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Abstract

Moduli spaces in differential geometry, such as those arising in symplectic topology and gauge theory, are constructed
via intersection theory of nonlinear elliptic operators in infinite dimensions. These spaces are often not smooth
manifolds due to transversality issues. The purpose of this work is to resolve these problems in the paradigm
of derived geometry due to Lurie and Toën-Vezzosi. We characterize the ∞-category of derived manifolds via a
universal property in the (∞,2)-category of finitely complete ∞-categories and show that it admits a description as
the ∞-category of homotopically finitely presented simplicial C∞-rings. We do the same thing for derived manifolds
with corners, which we show are simplicial C∞-rings equipped with positive logarithmic structures. We then show
that these objects admit a good theory of higher derived stacks and investigate their deformation theory.
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Résumé

Les espaces de modules en géométrie différentielle, tels que ceux qui apparaissent dans la topologie symplectique et
la théorie de jauge, sont construits via la théorie d’intersection d’opérateurs elliptiques non linéaires en dimensions
infinies. Ces espaces ne sont souvent pas des variétés lisses en raison de problèmes de transversalité. Le but de ce
travail est de résoudre ces problèmes dans le paradigme de la géométrie dérivée dû à Lurie et Toën-Vezzosi. Nous
caractérisons l’∞-category des variétés dérivées via une propriété universelle dans la (∞,2)-catégorie des ∞-categories
finiment complètes et montrons qu’elle admet une description comme l’∞-category des anneaux C∞ simpliciaux de
présentation finie. On fait la même chose pour les variétés dérivées à bord, dont on montre qu’elles sont des anneaux
C∞ simpliciaux équipés de structures logarithmiques positives. Nous montrons ensuite que ces objets admettent une
bonne théorie des champs dérivés supérieurs et étudions leur théorie de déformation.
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Chapter 1

Introduction

The purpose of this thesis is to lay the foundations of derived geometry in the differentiable, that is, C∞-setting for
applications in the theory of moduli spaces in differential geometry, symplectic geometry and mathematical physics,
using the modern language and powerful tools of higher category theory, higher topos theory, and higher algebra.
The corresponding theory of derived algebraic geometry has been well established for a number of years due to the
seminal works of Lurie (DAG series, [Lur11b] through [Lur14], and [Lur]) and Toën-Vezzosi (Homotopical Algebraic
Geometry, [TV04; TV06]). Derived geometry has been established in other contexts as well; there are derived
versions of analytic geometry due to Lurie [Lur11a] and Porta-Yu [Por15; PY17]. In fact, a substantial literature
on derived differential geometry already exists since the pioneering work of Spivak [Spi10], including a substantial
work-in-progress of Joyce [Joy12b], the model categorical efforts of Carchedi-Roytenberg [CR12b; CR12a], the work
of Borisov-Noël [BN11], recent work of Behrend-Liao-Xu [BLX20] and Amorim-Tu [AT20], and the thesis of Nuiten
[Nui18] (and undoubtedly others that would deserve to be mentioned).
Derived geometry is a confluence of classical geometry, homological and homotopical algebra, intersection theory,
deformation theory and higher sheaf theory, and the subject may be approached and appreciated from any of these
avenues, and there are a number of excellent introductions available that do the subject justice; let us mention in
particular the survey’s of Toën and Anel [Toë14; Ane]. We motivate the theory we wish to develop in this work via
an intersection problem, but one quite different from the well-known algebro-geometric story that passes from Serre’s
intersection formula to Koszul resolutions and derived pushouts of dg-algebras, as in the introduction of [Lur11b],
for instance. We will be concerned with intersection theory in infinite dimensions.
From a sufficiently abstract vantage, in geometry influenced by Quantum Field Theory such as symplectic geometry
and gauge theory, one studies the geometry of moduli spaces of solutions of nonlinear elliptic equations on manifolds
-which are usually required to be compact(if not, the function spaces need to satisfy some decay estimates to admit
well behaved moduli spaces)- up to the action of a (possibly infinite dimensional) Lie group of symmetries and
perhaps suitably compactified. Dispensing with the issues of compactification and symmetries for the moment, we
are interested in the following situation:

(1) M a compact smooth manifold.

(2) V →M a smooth fibre bundle over M .

(3) F →M a smooth vector bundle over M .

(4) P ∶ Γ(V )→ Γ(F ) a nonlinear elliptic differential operator acting between smooth sections of V and F .

Let Sol(P ) = P −1(0). Let x ∈ Sol(P ) and suppose that the linearization dPx ∶ Γ(x∗TM) → Γ(E), a 2-term Fredholm
complex with finite dimensional homology, is surjective. Then Sol(P ) admits the structure of a smooth manifold in
a neighbourhood of x. If the linearized differential operator is not surjective, we still have the following important
principle.

Fact 1.0.0.1 (Local finite dimensional reduction by Kuranishi models). Locally, Sol(P ) is given by the zero set of
a smooth function f ∶ Rn → Rk such that at each solution x of f = 0, the two-term complex determined by the
linearization of f at x is quasi-isomorphic to the 2-term complex determined by the linearization of P at x.

This follows from an application of the inverse function theorem for Banach manifolds and elliptic bootstrapping
methods, after replacing the spaces of smooth sections with Sobolev completions of sufficiently high regularity; we
refer to the appendices of [MS12] for a textbook account in symplectic topology.
Depending on the geometric situation, it may or may not be possible to perturb the operator P and obtain a well
defined cobordism class of smooth spaces of solutions. When this is not possible (when Sol(P ) is the space of genus
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0 pseudo-holomorphic curves on a non semipositive symplectic manifold, for instance), one is forced to make sense of
Sol(P ) using the zeroes of local finite dimensional reductions which are not transverse. We have the following two
problems

(a) The local finite dimensional reductions are far from unique; only the homology complex induced by dPx as x
varies over Sol(P ) is invariant.

(b) The space Sol is a gluing of the zero sets of local finite dimensional reductions, but as these spaces can have
arbitrarily badly behaved topology (as subspaces of some Cartesian space) it is not clear how to perform this
gluing and obtain some sort of geometric C∞ structure on Sol(P ).

Let us make an attempt at dealing with these issues.

Definition 1.0.0.2. An affine Kuranishi model (without isotropy) is a triple (X,p ∶ E →X,s) where X is a smooth
manifold, p ∶ E → X is a vector bundle on E, and s is a section of p. We will usually just write E for the bundle
p ∶ E → X. Given two affine Kuranishi models (X,E, s) and (Y,F, t), a morphism f ∶ (X,E, s) → (Y,F, t) is a
commuting diagram

E F

X Y

p

fv

q

fb

where fv is fibrewise linear such that fv ○ s = t ○ fb. Affine Kuranishi models and morphisms between them form a
category, that we denote AffKur.

An isomorphism of affine Kuranishi models is far too strict a notion, largely irrelevant to the construction of
geometric structure on moduli spaces.

Definition 1.0.0.3. Let f ∶ (X,E, s) → (Y,F, t) be a morphism of affine Kuranishi models, and let x ∈ Z(s) be a
point. Then the diagram

TxX Ts(x)E

Tfb(x)Y Ts(x)F

Txs

Txfb Ts(x)fv
Tfb(x)t

commutes, and we say that f is a weak equivalence at x if the diagram is a quasi-isomorphism. We say that f
is a weak equivalence if f induces a bijection Z(s) ≅ Z(t) and f is a weak equivalence at all points of Z(s). Let
W ⊂ Fun(∆1,AffKur) be the full subcategory spanned by the weak equivalences. This full subcategory contains all
identity maps and has the 2-out-of-6 property so the pair (AffKur,W ) is a homotopical category.

Remark 1.0.0.4. It can be shown that if f is a weak equivalence at p, then f induces a homeomorphism from a
neighbourhood of p ∈ Z(s) onto a neighbourhood of f(p) ∈ Z(t) (see for instance corollary 5.1.3.27); thus, a weak
equivalence always induces a homeomorphism on zero sets.

We see that the ambiguity of local finite dimensional reduction is neatly resolved by the notion of a weak equiva-
lence of affine Kuranishi models. Now we could apply the abstract principle of localizing a category at a subcategory
of weak equivalences to obtain the ‘correct’ category of affine Kuranishi models. We define, up to essentially unique
equivalence of categories, a new category AffKur[W −1] equipped with a functor

L ∶ AffKur Ð→ hAffKurc

by declaring that L has the following universal property in the 2-category of categories: for each category C, the
restriction functor along the functor L ∶ AffKur → AffKur[W −1] induces an equivalence of categories

Fun(AffKur[W −1],C) ≃Ð→ FunW (AffKur,C),

where FunW (AffKur,C) ⊂ Fun(AffKur,C) is the full subcategory spanned by functors that carry weak equivalences
in AffKur to isomorphisms in C. By abstract nonsense, a localization at a subcategory of weak equivalences always
exists, but it might be difficult to get a handle on the morphism sets. Very often, it is convenient to have a bit more
structure. For instance, the classical homotopy category hS is obtained from the category CW of CW-complexes
by inverting the weak homotopy equivalences, the maps f ∶ X → Y of CW-complexes that induce isomorphisms
πn(X) ≅ πn(Y ) on all homotopy groups. It follows from Whitehead’s theorem that a map is a weak homotopy
equivalence if and only if it admits a homotopy inverse. This extra structure -the notion of a homotopy between
maps- allows for a concrete description of the homotopy category: homotopy of maps is an equivalence relation, so
simply take the category whose morphisms sets HomhS(X,Y ) are the homotopy equivalence classes of maps X → Y
between CW-complexes.
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Construction 1.0.0.5. An object (X,E, s) of AffKur determines a commutative R-algebra C∞(X) and a finitely
generated projective module Γ(E) of smooth sections of E over C∞(X). We denote by Γ(E∨) the sections of the dual
vector bundle of E. Consider the object Γ(E∨)[1]⊕C∞(X) ∈ Modgr

C∞(X)
in the category of graded C∞(X)-modules,

which has the projective module Γ(E∨) sitting in degree 1 and the object C∞(X) sitting in degree 0. Contracting
sections of E∨ with the section s furnishes a differential on Γ(E∨)[1] ⊕ C∞(X) making it a differentially graded
C∞(X)-module. Taking the symmetric algebra over C∞(X), we obtain the commutative differential graded exterior
algebra Sym●

C∞(X)(Γ(E∨)[1]) concentrated in nonnegative degrees, equipped with the differential ιs contracting with
s. Given affine Kuranishi models (X,E, s) and (Y,F, t) and a smooth map f ∶X → Y , it is not hard to see that there
is a canonical bijection

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E F

X Y,

p

fv

q

fb

∈ Fun(∆1,AffKur); fb = f

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

←→ {Sym●

C∞(Y )(Γ(F ∨)[1])→ Sym●

C∞(X)(Γ(E∨)[1])}

Since maps C∞(X) → C∞(Y ) of commutative algebras are in bijection with the smooth maps X → Y [KMS91], we
have a fully faithful embedding

AffKurop ↪Ð→ cdga≥0
R , (X,E, s)z→ Sym●

C∞(X)(Γ(E∨)[1]).

