0:

▶ (Predictor) Estimate $x(t + \Delta t)$ from x(t) by discretizing using the Davidenko differential equation (1953):

$$f=0 \longrightarrow \frac{d}{dt}f=0 \longrightarrow \dot{x}(t)=-J_xf(x(t),t)^{-1}J_tf(x(t),t)$$

- ► Constant, Euler, Heun, Runge-Kutta, Runge-Kutta-Fehlberg,
- ▶ (Corrector) for each t, apply Newton's method to $f(\bullet, t) = 0$

Example

Early History

$$f(x; p) = x^2 - p = 0$$

$$x(p) = \sqrt{p} = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{4^n (1-2n)(n!)^2} (p-1)^n$$

Track around a loop: $x(e^{i\theta})$

$$p \in \mathbb{C}$$

 $p\in\mathbb{C}$

$$f(x; p) = x^2 - p = 0$$

Track around a loop: $x(e^{i\theta})$

•
$$\theta = 0$$
: $x = 1$

▶
$$\theta = 2\pi$$
: $x = -1$

•
$$\theta = 4\pi$$
: $x = 1$

cycle number = winding number = 2

 $p\in\mathbb{C}$

$$f(x; p) = x^2 - p = 0$$

Track around a loop: $x(e^{i\theta})$

- monodromy action: permutation of solutions along loop
 - compute other solutions
 - decompose solution sets

$$f(x; p) = x^2 - p = 0$$

Track around a loop: $x(e^{i\theta})$

- Cauchy integral theorem: computing singular endpoints
 - cycle number c
 - sufficiently small radius r > 0

$$x(0) = \frac{1}{2\pi c} \int_0^{2\pi c} x(re^{i\theta}) d\theta$$

Cauchy endgame: Morgan-Sommese-Wampler (1991)

Late 20th Century 1970s - 1990s

Find all isolated solutions of

$$f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix} = 0$$

Find all isolated solutions of

$$f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix} = 0$$

$$f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{bmatrix} = 0$$

Homotopy continuation requires (Morgan-Sommese (1989)):

- 1. parameters to "continue"
 - think of f as a member of a family \mathcal{F}

Homotopy continuation requires (Morgan-Sommese (1989)):

- 1. parameters to "continue"
 - think of f as a member of a family \mathcal{F}
- 2. homotopy that describes the deformation of the parameters
 - \triangleright construct a deformation inside of \mathcal{F} that ends at f

Homotopy continuation requires (Morgan-Sommese (1989)):

- 1. parameters to "continue"
 - think of f as a member of a family \mathcal{F}
- 2. homotopy that describes the deformation of the parameters
 - \blacktriangleright construct a deformation inside of ${\cal F}$ that ends at f
- 3. start points to track along paths as parameters deform
 - parallelize computation track each path independently

Theorem

Isolated Solutions

For properly constructed homotopies, with finite endpoints $S \subset \mathbb{C}^n$:

- each isolated solution is contained in S
 - in fact, S contains a point on every connected component
- for square systems, multiplicity = number of paths if isolated.
 - Local dimension test to identify nonisolated solutions (Bates-H.-Peterson-Sommese (2009))

Art in the construction of family \mathcal{F} :

- number of start points
- ease to compute start points

Each method is sharp for generic members of \mathcal{F} .

Isolated Solutions

$$f = \begin{bmatrix} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{bmatrix}$$

Isolated Solutions

$$f = \begin{bmatrix} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{bmatrix}$$

Bézout family (total degree):

$$\mathcal{F} = \left\{ \begin{bmatrix} g_1(x,y) \\ g_2(x,y) \end{bmatrix} : \deg g_i = 2 \right\} \qquad g = \begin{bmatrix} x^2 - 1 \\ y^2 - 1 \end{bmatrix}$$

$$H = (1 - t) \cdot f + \gamma t \cdot g$$

- $ightharpoonup \gamma \in \mathbb{C}$ is used to create a general deformation
 - avoid singularities that arise from tracking over real numbers

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

Bézout family (total degree):

$$\mathcal{F} = \left\{ \begin{bmatrix} g_1(x, y) \\ g_2(x, y) \end{bmatrix} : \deg g_i = 2 \right\} \qquad g = \begin{bmatrix} x^2 - 1 \\ y^2 - 1 \end{bmatrix}$$

Isolated Solutions

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

Multihomogeneous Bézout family (Morgan-Sommese (1987)):

$$\mathcal{F} = \left\{ \left[egin{array}{l} g_1(x) \ g_2(x,y) \end{array}
ight] : egin{array}{l} \deg_x g_1 = 2, \ \deg_x g_2 = \deg_y g_2 = 1 \end{array}
ight\}$$

$$g = \begin{bmatrix} x^2 - 1 \\ (x - 2)(y - 1) \end{bmatrix} \qquad H = (1 - t) \cdot f + \gamma t \cdot g$$