If K is an affine Kuranishi model, we will denote its associated cdga by O(K).

Remark 1.0.0.6. Since we have a fully faithful embedding AffKurop ↪ cdga≥0
R , there seems to be another natural

notion of weak equivalence on AffKurop, namely the subcategory of Fun(∆1,AffKurop) spanned by the maps which
induce quasi-isomorphisms on the exterior algebras, giving AffKur another structure of a homotopical category. It can
be shown (see corollary 5.1.3.27 again) that the two notions of weak equivalence are the same, that is, a map f ∶ K→ J
is a weak equivalence in the sense of definition 1.0.0.3 if and only if f induces a quasi-isomorphism O(J)→ O(K).

There is a natural notion of homotopy among morphisms between commutative differentially graded algebras (over
Q) [BG76]: let Ω●

poly(∆1) be the (nonpositively graded) algebra of polynomial differential forms on the 1-simplex
which admits the presentation

Ω●
poly(∆1) = R[t0, t1, dt0, dt1]/(t0 + t1 − 1, dt0 + dt1)

and comes with two evaluation maps ev0, ev1 ∶ Ω●
poly(∆1) → R. We say that two morphisms f, g ∶ A → B of

differentially graded R-algebras are homotopic if there is a morphism

H ∶ AÐ→ B ⊗R Ω●
poly(∆1)

in cdgaR such that (id ⊗ ev0) ○H = f and (id ⊗ ev1) ○H = g. While this immediately yields a notion of homotopy
among morphisms between affine Kuranishi models, this does not accurately reflect the differential nature of Kuranishi
models. For instance, if A is of the form C∞(M) for a smooth manifold and B is of the form O(K) for K = (X,E, s)
an affine Kuranishi model, a homotopy between two maps f, g ∶ C∞(M) → O(K) of differentially graded algebras
consists of a diagram

C∞(M) C∞(X)[t]⊕ Γ(E∨)[t]

C∞(X)[t]

H

0
d
dt
+ιs

where H is as a map of cdga’s for the trivial square zero extension algebra structure on C∞(X)[t]⊕ Γ(E∨)[t]. The
map H can be identified with a pair of maps (ht, λt), where ht is a polynomial family of maps C∞(M)→ C∞(X) and
λt is polynomial family of maps Ω1

C∞(M) → Γ(E∨) equivariant for the action of C∞(M) on the left and C∞(X) on

the right. Here Ω1
C∞(M) is the module of algebraic Kähler differentials of C∞(M) [Eis95], which admits a universal

derivation ddR ∶ C∞(M)→ Ω1
C∞(M). The map H is then given by

H( ) = ht( ) + λt(ddR( ))

and is subject to the constraint
dht
dt

( ) + ιs(λt(ddR( ))) = 0.

Our notion of homotopy between morphism is adequate, as long as we restrict to a subcategory of cofibrant objects
(which is morally the same kind of operation as restricting to CW complexes).
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Variant 1.0.0.7. Let KurAffc ⊂ KurAff be the full subcategory spanned by affine Kuranishi models of the form
(Rn,Rm+n, s), where s is a section of the trivial bundle Rn+m → Rn, that is, simply a function Rn → Rm.

The following lemma is easy to prove using model category techniques.

Lemma 1.0.0.8. Let K and J be a affine Kuranishi models.

(1) Suppose that J is cofibrant. Then on HomAffKur(K,J), the homotopy relation is transitive. Thus, the homotopy
relation is an equivalence relation.

(2) Suppose that K and J are cofibrant. Let f ∶ K→ J be a weak equivalence (either definition 1.0.0.3 is satisfied or
O(J)→ O(K) is a quasi-isomorphism) then f admits a homotopy inverse g.

Notation 1.0.0.9. We write hAffKurc for the category obtained by taking as morphism sets the homotopy equivalence
classes.

Remark 1.0.0.10. We cannot conclude that hAffKurc coincides with the localization of AffKurc at the set of homo-
topy equivalences or weak equivalences. This discrepancy is due to the problem that AffKur does not ‘have enough
path objects’.

Remark 1.0.0.11. There is an obvious forgetful functor Z ∶ AffKur → Top sending an affine Kuranishi model K to
the topological space Z(K) ∶= Z(s). It follows from the definition of a weak equivalence that this forgetful functor
factors through a functor hAffKurc → Top that we abusively also denote Z.

Now if we are given a nice topological space X, we would like to express the idea that X arises as the gluing
of a collection of affine Kuranishi models, and this gluing should be compatible on the overlaps, that is, a cocycle
condition should hold, all up to homotopy. To express gluing of two Kuranishi models (X,E, s) and (Y,F, t) along a
common open subset in Z(s) and Z(t), we have to verify that restricting along open subsets of the zero locus is well
defined in the homotopy category.

Definition 1.0.0.12. Let K = (X,E, s) be an affine Kuranishi model and let U ⊂ Z(s) be an open subset, then
we say that a morphism H → K in hAffKurc exhibits H as a localization of K with respect to U if for every affine
Kuranishi model J, restriction along the map H→K induces a bijection

HomhAffKurc(J,H)Ð→ HomU
hAffKurc(J,K),

where HomU
hAffKurc(J,K) ⊂ HomhAffKurc(J,K) is the subset of those maps f ∶ J → K that satisfy the condition that

Z(f) ∶ Z(J)→ Z(K) factors through U .

It follows immediately from the definition that a localization of K with respect to U ⊂ Z(s) is unique up to unique
isomorphism, provided it exists; we will denote it K∣U →K.

Lemma 1.0.0.13. For every open U ⊂ Z(s) and every open set V ⊂ X such that V ∩ Z(s) = U , the morphism of
affine Kuranishi models (V,E∣V , s∣V )→ (X,E, s) exhibits a localization with respect to U .

It follows easily that sending a localization of K to the underlying open subset of Z(K) induces an equivalence
of categories between the full subcategory of the slice category hAffKurc

/K spanned by localizations of K and the
lattice of open subsets of Z(K) (viewed as a category). If f ∶ K →H is a morphism in hAffKurc, then for each open
U ⊂ Z(K) we denote by f ∣U the composition K∣U →K→H.
The following definition is the most naive approach one might be tempted to try.

Incorrect Definition 1.0.0.14. Let X be a paracompact Hausdorff topological space. A naive Kuranishi atlas
(without isotropy) on X consists of the following data

(a) An open covering {Ui →X}i∈I of X (not necessarily finite).

(b) A collection of affine Kuranishi models {Ki}i∈I with zero loci {Z(Ki)}i∈I called charts.

(c) A collection of homeomorphisms ψi ∶ Z(Ki)→ Ui called footprint maps or chart maps.

(d) For every pair of indices i, j ∈ I such that Uij ∶= Ui∩Uj is nonempty, an isomorphism φij ∶ Ki∣ψ−1
i

(Uij)
→Kj ∣ψ−1

j
(Uij)

in the homotopy category hAffKurc. Moreover, we require that φii = idKi .

These data are required to satisfy the following conditions.

12



(1) The transition maps φij are compatible with the footprint maps: for all pairs i, j ∈ I such that Uij is nonempty,
the diagram

ψ−1
i (Uij) = Z(Ki∣ψ−1

i
(Uij)

) Z(Kj ∣ψ−1
j

(Uij)
) = ψ−1

j (Uij)

Uij
ψi ∣Uij

Z(φij)

ψj ∣Uij

commutes.

(2) The cocycle condition holds: for every triple i, j, k ∈ I such that Uijk ∶= Ui ∩Uj ∩Uk is nonempty, we see that (1)
and the universal property of localization imply that the composition

φij ∣ψ−1(Uijk)
∶ Ki∣ψ−1

i
(Uijk)

Ð→Ki∣ψ−1
i

(Uij)

φijÐ→Kj ∣ψ−1
j

(Uij)

where the first map is a localization, factors through K∣ψ−1
j

(Uijk)
. Then we can apply φjk, and we demand that

the equality
φjk ∣ψ−1

j
(Uijk)

○ φij ∣ψ−1
i

(Uijk)
= φik ∣ψ−1

i
(Uijk)

holds.

Note that this description is in almost complete analogy with the notion of an atlas on a manifold; indeed, suppose
that for each i in the set I indexing the charts, the section si is transverse to the zero section, then a naive Kuranishi
atlas in the sense above gives X the structure of a smooth manifold. To understand the sort of pathologies that
this definition produces when the sections si are not transverse, we should contemplate what kind of objects we can
extract from a naive Kuranishi atlas on a nice space X. If X is covered by a single affine Kuranishi model, then there
exists a distinguished object (up to isomorphism) in the derived category of sheaves of R-modules on X; indeed, for
an affine Kuranishi model K = (X,E, s) we have the complex

TK ∶= TM
dsÐ→ s∗TE ∈ D(ShvCh(VectR)(Z(K))).

which we call the tangent complex or the virtual tangent sheaf of K. If the topological space X is Sol(P ) for some
moduli problem defined by an elliptic equation, then the homology of linearization also determines a well defined
element in D(ShvCh(VectR)(X))). Thus, we should at least demand that the local tangent complexes should glue
nicely to produce a global object in the derived category of sheaves of R-modules on X. To facilitate this gluing
process, it’s important to understand how the tangent complex is functorial in the transition maps of the Kuranishi
atlas. To this end, it is convenient to recast incorrect definition 1.0.0.14 as follows.

Incorrect Definition 1.0.0.15. Consider the category Topopen whose objects are paracompact Hausdorff spaces and
whose morphisms are open topological embeddings of such spaces. Similarly, let hKurAffc,open be the subcategory of
hKurAffc on the morphisms f ∶ J → K such that Z(f) is an open topological embedding. We have a Grothendieck
fibration

Z ∶ hKurAffc,open Ð→ Topopen

taking the underlying topological space of an affine Kuranishi space. Let X ∈ Topopen, then a naive Kuranishi atlas
on X consists of the following data.

(a′) A collection of maps {Vi → X}i∈I in Topopen of X with images being open sets {Ui ⊂ X} that cover X. We can
view this data as a functor U ∶ I → Topopen from the set I viewed as a category with only identity morphisms.
Consider the poset

P ≤3
I ∶= {J ⊂ I; J ≠ ∅, ∣J ∣ ≤ 3}

of nonempty subsets of I of cardinality at most 3 ordered by reverse inclusion, then the functor U induces a
functor

f ∶ P ≤3
I Ð→ Topopen

which sends J to the limit of the diagram J ⊂ I → Topopen
/X

.

(b′) A dotted lift f̃ of f as follows

hAffKurc,open

P ≤3
I Topopen

Z

f

f̃

that makes the diagram of categories (strictly) commute. Moreover, we require that f̃ carries every morphism
in P ≤3

I to a Cartesian morphism with respect to Z.
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The two definitions of a naive Kuranishi atlas are equivalent: given a naive Kuranishi atlas in the sense of definition
1.0.0.15, the restriction of f̃ to I determines a collection of affine Kuranishi models {Ki}i∈I with homeomorphisms
ψi ∶ Z(Ki) = Vi ≅ Ui ⊂X. For every nonempty intersection Ui ∩Uj with i ≠ j, we have maps

Ki∣ψ−1
i

(Ui∩Uj)
←Ð f̃({i, j})Ð→Kj ∣ψ−1

j
(Ui∩Uj)

induced by the subset inclusions {i} ⊂ {i, j} ⊃ {j}. These maps are isomorphisms because f̃ carries all morphisms to
Cartesian morphisms, giving us the isomorphisms {φij}. The compatibility conditions (1) and (2) are guaranteed
by the fact that the diagram of (b′) commutes and that f̃ is a functor. Conversely, from datum (a) of definition
1.0.0.14 we can construct a functor as in (a′), and given data (b) through (d) satisfying (1) and (2), it is possible to
construct a lift f̃ , and it can be shown that for a suitable choice of morphisms between naive Kuranishi atlases for
both of the definitions we have given, this correspondence determines an equivalence of categories.

Construction 1.0.0.16. We have a pseudofunctor

(Topopen)op Ð→ Cat, X z→D(ShvCh(VectR)(X))

that carries each space X to the derived category of sheaves of R-modules on X. We can apply the Grothendieck
construction to this pseudofunctor, obtaining a functor

∫
Topopen

D(ShvCh(VectR)( ))Ð→ Topopen.

Concretely, this category is given as follows.

(1) Objects are pairs (U,F), where U ∈ Topopen and F is a complex of sheaves on U .

(2) Morphisms (U,F)→ (V,G) are maps i ∶ U ⊂ V together with a map i∗G → F .

The tangent complex functor T is the functor that carries an object K to the pair (Z(K),TK). Note that by definition
of a weak equivalence, this assignment is well defined up to equivalence. The tangent complex functor fits into a
commuting diagram

hKurAffc,open ∫Topopen D(ShvCh(VectR)( ))

Topopen

T

Z

p

and carries Cartesian morphisms with respect to Z to Cartesian morphisms with respect to p.

Fact 1.0.0.17 (Descent). Let X be a topological space with an open cover {Ui ⊂X}i∈I determining the diagram

f ∶ P ≤3
I Ð→ Topopen

as in definition 1.0.0.15, and let A be a Grothendieck abelian category, such as ModA for a A a unital commutative
ring. There is a canonical equivalence between the category of Ch(A)-valued sheaves on X, and the lifts

∫Topopen ShvCh(A)( )

P ≤3
I Topopen

p

f

F

such that F sends all morphisms to Cartesian morphisms with respect to p. This equivalence is implemented by the
‘coCartesian pushforward’, which applies to each F(J) the functor i! on sheaves of chain complexes induced by the
map i ∶ f(J) ⊂X, resulting in a diagram P ≤3

I → ShvCh(A)(X), and takes the limit.

The equivalence between sheaves of vector spaces and descent data suggests a recipe for producing a global tangent
complex. In our situation, however fact 1.0.0.17 does not apply since the tangent complex is only well defined in the
derived category due to the ambiguity in the choice of affine Kuranishi model; the tangent complex determines an
honest sheaf of R-vector spaces on the zero locus of (X,E → X,s) if and only if s is transverse to the zero section.
On the other hand, the similar statement for ShvCh(A)( ) replaced with D(ShvCh(A)( )) is false. While we can ‘push
the diagram forward’, the derived category D(ShvCh(A)( )) has very few limits, so we might not be able to preform
the gluing construction. Even more seriously, if a limit exists, the resulting object TX need not have the property
that TX ∣Ui is isomorphic in the derived category to TKi , so TX would not deserve to be called ‘the gluing’ of the
complexes of sheaves TKi . The correct construction of limits in the derived category has to keep track of the various
homotopies.
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Definition 1.0.0.18. Fix again a topological space X with an open cover {Ui ⊂X}i∈I determining a diagram

f ∶ PI Ð→ Topopen

where PI is now the poset of all nonempty subsets.
A homotopical descent datum is a lift

∫Topopen ShvCh(VectR)( )

PI Topopen

p

f

F

such that F sends all morphisms to homotopy Cartesian morphisms with respect to p, which are those maps (i, α) ∶
(U,F)→ (V,G) for which α ∶ i∗G → F is a quasi-isomorphism.

Now a version descent holds: we can identify the derived category of ShvCh(VectR)(X) with the derived category
of homotopical descent data, i.e. lifts as in the definition above. Now we clearly see the problem with definitions
1.0.0.14 and 1.0.0.15: the tangent complex of a naive Kuranishi atlas on X does not induce a homotopical descent
datum for complexes of sheaves on X because the transition isomorphisms φij only satisfy the cocycle condition in
the homotopy category, while we should demand that they satisfy the cocycle condition up to coherent homotopy.
At this point, one might be tempted to sidestep the issue altogether: it may seem as if an obvious improvement
of incorrect definition 1.0.0.14 would be to require that the isomorphisms φij are not extended zig-zags, but single
maps, and that the cocycle condition holds on the nose.

Incorrect Definition 1.0.0.19. Let X be a paracompact Hausdorff topological space. A strict Kuranishi atlas on
X consists of the following data.

(a) An open covering {Ui →X}i∈I of X (not necessarily finite).

(b) A collection of affine Kuranishi models {Ki}i∈I with zero loci {Zi}i∈I called charts.

(c) A collection of homeomorphisms ψi ∶ Zi → Ui called footprints maps.

(d) For every pair of indices i, j ∈ I such that Ui ∩Uj ≠ ∅, a weak equivalence Ki∣Uij →Kj ∣Uji .

This data is required to satisfy the following conditions.

(i) The cocycle condition holds: for every triple i, j, k ∈ I such that Ui ∩Uj ∩Uk is nonempty, we have the equality
φjk ○ φij = φik.

(ii) The footprint maps are compatible with the transition maps: for every i, j ∈ I such that Ui ∩ Uj ≠ ∅, we have
the equality ψj ○ φij = ψi.

Now we do (trivially) have a homotopical descent datum, so a space X equipped with a Kuranishi atlas admits
a well defined tangent complex in the derived category of sheaves of vector spaces on X, but this definition is too
strong: the local finite dimensional reductions cannot be chosen to fit together in such a strict Kuranishi atlas. The
problem of constructing a homotopical descent datum from the data of an elliptic equation is complicated as well.
There is a vast literature on Kuranishi spaces, which have their inception in the work of Fukaya-Ono [FO99], which
aims to find the correct notion of a space equipped with a Kuranishi atlas and prove that moduli spaces have such
a structure, solving this coherence problem; see for instance [Par16; Joy15; MW12; Fuk+00] (we do not pretend to
approximate these theories here or prove any sort of comparison with the notions of a Kuranishi atlas defined above,
which merely serve a pedagogical purpose). In all these (slightly) different theories, the construction of the Kuranishi
atlas is done essentially by hand, by induction on the size of the atlas, which requires one to solve a new elliptic
moduli problem at each step.
In this work, we take our cue from derived algebraic geometry, and bring the homotopical and higher categorical
machinery to bear on problems (a) and (b) above: to obtain the desired coherence for the tangent complex, we
replace the homotopy category hKurAffc with a suitable ∞-category. One way to do achieve this is to promote KurAff
to a simplicial category by tensoring with Ω●

poly(∆n), but there is a more conceptually satisfying approach: since we
are attempting to find an ∞-category of geometric objects that arise as non-transverse intersections of manifolds, let
us consider the universal one.

Definition 1.0.0.20. The ∞-category dC∞Aff of affine derived manifolds (of finite presentation) is the smallest
enlargement of the category of manifolds that has all finite limits (and idempotents).
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The precise meaning of this statement will be given in chapter 2, and is based on the theory developed by Lurie
[Lur11b]: if we let Man denote the category of smooth manifolds, then dC∞Aff is an ∞-category that admits finite
limits and idempotents together with a fully faithful functor Man↪ dC∞Aff that preserves pullbacks along transverse
maps and is universal with respect to this property. We give the following characterization of this ∞-category.

Theorem 1.0.0.21 ([CS19]). Let CartSp be the category of Cartesian spaces {Rn} and smooth maps between them,
and let S denote the ∞-category of spaces. Let sC∞ring be the ∞-category of simplicial C∞-rings, the full subcategory
of the functor ∞-category Fun(CartSp,S) spanned by those functors that preserve finite products. Then dC∞Aff can
be identified with the full subcategory of compact objects of sC∞ring.

One should think of simplicial C∞-ring as a derived R-algebra that is moreover equipped with a compatible
(homotopy coherent) C∞ functional calculus. Most of the approaches to derived C∞-geometry (like the work of
Spivak and Joyce) start with the notion of a C∞-ring, and our result validates this choice.
Upon compactifying, moduli spaces such as those of pseudo-holomorphic polygons, acquire a boundary and corners.
To adequately handle such cases, a version of derived C∞-geometry with corners is desirable. Let Manc denote the
category of manifolds with faces and interior b-maps between them (see [Mel93], or chapter 3). Just as Man, this
category has a universal ‘derived geometry’, denoted dC∞Affc.

Theorem 1.0.0.22. The ∞-category dC∞Affc can be identified as the full subcategory spanned by compact objects
in a certain localization of the ∞-category of product preserving functors CartSpc → S, where CartSpc is the category
of Cartesian spaces with corners {Rn × Rk≥0}. The latter category admits an alternative characterization as the ∞-
category of pairs (A,M) where A is a simplicial C∞-ring and M is a (derived) logarithmic structure on the (derived)
monoid A≥0, the positive elements of A.

We cannot compare to other approaches as a result of this theorem since no work on derived C∞-geometry with
corners has yet been done.
The remainder of this work consists essentially of the verification that the familiar machinery of derived geometry
applies to the contexts of C∞-geometry mentioned above.

(1) For each simplicial C∞-ring A, the ∞-category of A-modules, obtained by taking modules of the underlying E∞-
algebra, is equivalent to the ∞-category of spectrum objects in Sp(sC∞ring/A) [Lur17a]. The cotangent complex
of a simplicial C∞-ring A may be defined as suspension spectrum

Σ∞
+ (A id→ A) ∈ Sp(sC∞ring/A) ≃ ModA.

It can be computed via Kähler differentials, and on manifolds it coincides with the cotangent bundle.

(2) Consider the ∞-category C∞RingTop of structured ∞-topoi [Lur11b], informally given by pairs (X ,OX ) where
X is an ∞-topos and OX a sheaf of local simplicial C∞-rings on X . The global sections functor

Γ ∶ C∞RingTopÐ→ sC∞ringop

admits a right adjoint spectrum functor Spec that is fully faithful on the subcategory of almost finitely presented
simplicial C∞-rings. The spectrum functor takes values in 0-localic ∞-topoi and the essential image consists of
derived affine C∞-schemes. Derived C∞-schemes are defined in the obvious way.

(3) The ∞-topos dSt ∶= Shv(dSmAff) of derived C∞-stacks has for each n ≥ 0 full subcategories of derived n-Artin
C∞-stacks and derived n-Deligne-Mumford C∞-stacks, defined by inductively by gluing (n−1)-Artin/DM stacks
along submersive/étale maps respectively [TV06; Sim96]. These stacks have a deformation theory (nilcomplete
and inf-cohesive [Lur14; TV06])) and a cotangent complex. Furthermore, n-localic derived C∞-schemes are
equivalent to derived n-Deligne-Mumford stacks.

(4) The inverse function theorem holds: a map between derived manifold SpecA→ SpecB is a local equivalence if
and only if the relative cotangent complex LB/A vanishes.

A similar list of properties is satisfied by derived manifolds with corners.
With a robust theory of derived geometry in the smooth setting available, we may now return to the elliptic moduli
problem that prompted our discussion: we wish to understand Sol(P ) as a derived geometric space. A valid per-
spective on the difficulties arising in moduli problems of geometric PDE’s is that the problems arise, fundamentally,
when one tries to work bottom-up, starting with a set of solutions, and then attempting to endow this set with some
‘generalized smooth’ structure. In algebraic geometry, it has long been recognized that moduli problems are best
described as sheaves (in groupoids) on the category of affine schemes, which then fixes the geometric structure of
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these generalized spaces. Let V →M be a fibre bundle, F →M a vector bundle, and P ∶ Γ(V )→ Γ(F ) be a nonlinear
elliptic differential equation. Then P defines a natural map

P̂ ∶ MapM(M,Y )dSt Ð→MapM(M,V )dSt

between derived stacks of sections, which admits an entirely analysis-free definition as internal Homs in the Cartesian
symmetric monoidal ∞-category dC∞St = Shv(dC∞Aff). We define a derived stack Sol of solutions of P as the cone
in the pullback diagram

Sol MapM(M,Y )dSt

∗ MapM(M,V )dSt

P̂

0

among derived stacks. We will prove the following result in upcoming work.

Theorem 1.0.0.23. If M is compact and P̂ is elliptic, then Sol is representable by a (possibly non-affine) derived
manifold. The perfect tangent complex TSol is at each solution s ∈ Sol identified with the Fredholm map given by the
linearization of the operator P at s.

This result does not follow simply from the inverse function theorem for Banach manifolds. Instead, we have to
resort to an inverse function theorem that produces local finite dimensional reductions at the Fréchet level, such as
the Nash-Moser theorem [Ham82].

17



1.1 Sommaire

Le but de cette thèse est de jeter les bases de la géométrie dérivée dans le cadre différentiable, c’est-à-dire C∞,
pour des applications dans la théorie des espaces de modules en géométrie différentielle, en géométrie symplectique
et en physique mathématique, en utilisant le langage moderne et les puissants outils de la théorie des catégories
supérieures, de la théorie des topos supérieurs et de l’algèbre supérieure. La théorie correspondante de la géométrie
algébrique dérivée est bien établie depuis un certain nombre d’années grâce aux travaux fondateurs de Lurie (série
DAG, [Lur11b] à [Lur14], et [Lur]) et Toën-Vezzosi (Homotopical algebraic geometry [TV04; TV06]).

Contenu

Nous décrivons le contenu de cet ouvrage chapitre par chapitre.

Chapter 2: Recollections on ∞-Categories and ∞-Topoi

Ce chapitre est consacré à un rappel des notions et des résultats de base en théorie des ∞-catégories. Nos principales
références sont [Lur17b] and [Lur17a]. Dans la deuxième partie de ce chapitre, nous approfondissons un peu la
théorie des topoi supérieurs et prouvons plusieurs résultats qui seront utilisés plus tard dans le texte, comme une
caractérisation des ∞-topoi n-localiques. Nous donnons également une construction tout à fait générale des groupes
de jauge dans des ∞-topoi arbitraires.

Chapter 3: Pregeometries and Geometric Contexts

Ce chapitre introduit les notions fondamentales de pregeometries et de geometries, dues à Lurie. En particulier, nous
expliquons le processus de passage d’une pregeometry à une geometry au moyen d’une construction universelle qui
ajoute des limites à une pregeometry de manière minimale. Après avoir donné plusieurs exemples algébriques, nous
traitons la théorie classique des C∞-rings dans le paradigme de Lurie. La dernière partie du chapitre concerne les
champs supérieurs de Simpson [Sim96] dans un cadre très général. La souplesse du formalisme développé ici nous
aide quand nous avons plusieurs geometries et plusieurs catégories de schémas affines autour.

Chapter 4: Derived C∞-geometry: foundational aspects

Dans ce long chapitre, plusieurs résultats principaux sont démontrés. Par exemple, nous prouvons la caractérisation
suivante de geometric envelope des variétés lisses.

Theorem. Soit C∞( ) ∶ TDiff → sC∞ringop le foncteur évident portant une variété lisse vers son C∞-anneau simplicial
de fonctions lisses. Ensuite, C∞( ) factorise par la sous-catégorie plein sC∞ringfp ⊂ sC∞ring des objets compacts,

et le foncteur résultant se trouve dans Funad(TDiff , sC
∞ringopfp ) et il existe une structure naturelle d’une geometry sur

sC∞ringopfp telle que C∞( ) présente une geometric envelope, i.e. l’∞-catégorie sC∞ringopfp 2-représente le foncteur

Funad(TDiff , ).

Nous fournissons ensuite un certain nombre de résultats sur l’algèbre homologique des fonctions lisses qui joueront
un rôle crucial dans les autres contextes géométriques que nous développerons, comme la géométrie analytique réelle
dérivée, et la géométrie dérivée différentiable à bord. En fait, pour les variétés dérivées avec bord, nous prouvons un
théorème similaire à celui ci-dessus pour les variétés dérivées sans bord.
La dernière partie de ce chapitre traite des modules pour les C∞-anneaux simpliciaux. Nous donnons deux car-
actérisations des modules : une en termes de stabilisation de la fibration du codomaine, et une utilisant l’algèbre
sous-jacente

Chapter 5: The cotangent complex and differential calculus

Dans ce chapitre, nous établissons le complexe cotangent pour les anneaux simpliciaux (avec et sans bord) ainsi que
les résultats usuels de fonctorialité. La principale nouveauté ici concerne les anneaux de fonctions de Whitney: nous
prouvons que (pour certains ensembles fermés) les anneaux de fonctions de Whitney ont un complexe cotangent libre,
que nous utilisons pour prouver que l’anneau de fonctions de l’intersection dérivée d’ensembles régulièrement situés
cöıncide avec l’anneau de fonctions de l’intersection des ensembles.
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Notations

Here are the notations and conventions we use throughout the text.

• We handle the interplay between small and large categories via the usual device of Grothendieck universes, i.e.
we assume Tarski-Grothendieck set theory. For any cardinal κ, we denote by U(κ) the collection of sets of rank
< κ. We fix once and for all three strongly inaccessible cardinals κs < κl < κvl; then we call the sets in U(κs)
small, those in U(κl) large, and those in U(κvl) very large.

• The ordinary category of (small) sets is denoted as Set. The ordinary category of (small) simplicial sets is
denoted as Set∆. When we speak of the model category of simplicial sets, we always mean its standard Quillen
model structure.

• An ∞-category or (∞,1)-category is a weak Kan complex, also known as a quasi-category. Our reference on the
foundations of such higher categories is J. Lurie’s book Higher Topos Theory [Lur17b].

• The homotopy category of an ∞-category C is denoted by hC.

• For C an ∞-category, the Kan complex of morphisms between two objects X and Y is denoted by HomC(X,Y ).

• For C,D ∈ C two morphisms in an ∞-category, a morphism f in the opposite ∞-category Cop from C to D is
denoted C ←D ∶ f .

• The nerve-realization adjunction defined by the cosimplicial simplicial(ly enriched) category C(∆●) realizes a
Quillen equivalence between sSetJoyal and the category of small simplicial categories endowed with Bergner’s
model structure. For a simplicial category M , we denote by N(M) the ∞-category obtained by taking the
homotopy coherent nerve of M . For a simplicial model category M, we denote by Mfc the simplicial category
of fibrant-cofibrant objects in M . In the case of Set∆ with the standard Kan-Quillen simplicial model structure,
we write N(Setfc∆ ) = S. The classical homotopy category hS is denoted H.

• For a relative category (A,W ), we denote by A[W −1] the ∞-category obtained by taking a fibrant replacement
of the marked simplicial set (N(A),N(W )) in the model category Set+∆ of marked simplicial sets.

• For C a simplicial set (usually an ∞-category) and D an ∞-category, the simplicial set of morphism from C to
D is denoted as Fun(C,D). It is an ∞-category and it is called the ∞-category of functors from C to D. When
C = S, the ∞-category of spaces, we write PShv(D) for Fun(Dop,S), and call it the ∞-category of presheaves
on D.

• An adjunction or ∞-adjunction L ∶ C ⇆ D ∶ R, with L the left adjoint and R the right adjoint is written as
(L ⊣ R).

• The inclusion S ⊂ Cat∞ admits a left and a right adjoint. The right adjoint of the inclusion takes an ∞-category
C to the underlying ∞-groupoid C≃, the wide subcategory on the invertible morphisms, that is, the largest Kan
complex contained in C, and comes with a counit map C≃ ↪ C. The left adjoint takes an ∞-category to the
localization at all morphisms, which we denote ∥C∥, and comes with a unit map C → ∥C∥.

• Our grading conventions are homological, that is, the differential on a complex lowers the degree. Accordingly,
a complex of R-modules C ∈ ModR for some commutative ring R is called connective if Hn(C) = 0 for all
n ≤ −1. A complex is called eventually connective if there exists some n such that Hk(C) = 0 for all k < n.

• A functor f ∶ C → D of small ∞-categories is left cofinal if the ∞-category C×DDD/ is weakly contractible for all
objects D ∈ D. By HTT, theorem 4.1.3.1, f is left cofinal if and only if composing with f identifies D-indexed
colimits with C-indexed colimits in any ∞-category. A functor is right cofinal if fop ∶ Cop → Dop is left cofinal.

• A manifold is a second countable, Hausdorff topological manifold without boundary whose topological dimension
is globally bounded, equipped with a maximal C∞-atlas. The category of manifolds is denoted Man. A manifold
in our sense may have connected components of differing dimensions, as long as there is not a (countable)
sequence of connected components whose dimensions grow to infinity. An n-manifold is a manifold each
connected component of which has dimension n.
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Chapter 2

Recollections on ∞-Categories and ∞-Topoi

In this work, we will freely make use of the theory and semantics of higher category theory incarnated through quasi-
categories, as developed by Joyal [Joy], and, very extensively, by Lurie [Lur17b; Lur17a; Lur09]. We will occasionally
employ, and the reader may benefit from, some other foundational texts on ∞-categories and homotopical algebra
that offer different perspectives; see for instance Cisinski book [Cis18], or that of Riehl-Verity [RV18].
In the following we will very tersely go through the most basic of these notions -mainly to fix notations- while
occasionally giving a result that will be used later in the text. Following this introduction, we take a little bit more
time to review some aspects of the theory of ∞-topoi.

2.1 A ménagerie of ∞-categories of ∞-categories

We record the following ∞-categories of varieties of fibrations of ∞-categories:

• The ∞-category Cat∞ (Ĉat∞) of small (large) ∞-categories, obtained as the nerve N(Cat∆
∞) of the fibrant sim-

plicial subcategory of the simplicial category Set∆ whose objects are quasi-categories and whose morphisms be-
tween two ∞-categories C and D is the largest Kan complex contained in Fun(C,D), that we denote Fun≃(C,D).
If f ∶ C → D is a categorical fibration, then for any functor C′ → C, the induced map Fun≃(C′,C) → Fun≃(C′,D)
is a Kan fibration, which implies that the full subcategory of the simplicial slice category (Cat∆

∞)/C spanned by
categorical fibrations over C is also a fibrant simplicial category.

• For any ∞-category C, the subcategories coCartC and CartC of (Cat∞)/C of coCartesian respectively Cartesian

fibrations over C, defined as follows. Consider the subcategory coCart∆
C of the simplicial category (Cat∆

∞)/C
spanned by inner fibrations p ∶ D → C such that for each edge e ∶ ∆1 → C, there is an edge ẽ ∶ ∆1 → D such that
p(̃0) = e(0) and each diagram

∆{0,1}

Λn0 D

∆n C

ẽ

admits a filler as indicated. Any edge satisfying this lifting property is a p-coCartesian edge and the edge ẽ is
called a p-coCartesian lift of e starting at ẽ(0). The space of morphisms between coCartesian fibrations D → C
and D′ → C in coCart∆

C is the space of those connected components of the Kan complex Hom(Cat∆∞)/C
(D,D′) that

consists of functors over C preserving coCartesian edges. Then the ∞-category coCartC is the coherent nerve of
the fibrant simplicial category coCart∆

C . We have a (non-full) subcategory inclusion

coCart∆
/C Ð→ (Cat∆

∞)f
/C
,

of fibrant simplicial categories, where (Cat∆
∞)f

/C
is the full subcategory of (Cat∆

∞)/C spanned by categorical
fibrations D → C. We have a functor of ∞-categories

coCartC = N(coCart∆
C )Ð→N((Cat∆

∞)f
/C
)Ð→N(Cat∆

∞)/C = (Cat∞)/C.

Here, the second map can be shown to be an equivalence of ∞-categories (see for instance [Lur17b] lem.
6.1.3.13), realizing coCartC as a subcategory of (Cat∞)/C . To define CartC , we repeat this definition, taking
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opposites everywhere.
These ∞-categories are obtained as the nerves of the simplicial categories (Set+,cocart

∆ )fc
/C

, the fibrant-cofibrant
objects in the simplicial model categories of marked simplicial sets with the coCartesian, respectively Cartesian
model structure. In particular, we have N((Set+∆)fc) = Cat∞. The marked straightening-unstraightening
construction of [Lur17b], section 3.2. provides Quillen equivalences

(Set+∆)/C Fun(C(C),Set+∆),
St+

Un+
(Set+∆)/C Fun(C(C)op,Set+∆)

St+,co

Un+,co

of combinatorial model categories, where the slice category on the left is endowed with the coCartesian model
structure and the slice category on the right with the Cartesian model structure, and both functor categories
with the projective model structure. The marked unstraightening functors can be equipped with the structure
of a simplicial functor, which then provide an equivalence of ∞-categories coCartC ≃ Fun(C,Cat∞) and CartC ≃
Fun(Cop,Cat∞).

• For any ∞-category C, the ∞-categories LFibC and RFibC of left respectively right fibrations over C. The ∞-
category LFibC is defined as the full subcategory of coCartC spanned by those coCartesian fibrations p ∶ D → C
for which every edge in D is p-coCartesian. Of course, the ∞-category RFibC is defined by taking opposites in
the previous definition. The straightening-unstraightening equivalence for (co)Cartesian fibrations restricts to
equivalences LFibC ≃ PShv(Cop) and RFibC ≃ PShv(C).

• For any ∞-category C, the ∞-categories locoCartC and loCartC of locally coCartesian fibrations respectively
locally Cartesian fibrations over C. Consider an inner fibration p ∶ D → C, then an edge e ∶ ∆1 → D is said to
be locally p-coCartesian if e is a p-coCartesian edge of the induced inner fibration D ×C ∆1 → ∆1. The inner
fibration is locally coCartesian if every edge in C has a locally p-coCartesian lift with specified domain in D.
The Kan complex of maps between two locally coCartesian fibrations is the union of connected components
of functors that preserve locally coCartesian edges. This defines a fibrant simplicial category locoCart∆

C whose
coherent nerve is locoCartC . The ∞-category locoCartC is defined similarly. The ∞-category coCartC sits inside
locoCartC as a full subcategory. The ∞-categories of locally coCartesian and locally Cartesian fibrations are
also obtained as the nerve of the fibrant-cofibrant objects in a simplicial model category of marked simplicial
sets over C determined by the categorical pattern that marks all 1-simplices of C see [Lur17a], appendix B or
[Lur09], section 3.2 on how to produce the such model structures.

Remark 2.1.0.1. The subcategory of coCartesian fibrations can also be defined without reference to simplicial
categories as follows: say that an edge e ∶ ∆1 → D between objects x = e(0) and y = e(1) is p-coCartesian for a functor
p ∶ D → C if the diagram

Dy/ Dx/

Cpy/ Dpx/

is a pullback in the ∞-category Cat∞; that is, a homotopy pullback for the Joyal model structure. Passing to homotopy
fibres in the diagram above, we see that this is equivalent to asking that for every object z ∈ D, the diagram of Hom
spaces

HomD(y, z) HomD(x, z)

HomC(p(y), p(z)) HomC(p(x), p(z))

is a homotopy pullback, where the horizontal functors compose with the edge e and p(e). For the result that every
p-coCartesian morphism as defined just now is uniquely up to equivalence represented by the earlier strict notion of
a p-coCartesian morphism, we refer to [Maz15].

Remark 2.1.0.2. The main theorem of Gepner-Haugseng-Nikolaus [GHN15] states that for a functor F ∶ C → Cat∞,
the application of the coCartesian unstraightening functor coincides with taking the left lax colimit of the functor F ;
that is, the total space of Un+,co(F ) is given by the colimit of the diagram

Tw(C)Ð→ Cop × C
C /×FÐ→ Cat∞,

where Tw(C) → Cop × C is a right fibration representing the Yoneda embedding: the twisted arrow ∞-category of
Joyal; see [Lur17a], section 5.2.1 and the work of Barwick [Bar13], for example.
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CoCartesian and Cartesian fibrations, as well as left and right fibrations, and local versions are stable under a
number of natural operations, such as composition of fibrations and the formation of over and under ∞-categories.
The fact that compositions of (co)Cartesian fibrations are (co)Cartesian admits the following partial converse.

Proposition 2.1.0.3. Consider a diagram

C D

E

f

p q

of ∞-categories where p and q are Cartesian fibrations and f is an inner fibration that sends p-Cartesian edges to
q-Cartesian edges. Suppose the following hold.

(1) For each object E ∈ E, the induced map on the fibres fE ∶ CE → DE is a Cartesian fibration.

(2) For every morphism e ∶ E → E′, the functor e∗ ∶ CE → CE′ takes fE-Cartesian edges to fE′ -Cartesian edges.

Then f is a Cartesian fibration.

Proof. See, for instance, lemma 1.4.14 of [Lur09], or proposition 9.8 of [GHN15].

Remark 2.1.0.4. It is a fact that (co)Cartesian fibrations are flat fibrations in the terminology of Lurie ([Lur17a],
section B.3) or exponentiable fibrations in the terminology of Ayala-Francis [AF20]. Flat categorical fibrations p ∶ D →
C are characterized by the property that pulling back along p preserves categorical equivalences. Since the functor
p∗ ∶ (Set∆)/C → (Set∆)/D has a right adjoint and p∗ preserves cofibrations, flatness amounts to the assertion that p∗
is left Quillen for the Joyal model structure.

We further record the following ∞-categories whose objects are ∞-categories characterized by having certain limits
or colimits, or being generated under certain limits or colimits.

• We write CatLex
∞ for the subcategory of Cat∞ whose objects are small ∞-categories admitting finite limits and

whose morphisms are functors preserving finite limits (i.e. left exact functors). Dually, we have an ∞-category
CatRex

∞ .

• An ∞-category C is stable if C has finite limits and colimits, a zero object 0 (an object that is both final and
initial), and a composition X → Y → Z is a fibre sequence, that is, we have a pullback diagram

X Y

0 Z

if and only if X → Y → Z is also a cofibre sequence, that is, the diagram above is also a pushout. A functor
between stable ∞-categories f ∶ C → D is exact if f preserves finite limits and colimits. We have an inclusion
CatEx

∞ ⊂ Cat∞ of the subcategory of stable ∞-categories and exact functors between them, and this inclusion
preserves (small) limits and filtered colimits.