Isolated Solutions

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

Multihomogeneous Bézout family (Morgan-Sommese (1987)):

$$\mathcal{F} = \left\{ \left[egin{array}{l} g_1(x) \ g_2(x,y) \end{array}
ight] : egin{array}{l} \deg_x g_1 = 2, \ \deg_x g_2 = \deg_y g_2 = 1 \end{array}
ight\}$$

Number of paths = number of isolated solutions for g: 2

Bertini

variable_group x; input variable_group y;

function f1,f2;

 $f1 = x^2 + 2*x - 8;$

Isolated Solutions

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

Polyhedral (BKK, Huber-Sturmfels (1995)):

$$\mathcal{F} = \left\{ \left[\begin{array}{c} a_1 x^2 + a_2 x + a_3 \\ a_4 x y + a_5 x + a_6 y + a_7 \end{array} \right] : a_i \in \mathbb{C} \right\}$$

$$g = \begin{bmatrix} x^2 - 1 \\ y - 1 \end{bmatrix} \qquad H = (1 - t) \cdot f + \gamma t \cdot g$$

Isolated Solutions

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

Extra structure in the coefficients of f.

$$\mathcal{F} = \left\{ p(x, y; a) = \begin{bmatrix} x^2 - (a_1 + a_2)x + a_1 a_2 \\ (x - a_1)y + a_3 x + a_4 \end{bmatrix} : a_i \in \mathbb{C} \right\}$$

$$g = \left[\begin{array}{c} x^2 - 1 \\ (x - 1)y - 1 \end{array} \right]$$

Isolated Solutions

$$f = \left[\begin{array}{c} x^2 + 2x - 8 \\ xy + 2x + 4y - 3 \end{array} \right]$$

$$\mathcal{F} = \left\{ p(x, y; a) = \begin{bmatrix} x^2 - (a_1 + a_2)x + a_1a_2 \\ (x - a_1)y + a_3x + a_4 \end{bmatrix} : a_i \in \mathbb{C} \right\}$$

$$g = \left[\begin{array}{c} x^2 - 1 \\ (x - 1)y - 1 \end{array} \right]$$

Since \mathcal{F} is no longer linear, use a parameter homotopy:

$$H = p(x, y; a(t))$$

where $a(t) = (1 - \tau(t))(-4, 2, 2, -3) + \tau(t)(1, -1, 0, -1)$

$$\tau(t) = \frac{\gamma t}{1 - t + \gamma t}$$

Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given general points in the plane.

Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given general points in the plane.

▶ $8652 = 6 \cdot 1442$ (Wampler-Morgan-Sommese (1992))

Their polynomial system: 4 quadratics and 8 quartics

Bézout	1,048,576	$= 2^4 \cdot 4^8$
M-hom Bézout	286,720	$=2^{12}\cdot \binom{8}{4}$
Polyhedral	79,135	
Product decomp.	18,700	
Actual	8,652	

Example (Alt's problem (1923))

Find all 4-bar linkages whose coupler curve passes through 9 given general points in the plane.

▶ $8652 = 6 \cdot 1442$ (Wampler-Morgan-Sommese (1992))

Their polynomial system: 4 quadratics and 8 quartics

Bézout	1,048,576	$= 2^4 \cdot 4^8$
M-hom Bézout	286,720	$=2^{12}\cdot \binom{8}{4}$
Polyhedral	79,135	
Product decomp.	18,700	
Actual	8,652	

To date: only verification via numerical algebraic geometry

▶ What structure can be exploited to prove 8,652 is correct?

Early 21st Century

Describe all solutions of

$$f(x) = \begin{bmatrix} f_1(x_1, \dots, x_n) \\ \vdots \\ f_k(x_1, \dots, x_n) \end{bmatrix} = 0$$

Numerical irreducible decomposition:

- decompose into irreducible components
- provide a numerical description of each irreducible component

How to represent an irreducible algebraic variety A on a computer?

How to represent an irreducible algebraic variety A on a computer?

- ▶ algebraic: prime ideal $I(A) = \{g \mid g(a) = 0 \text{ for all } a \in A\}$
 - ▶ Hilbert Basis Theorem (1890): there exists f_1, \ldots, f_k such that

$$I(A) = \langle f_1, \ldots, f_k \rangle$$

How to represent an irreducible algebraic variety A on a computer?