• A small ∞-category C is κ-filtered (filtered if κ = ω) for some regular cardinal κ if the map C →∆0 has the right
lifting property against all inclusions K ↪ K⊳ where K is a κ-small simplicial set. An object C ∞-category
is κ-compact if the functor corepresented by C preserves κ-filtered colimits. Given any small ∞-category C,
we may construct an ∞-category Indκ(C) of κ-Ind objects of C: Indk(C) is the smallest full subcategory of
PShv(C) containing the image of the Yoneda embedding and is stable under filtered colimits. This construction
has the following universal property: for every ∞-category D that admits κ-filtered colimits, composition with
the Yoneda embedding j ∶ C ↪ Indk(C) induces an equivalence

Funκ−cont(Indk(C),D)Ð→ Fun(C,D),

where Funκ−cont(Indk(C),D) ⊂ Fun(C,D) is the full subcategory spanned by κ-continuous functors, those func-
tors that preserve κ-filtered colimits. The inverse is given by a functor taking left Kan extensions (see [Lur17b],
section 4.3.2 or the next subsection). An ∞-category C is κ-accessible if C is equivalent to Indκ(C0) for some
small ∞-category C0, which may be taken to be the ∞-category of κ-compact objects of C. For each regular
cardinal κ, we have a subcategory Accκ ⊂ Ĉat∞ of κ-accessible ∞-categories whose morphisms are functors
preserving κ-filtered colimits.
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Remark 2.1.0.5. More generally, if K is a collection of small simplicial sets and C is a small ∞-category, we may
consider the smallest full subcategory PShv(C)K ⊂ PShv(C) stable under colimits indexed by simplicial sets in K, then
for any ∞-category D that admits colimits indexed by simplicial sets in K, composition with the Yoneda embedding
j ∶ C ↪ PShv(C)K induces an equivalence

FunK(PShv(C)K,D)Ð→ Fun(C,D),

where FunK(PShv(C)K,D) ⊂ Fun(PShv(C)K,D) denotes the full subcategory spanned by functors preserving colimits
indexed by simplicial sets in K. When K = Idem, the simplicial set constructed in [Lur17b], section 4.4.4, this
procedure constructs the idempotent completion of C, freely adding retracts of idempotents. When C has finite
coproducts and K is the collection of sifted simplicial sets (that is, the diagonal K → K ×K is left cofinal), freely
adding sifted colimits yields the algebraic theories that we will study in chapter 3.

2.1.1 Colimits and Kan extensions

Recall that a diagram J ∶ K⊳ → C is a colimit diagram if J (−∞) is an initial object of CJ ∣K/. We will have need of
the version of this notion relative to an inner fibration X → S, which can be thought of as interpolating between the
usual theory of colimits (when S = ∆0) and the theory of coCartesian fibrations (when K = ∆0).

Definition 2.1.1.1. Let p ∶ X → S be an inner fibration of ∞-categories, then a diagram J ∶ K⊳ → X is a p-colimit
if the diagram

XJ / SJ /

XJ ∣K/ SJ ∣K/

is a homotopy pullback, which is equivalent to demanding that the map XJ / → XJ ∣K/ ×SJ ∣K / SJ / is a trivial Kan

fibration; that is, for each n > 0, each diagram

K ⋆ ∂∆n X

K ⋆∆n S

f

p

such that f ∣K = J and f ∣∂∆n({0}) = J (−∞) admits a diagonal lift as indicated.

For the most important results on relative colimits, such as that for p ∶ X → S a coCartesian fibration of ∞-
categories, the theory of p-colimits can be reduced to the theory of ordinary colimits in the fibres of p, we refer to
[Lur17b], section 4.3.1.
It is notoriously difficult to construct by hand functors between higher categories that keep track of all possible
coherences. In order to exhibit a functor between two ∞-categories, one often has to resort to enlarging the source
of the desired functor until one is guaranteed that a functor must exist. Then, the original source has to somehow be
found as lying inside the enlargement in a natural way. Among the most crucial tools for carrying out this strategy
is the theory of (relative) Kan extensions.

Definition 2.1.1.2. Let p ∶ D → D′ be an inner fibration of ∞-categories and i ∶ C0 ↪ C an inclusion of a full
subcategory, then a diagram

C0 D

C D′

f

pF

exhibits F as a p-left Kan extension of f along i if for each C ∈ C, the induced diagram

C0 ×C C/C D

(C0 ×C C/C)⊳ D′

FC

p

determines a p-colimit diagram.

Undoubtedly the most important and useful technical result in [Lur17b] is the following very general existence
and uniqueness theorem concerning Kan extensions along inclusions.
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Proposition 2.1.1.3. Let

C Ð→ D′ p←Ð D
be a diagram of ∞-categories, where p is a categorical fibration. Let C0 ⊂ C be a full subcategory. Let K ⊂ FunD′(C,D)
be the full subcategory spanned by those functors F ∶ C → D that are p-left Kan extensions of F ∣C0 , and let K′ ⊂
FunD′(C0,D) be the full subcategory spanned by functors F0 ∶ C0 → D such that for every C ∈ C, the induced functor
C0 ×C C/C → D admits a p-colimit. Then the restriction map K → K′ is a trivial Kan fibration.

Proof. This is [Lur17b], prop. 4.3.2.15.

When p is a coCartesian fibration, we have the following useful variant of this result, where the functor C → D′
may also vary.

Theorem 2.1.1.4. Let p ∶ D → D′ be a coCartesian fibration of ∞-categories, and let C0 ⊂ C be the inclusion of
a full subcategory. Let E ⊂ Fun(C,D) be the full subcategory spanned by those functors F ∶ C → D that are p-left
Kan extensions of F ∣C0 , and let E ′ ⊂ Fun(C0,D) ×Fun(C0,D′) Fun(C,D′) be the full subcategory spanned by commuting
diagrams

C0 D

C D′

f

p

such that for all C ∈ C, the induced diagram C0 ×C C/C → D admits a p-colimit. Then the restriction map E → E ′ is a
trivial Kan fibration.

Before we prove this, we need the following lemmata.

Lemma 2.1.1.5. Let C0 ⊂ C be an inclusion of a full subcategory and consider a diagram of ∞-categories

C0 ×∆1 D

C ×∆1 D′

f

p
F

where p is a categorical fibration. Suppose that F ∣C×{0} is a p-left Kan extension of f ∣C0×{0} and that for each object

C ∈ C0, the edge f ∣{C}×∆1 is a p-coCartesian lift of pf ∣{C}×∆1 . Then F ∣C×{1} is a p-left Kan extension of f ∣C0×{1} if
and only if for each object C ∈ C, the edge F ∣{C}×∆1 is a p-coCartesian lift of pF ∣{C}×∆1 .

Proof. The equivalence of the conditions in the lemma follows from the following series of equivalent conditions, that
we explain below.

(a) F ∣C×{1} is a p-left Kan extension of f ∣C0×{1}.

(b) F is a p-left Kan extension of f .

(c) F is a p-left Kan extension of f ∣C0×{0}.

(d) F is a p-left Kan extension of F ∣C×{0}.

(e) For all C ∈ C, F ∣{C}×∆1 is a p-coCartesian lift of pF ∣{C}×∆1 .

We observe that (a) ⇔ (b) is a consequence of [Lur17b], prop. 4.3.2.9, since F ∣C×{0} is a p-left Kan extension of
f ∣C0×{0}. The equivalence of (b) and (c) follows from [Lur17b], prop. 4.3.2.8, since we assume that f ∣{C}×∆1 is a

p-coCartesian lift of pf ∣{C}×∆1 for all C ∈ C0, which, by [Lur17b], prop. 4.3.2.9 again, amounts to the assumption that
f is a p-left Kan extension of f ∣C0×{0}. Now (c)⇔ (d) follows from [Lur17b], prop. 4.3.2.9 again and the assumption
that F ∣C×{0} is a p-left Kan extension of F ∣C0×{0}. One more application of [Lur17b], prop. 4.3.2.9. shows that (d)
and (e) are equivalent.

Lemma 2.1.1.6. Let C0 ⊂ C be an inclusion of a full subcategory and consider a diagram of ∞-categories

C0 ×∆1 D

C ×∆1 D′

f

p

where p is a coCartesian fibration. Suppose that for each object C ∈ C0, the edge f ∣{C}×∆1 is a p-coCartesian lift of

pf ∣{C}×∆1 . If f ∣C0×{0} admits a p-left Kan extension along the inclusion C0 ⊂ C, then f ∣C0×{1} also admits a p-left Kan

extension along the inclusion C0 ⊂ C.
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Proof. We are given a p-left Kan extension F0 ∶ C × {0}→ D that fits into a diagram

C0 D

C D′

f ∣C×{0}

pF0

Thus, combining F0 with the maps already given, we have a diagram

((C0)♭ × (∆1)♯)∐(C0)♭×{0}♯(C♭ × {0}♯) D

C♭ × (∆1)♯ D′
p

Since the left vertical map is marked anodyne and the right vertical map is a coCartesian fibration, we can find a
dotted lift F . Note that F satisfies the conditions of lemma 2.1.1.5, so F ∣C×{1} is a p-left Kan extension of f ∣C0×{1}.

Proof of theorem 2.1.1.4. Since D → D′ is a coCartesian fibration and C0 → C is an inclusion of simplicial sets, the
map r′ ∶ Fun(C,D) → Fun(C,D′) ×Fun(C0,D′) Fun(C0,D) is a coCartesian fibration. We check that the map r ∶ E → E ′
is a coCartesian fibration as well. We only have to show that r′-coCartesian lifts of edges in E ′ are also r-coCartesian
lifts; the relevant horn fillings for higher dimensional horns are then automatically satisfied because r′ is a coCartesian
fibration (in particular, we see that r is an inner fibration). We need to verify that, given a map H ∶ h1 → h1 in E ′
and a coCartesian lift F ∶ f1 → f2 in Fun(C,D) of H such that f1 is a p-left Kan extension of f1∣C0 , f2 is a p-left Kan
extension of f2∣C0 . Unwinding the definitions, we see that this is guaranteed by lemma 2.1.1.5. Thus, to prove that
r is a trivial Kan fibration, it suffices to check that it is a categorical equivalence. We have a commuting diagram

E E ′

Fun(C,D′)
q1

r

q2

of simplicial sets; we check that q2 is a coCartesian fibration. Since the map q′2 ∶ Fun(C,D′)×Fun(C0,D′) Fun(C0,D)→
Fun(C,D′) is a coCartesian fibration, it suffices to check that for q′2-coCartesian lifts of morphisms in Fun(C,D′) for
which the domain admits a p-left Kan extension, the codomain also admits a p-left Kan extension. This follows from
lemma 2.1.1.6. Now q1 and q2 are both coCartesian fibrations, and r takes q1-coCartesian edges to q2-coCartesian
edges. Invoking [Lur17b], prop. 2.4.4.4, we can conclude that r is a categorical equivalence if we show that for each
functor f ∶ C → D, the induced map on fibres rf ∶ Ef → E ′f is a categorical equivalence, but [Lur17b], prop. 4.3.2.15
asserts that rf is a trivial Kan fibration.

2.1.2 Adjunctions and adjointability

We formulate adjoints in terms of unit/counit transformations. We say that a right fibration p ∶ D → C is representable
if D has a final object; this implies that D → C is equivalent to C/p(D), where D is a final object of D. It’s easy to
see that the representable right fibrations are exactly the objects in the essential image of the Yoneda embedding
j ∶ C → RFibC .

Definition 2.1.2.1. (1) Let f ∶ C → D be a functor, then we say that an object εD ∈ C/D ∶= D/D ×D C depicted as
a pair (C, f(C) → D) is a counit transformation at D if εD is final; that is, if the right fibration C/D → C is
representable. We say that f is a left adjoint if there is a counit transformation for every D ∈ D.

(2) Let f ∶ C → D be a functor, then we say that an object ηD ∈ CD/ ∶= DD/ ×D C depicted as a pair (C,D → f(C)) is
a unit transformation at D if ηD is initial. We say that f is a right adjoint if there is a unit transformation for
every D ∈ D.

Remark 2.1.2.2. Unpacking the definition, we see that (C, f(C)→D) is a counit transformation at D if and only
if the composition

HomC(C′,C)Ð→ HomD((f(C′), f(C))Ð→ HomD(f(C′),D)

is an equivalence of spaces.

26



Remark 2.1.2.3. Let f ∶ C → D be a functor, then f is a left adjoint if and only if any associated coCartesian
fibration p ∶M → ∆1 is also Cartesian. This is so because for every D ∈ D ≃ p−1(1), the ∞-category M/D ×M C,
whose final objects are p-Cartesian lifts of 0 → 1 starting at D, is equivalent to C/D. It follows that if f is a left
adjoint, we obtain a functor g ∶ D → C that is a right adjoint by reversing the previous argument, and g then in turn
determines f essentially uniquely. Thus, we have an adjoint pair (f ⊣ g), and the counit and unit transformations,
locally defined at all objects, become natural transformations ε ∶ f ○ g → idD and η ∶ idC → g ○ f .

In view of the previous remark, we may identify adjunctions (f ⊣ g) ∶ C D with correspondencesM→∆1

that are both Cartesian and coCartesian associated to both g and f . A functor f ∶ C → D is a left adjoint if and
only if the inclusion into the fibre C ≃ p−1({0}) ↪M of the associated correspondence p ∶M → ∆1 is a left adjoint.
This follows from the equivalence M/D ≃ C/D for all D ∈ D. It follows easily that a functor q ∶ C → D is a locally
coCartesian fibration if and only if for each D ∈ D, the canonical map CD → C/D is a left adjoint. We also have the
following result.

Proposition 2.1.2.4. Let p ∶ C → D be a coCartesian fibration, and consider for each object C ∈ C the induced
coCartesian fibration p′ ∶ C/C → D/p(C) ([Lur17b], prop. 2.4.3.2). Then the inclusion of the fibre (Cp(C))/C ↪ C/C has
a left adjoint, and a map η ∶ C → C′′ with p(C′′) = p(C) is a unit transformation if and only if η is a p-coCartesian
lift starting at C.

Proof. We should show that for each morphism f ∶ C′ → C of C/C , the left fibration

(Cp(C))/C ×C/C CC′//C → (Cp(C))/C
is corepresentable, that is, the ∞-category (Cp(C))/C ×C/C CC′//C has an initial object. We have a diagram of simplicial
sets

{f} ×Dp(C′)//p(C) CC′//C (Cp(C))/C ×C/C CC′//C CC′//C

{f} HomL
D/p(C)(p(C

′), p(C)) Dp(C′)//p(C)
i

where both squares are pullbacks and the indicated map i is a homotopy equivalence of Kan complexes and thus a
categorical equivalence. As all objects in the diagram are fibrant and all vertical maps are categorical fibrations, the
left upper horizontal map is also a categorical equivalence. But an initial object in the ∞-category {f} ×Dp(C′)//p(C)

CC′//C is exactly a p-coCartesian lift of the map p(C′)→ p(C) starting at C′.

We will also make use of the theory of relative adjunctions.

Definition 2.1.2.5. Given a diagram

C D

E

p

q

G

where p and q are categorical fibrations, we say that the functor G is a parametrized right adjoint or a right adjoint
relative to E if G admits a left adjoint F such that the unit transformation η ∶ idD → G ○ F maps to the identity
transformation on E under q.

Under mild assumptions, relative adjunctions are guaranteed to exist once adjunctions on the fibres exist.

Proposition 2.1.2.6. Given a diagram

C D

E

p

q

G

where p and q are locally coCartesian categorical fibrations, G is a right adjoint relative to E if and only if G takes
locally q-coCartesian edges to locally p-coCartesian edges.

Proof. This is [Lur17a]prop. 7.3.2.6.

Definition 2.1.2.7. Consider a diagram σ ∶ ∆1 ×∆1 → Ĉat∞

C D

C′ D′
F

L

F ′

L′
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commuting up to a specified homotopy α. Let D ∈ D an object, then we say that this diagram is L-right adjointable
locally at D (or horizontally right adjointable) if L and L′ admit right adjoints U and U ′ respectively, and the
Beck-Chevalley transformation

F ○U Ð→ U ′ ○L′ ○ F ○U α≃ U ′ ○ F ′ ○L ○U Ð→ U ′ ○ F ′

is an equivalence at D. A square diagram σ as above is U-right adjointable if it is U -right adjointable locally at
every D ∈ D. Using elementary manipulations of units and counits, it is easy to see that the diagram is L-right
adjointable locally at D if L and L′ admit right adjoints and the map F ′ takes counit transformations at D to counit
transformations at F ′(D).

Remark 2.1.2.8. By unstraightening, a square diagram σ ∶ ∆1 × ∆1 → Ĉat∞ as in definition 2.1.2.7 determines a
diagram

M M′

∆1

p

F̂

q

where both p and q are coCartesian fibrations associated to U and U ′ respectively and F̂ carries p-coCartesian edges to
q-coCartesian edges. The diagram σ is right adjointable locally at D if and only if p and q are also Cartesian fibrations,
and F̂ carries p-Cartesian edges starting at D to q-Cartesian edges. We see in particular that a right adjointable
square determines a left adjointable square up to contractible ambiguity and vice versa. More generally, we may for
any ∞-category C consider the subcategory FunRAd(C,Cat∞) ⊂ Fun(C,Cat∞) whose objects are those functors that
send all edges of C to functors admitting right adjoints, and whose morphisms are those natural transformations that
determine a right adjointable square for each edge in C. This subcategory corresponds under unstraightening to the
simplicial subcategory coCart∆

C ∩Cart∆
C → (Cat∆

∞)/C . This simplicial subcategory actually arises as the fibrant-cofibrant
objects in the simplicial model category (Set++∆ )/C of bimarked simplicial sets over C, of [Lur17a], section 4.7.4 and
its nerve is therefore presentable. Since the inclusions (Set++∆ )/C ⊂ (Set+,cocart

∆ )/C and (Set++∆ )/C ⊂ (Set+,cocart
∆ )/C are

both right Quillen, the subcategory inclusion FunRAd(C,Cat∞) ⊂ Fun(C,Cat∞) preserves limits.

We record the following ∞-categories.

• The subcategory PrL ⊂ Ĉat∞, whose objects are presentable ∞-categories: accessible ∞-categories that admit
small colimits. We say that a presentable ∞-category C is κ-compactly generated if C is κ-accessible. If κ = ω, we
say that C is compactly generated. By Simpson’s theorem ([Lur17b], thm. 5.5.1.1) presentable ∞-categories are
equivalently ∞-categories of the form Indκ(C0) for C0 an ∞-category admitting κ-small colimits, or ∞-categories
that are accessible localizations of presheaf ∞-categories. Morphisms are those functors f ∶ C → D that preserve
small colimits, or equivalently by the adjoint functor theorem ([Lur17b], prop. 5.5.2.9), functors that admit a
right adjoint. We denote the full subcategory spanned by functors that admit a right adjoint by FunL(C,D) for
any two ∞-categories C and D. The inclusion PrL ⊂ Ĉat∞ preserves small limits.
A coCartesian fibration p ∶ D → C of ∞-categories is presentable if the straightening of p factors through PrL,
which is equivalent to demanding that the fibres of p are presentable ∞-categories and that for each edge
f ∶ ∆1 → C, the functor f! has a right adjoint (so that the fibration is also Cartesian).

• By taking opposites, PrL is equivalent to (PrR)op, where PrR ⊂ Ĉat∞ is the subcategory that has the same
objects as PrL, but morphisms are those functors that are accessible and preserve small limits, or equivalently,
functors that admit a left adjoint. We denote the full subcategory spanned by functors that admit a left adjoint
by FunR(C,D) for any two ∞-categories C and D. The inclusion PrR ⊂ Ĉat∞ also preserves small limits.

2.1.3 Localization of ∞-categories

Definition 2.1.3.1. Let (C,W ) be a pair of an ∞-category together with a collection edges of C that contains all
degenerate ones. A functor f ∶ C → D exhibits D as a localization of C with respect to W if the following conditions
are satisfied.

(1) f carries the edges of W into equivalences.

(2) For every ∞-category E , composition with f induces an equivalence

Fun(D,E)Ð→ FunW (C,E)

where FunW (C,E) is the full subcategory spanned by functors sending W into equivalences.
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Localizations are easily constructed: consider (C,W ) as a marked simplicial set, then a fibrant replacement yields
a localization of (C,W ). We denote this localization by C[W −1].

Remark 2.1.3.2. Localizations are to the (co)Cartesian marked model category of simplicial sets as cofinal maps
are to the covariant/contravariant model categories. Since the covariant/contravariant model structures are obtained
via (Bousfield) localization of the (co)Cartesian model structures, localizations are left and right cofinal.

Example 2.1.3.3. In [Lur17b], proposition 4.2.3.14 it is shown that for any simplicial set K, the map N(∆/K)
of simplices of K admits a left cofinal map N(∆/K) → K, the last vertex map. In fact, more is true. Let ∆′ ⊂ ∆
be the subcategory containing all objects whose morphisms are maps f ∶ [m] → [n] such that f(m) = n. Let
W = N(∆′/K) ⊂ N(∆/K), then the last vertex map sends every edge of W to a degenerate edge of K. If we denote
by K →RK a fibrant replacement of K in the Joyal model structure, the functor

N(∆/K)Ð→K Ð→RK

exhibits RK as a localization of N(∆/K) with respect to W ([Cis18], proposition 7.3.15). In particular, every
∞-category is a localization of the nerve of a category.

Example 2.1.3.4. Let A be a model category and let LH(A) be the hammock localization of A [DD80], then we
have a commuting square of Dwyer-Kan equivalences of simplicial categories

N(LH(Afc)) N(LH(Af))

N(LH(A)c) N(LH(A))

and upon taking a fibrant replacement of the coherent nerve, these simplicial categories model the localization
N(A)[W −1]

Example 2.1.3.5. Let A be an abelian category with enough projectives, then the ∞-category D(A)−, the dg-nerve
of the dg-category Ch−(Aproj) of left bounded chain complexes of projectives, then D(A)− is a localization of the
pair (N(Ch−(A)),W ), where W is the collection of quasi-isomorphisms.

Definition 2.1.3.6. (1) A localization functor f ∶ C → D is reflective if f has a right adjoint (in which case g must
be fully faithful, see [Cis18], proposition 7.1.17). We say that a morphism C → C′ in C exhibits C′ as an f-
localization of C if C′ lies in the essential image of g and the induced morphism f(C)→ f(C′) is an equivalence;
in other words, if C → C′ is a unit transformation for the adjunction (f ⊣ g).

(2) Suppose that C is presentable, and let f ∶ C → D be a reflective localization with right adjoint g, then this
localization is accessible if g ○ f is an accessible functor. In this case, D is also presentable, and we say that D is
a strongly reflective subcategory of C.

There is a one-to-one correspondence between equivalence classes of accessible localizations on a presentable
∞-category C and equivalence classes of strongly saturated collections of morphisms in C that are of small generation.

Example 2.1.3.7. For n ≥ −2, any ∞-category C has a full subcategory of n-truncated objects. If C is presentable,
then these full subcategories are strongly reflective. For n ≥ −2, the localization functor is denoted τ≤n, and τ≤n-
localizations are called n-truncations.

Remark 2.1.3.8. A tower diagram C ∶ N(Zop≥0)⊲ → C is a Postnikov tower if for each Cn, the map C∞ → Cn exhibits
an n-truncation, and a pretower diagram C ∶ N(Zop≥0)→ C is a Postnikov pretower if for each Cn, the map Cn → Cn−1

exhibits an (n − 1)-truncation. We say that an ∞-category C has truncations if C has the property that for each
n ∈ Z≥0, the n-truncated objects form a reflective subcategory of C (which is the case, for instance, if C is presentable).
If this condition is satisfied, we may form the Postnikov completion of C, denoted ĈPost by taking the limit of the
tower

Ð→ τ≤nC Ð→ τ≤(n−2)C Ð→ . . .Ð→ τ≤0C
which is obtained as the ∞-category of coCartesian sections of the unstraightening of the functor N(Zop≥0) → Cat∞,

n↦ τ≤nC. There is an obvious functor C → ĈPost that associates to each object C ∈ C an essentially unique Postnikov
tower. An ∞-category that has all truncations is Postnikov complete (alternatively, Postnikov towers are convergent
in C) if the functor C → ĈPost is an equivalence. If this is the case, then every object in C is in particular a limit of its
Postnikov tower, but Postnikov completeness is stronger in general: C is Postnikov complete if and only if a tower is
a Postnikov tower precisely if it is a limit diagram and (its restriction to N(Zop≥0)) a Postnikov pretower.

Let C be an ∞-category, then we denote by Cb the full subcategory spanned by objects that are k-truncated for some
nonnegative integer k <∞. We say that an ∞-category is bounded if Cb = C. If C has all truncations and is Postnikov
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complete, we have an obvious equivalence C ≃ Ĉb
Post

, and if C has all truncations and is bounded, we have an obvious

equivalence Cb ≃ (ĈPost)b. It follows that the constructions C ↦ ĈPost and C ↦ Cb furnish an equivalence between
the theory of bounded ∞-categories that have all truncations and Postnikov complete ∞-categories that have all
truncations.

We say a few words about derived functors.

Definition 2.1.3.9. Let (C,W ) be an ∞-category with weak equivalences, and let D be any ∞-category. Choose a
functor f ∶ C → C[W −1] which exhibits C[W −1] as a localization with respect to W , and consider the pullback

○ f ∶ Fun(C[W −1],D)Ð→ Fun(C,D).

Let g ∈ Fun(C,D) and suppose that we are given a natural transformation

α ∶ g Ð→ f ○Rg,

then we say that α exhibits Rg as a right derived functor of g if α is a unit transformation at g. Dually, a natural
transformation β ∶ f ○Lg → g exhibits Lg as a left derived functor of g if β is a counit transformation at g.

The following is theorem 7.5.30 of [Cis18].

Proposition 2.1.3.10. Suppose that

C D
f

g

are adjoint functors, where f preserves weak equivalences between cofibrant objects, and g preserves weak equivalences
between fibrant objects, then there is a canonical adjunction

C[W −1
C ] D[W −1

D ]
Lf

Rg

Corollary 2.1.3.11. Let C be a fibrant simplicial category and let A be a category with weak equivalences. Then the
derived functor of the colimit functor is equivalent to the colimit functor.

Definition 2.1.3.12. Let (C,W ) be an ∞-category with weak equivalences. A diagram f ∶ K⊳ → C is a homotopy
colimit diagram (with respect to W ) if the diagram

K⊳ fÐ→ C Ð→ C[W −1]

is a colimit diagram. There is an evident dual notion of a homotopy limit diagram.

Remark 2.1.3.13. Using these ideas it is not hard to prove that for any model category A (not necessarily combina-
torial), the localization N(A)[W −1] admits all limits and colimits. By self duality of the notion of a model category,
it suffices to prove the case of colimits. Since every simplicial set S admits a left (and right) cofinal map N(∆/S)→ S,
it suffices to consider colimits indexed by nerves of categories of the form ∆/S . These are Reedy categories, so a
derived colimit functor exists for diagrams indexed by such categories, which are ∞-categorical colimits by [Cis18],
remark 7.9.10.

2.1.4 Stability and Homological Algebra

Recall the ∞-category CatEx
∞ whose objects are stable ∞-categories and whose morphisms are exact functors between

them.

Notation 2.1.4.1. For a stable ∞-category C, we will denote the suspension functor interchangeably by Σ and
[1], and the loop functor by Ω and [−1]. Sometimes, if multiple ∞-categories are in play, we write ΩC and ΣC to
emphasize the relevant ∞-category.

The homotopy category hC of a stable ∞-category C is triangulated, and t-structure on C is simply a t-structure
on hC. For future reference, we record that a t-structure on C consists of the following data.

(∗) A pair of full subcategories (C≤0,C≥0) of coconnective respectively connective objects, such that C≥0 is stable
under the suspension functor [1] and C≤0 is stable under the loop functor [−1]. For n ∈ Z, we write C≤n = C≤n[n]
and C≥n = C≥0[n].
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We require that HomC(X,Y [−1]) = ∅ if X ∈ C≥0 and Y ∈ C≤0 and that for each X ∈ C, we have a fibre sequence
X ′ →X →X ′′ with X ∈ C≥0 and X ′′ ∈ C≤−1. The full subcategories C≤n ⊂ C and C≥n ⊂ C are a localization respectively
a colocalization for each n ∈ Z, and we have a left adjoint τ≤n respectively a right adjoint τ≥n to these inclusions.
Moreover, the Beck-Chevalley transformation

τ≤m ○ τ≥n Ð→ τ≥n ○ τ≤m

is an equivalence of functors C → C≤m ∩ C≥n. The functor τ≤0 ○ τ≥0 lands in C≥0 ∩ C≤0. This ∞-category is denoted C♡,
the heart of the t-structure, and is the nerve of an abelian category. For every n, we denote by πn the functor

C [−n]Ð→ C τ≤0○τ≥0Ð→ C♡

Definition 2.1.4.2. An exact functor f ∶ C → D between stable ∞-categories equipped with t-structures is left
t-exact if f carries C≤0 into D≤0 and right t-exact if f carries C≥0 into D≥0. An exact functor f is t-exact if f is both
left and right t-exact.

Remark 2.1.4.3. Let f ∶ C → D be a left t-exact functor between stable ∞-categories, then f is t-exact if and only if
for all C ∈ C, the map f(C)→ f(τ≤0C) exhibits f(τ≤0C) as a τ≤0-localization of f(C). Combining this with the dual
statement for right t-exact functors, we see that a t-exact functor commutes with the localization and colocalization
functors τ≤n and τ≥n for all n ∈ Z.

Definition 2.1.4.4. A t-structure on a stable ∞-category C is

(1) left bounded if C = C+ ∶= ⋃n∈Z C≤n.

(2) left complete if C coincides with the limit Ĉ of the diagram

. . .Ð→ τ≤3C
τ≤2Ð→ τ≤2C

τ≤1Ð→ τ≤1C Ð→ . . .

via the natural map C → Ĉ.

There are evident notions of right bounded (and bounded) and right complete stable ∞-categories.

Remark 2.1.4.5. We will also say that an object C ∈ C in a stable ∞-category equipped with a t-structure is left
bounded if C ∈ C+. Suppose that C admits countable products and that the inclusion C≤0 ⊂ C preserves countable
products, then the canonical functor C → Ĉ admits a fully faithful right adjoint whose essential image consists of those
X ∈ C such that X → limn∈Z τ≤nX is an equivalence. We say that an object of C (under the assumption involving
countable products) is left complete if X lies in the image of the right adjoint Ĉ ↪ C.

Let us recall some of the foundational theory of stabilization of ∞-categories from Higher Algebra, section 1.4.

Definition 2.1.4.6. Let f ∶ C → D be a functor between ∞-categories.

(1) Suppose C has a final object ∗. f is reduced if f(∗) is a final object of D.

(2) Suppose C admits pushouts. f is excisive if f sends pushout squares in C to pullback squares in D.

Whenever the notions of reduced and/or excisive functors make sense, the full subcategory of Fun(C,D) spanned by
reduced functors is denoted Fun∗(C,D), the full subcategory of Fun(C,D) spanned by excisive functors is denoted
Exc(C,D), and their intersection, the full subcategory of reduced and excisive functors is denoted Exc∗(C,D).

Definition 2.1.4.7. Let C be an ∞-category with finite limits. The stabilization of C (also called the ∞-category of
spectrum objects of C), denoted by Sp(C), is the stable ∞-category Exc∗(Sfin

∗ ,C) of reduced excisive functors from
the ∞-category of pointed finite spaces to C.

Notation 2.1.4.8. For n ≥ 0, the functor Sp(C) → C given by evaluating on the n-sphere is denoted Ω∞−n. For
n < 0, we define the functor Ω∞−n by the composition Ω∞ ○Ω−n, where Ω−n denotes the (−n)-fold composition of the
loop functor Ω ∶ Sp(C)→ Sp(C)

Remark 2.1.4.9. Here are a few properties of the stabilization.

(1) Sp(C) is an accessible localization of Fun(Sfin
∗ ,C).

(2) An ∞-category D is stable if and only if the functor Ω∞ ∶ Sp(D)→ D is an equivalence. If D is a stable ∞-category
and C is an ∞-category that admits finite limits, composition with Ω∞ ∶ Sp(C)→ C induces an equivalence

Funlex(D,Sp(C))Ð→ Funlex(D,C).
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(3) For C an ∞-category that admits finite limits, Sp(C) can be identified with the limit of the tower

. . .
ΩÐ→ C∗

ΩÐ→ C∗
ΩÐ→ C∗,

where C∗