- **p** geometric: witness set $\{f, \mathcal{L}, W\}$ where
 - f is polynomial system where A is an irred. component of $\mathcal{V}(f)$
 - \mathcal{L} is a linear space with $\operatorname{codim} \mathcal{L} = \dim A$
 - ▶ $W = \mathcal{L} \cap A$ where $\#W = \deg A$

Witness Set

$$A = \{[s^3, s^2t, st^2, t^3] \mid [s, t] \in \mathbb{P}^1\} \subset \mathbb{P}^3$$
 – twisted cubic curve

$$I(A) = \langle x_1^2 - x_0 x_2, x_1 x_2 - x_0 x_3, x_2^2 - x_1 x_3 \rangle$$

Example

$$A = \{[s^3, s^2t, st^2, t^3] \mid [s, t] \in \mathbb{P}^1\} \subset \mathbb{P}^3$$
 – twisted cubic curve

$$I(A) = \langle x_1^2 - x_0 x_2, x_1 x_2 - x_0 x_3, x_2^2 - x_1 x_3 \rangle$$

- \blacktriangleright {f, \mathcal{L} , W} where

- $\mathcal{L} = \{ [x_0, x_1, x_2, x_3] \in \mathbb{P}^3 \mid 6x_0 6x_1 2x_2 + x_3 = 0 \} \subset \mathbb{P}^3$
 - $ightharpoonup \operatorname{codim} \mathcal{L} = \dim A = 1$

$$W = \left\{ \begin{array}{l} [1, 3.2731, 10.7130, 35.0644], \\ [1, 0.8596, 0.7389, 0.6351], \\ [1, -2.1326, 4.5481, -9.6995] \end{array} \right\}$$

▶
$$\deg A = 3$$

Witness Set

$$A = \{[s^3, s^2t, st^2, t^3] \mid [s, t] \in \mathbb{P}^1\} \subset \mathbb{P}^3$$
 – twisted cubic curve

$$I(A) = \langle x_1^2 - x_0 x_2, x_1 x_2 - x_0 x_3, x_2^2 - x_1 x_3 \rangle$$

$$f = \left[\begin{array}{c} x_1^2 - x_0 x_2 \\ x_1 x_2 - x_0 x_3 \end{array} \right]$$

$$V(f) = A \cup \{x_0 = x_1 = 0\}$$

- Witness sets "localize" computations to A effectively ignoring the other irreducible components.
- ightharpoonup Sample points from A by moving the linear slice \mathcal{L} .

$$f = \begin{bmatrix} x_1^2 - x_0 x_2 \\ x_1 x_2 - x_0 x_3 \end{bmatrix}$$

```
Witness Set
```

```
Bertini
               input
CONFIG
TrackType: 1;
END;
INPUT
hom_variable_group x0,x1,x2,x3;
function f1,f2;
f1 = x1^2 - x0*x2;
f2 = x1*x2 - x0*x3;
```

END;

```
Dimension 1: 2 classified components
   degree 1: 1 component
```

degree 3: 1 component

Many other numerical algebraic geometric computations can be performed starting from witness sets, such as:

- ▶ membership testing: is $x^* \in A$?
 - ▶ decide if $g(x^*) = 0$ for every $g \in I(A)$ without knowing I(A)

- projection: $\overline{\pi(A)}$
 - perform computations on $\overline{\pi(A)}$ without knowing any polynomials that vanish on $\overline{\pi(A)}$

- intersection: A ∩ B
 - special case is regeneration
 - $\mathcal{V}(f_1,\ldots,f_k,f_{k+1})=\mathcal{V}(f_1,\ldots,f_k)\cap\mathcal{V}(f_{k+1})$ via witness sets
 - ightharpoonup compute $A_{\rm sing}$
 - compute critical points of optimization problem

Test other algebraic properties of A

- ▶ is A arithmetically Cohen Macaulay?
- ▶ is A arithmetically Gorenstein?
- ▶ is A a complete intersection?

Example

$$A = \sigma_4(\mathbb{C}^3 \times \mathbb{C}^3 \times \mathbb{C}^4) \subset \mathbb{P}^{35}$$

- ▶ dim A = 31
- ▶ $\deg A = 345$
- \blacktriangleright I(A) contains 10 poly. of degree 6 and 20 poly. of degree 9
 - Bates-Oeding (2011), Friedland-Gross (2012)
- ▶ used sampling to show that A was aCM and that these polynomials generate I(A)

Future?

- Specialized/structured homotopies
- ► Real solutions especially over parameter spaces

- Certification for singular and positive-dimensional sets
- Many applications in math, stats, science, and engineering
 - Local methods (too many solutions to find all of them?)

Summary

Numerical algebraic geometry provides a toolbox for solving polynomial systems.

- "If a problem was easy, someone else would have solved it."
 - Gröbner basis computation probably did not terminate
- think carefully about what information you want/need
- art in building efficient homotopies that incorporate structure
- preconditioning is important
 - transform problem into form suitable for num. computations

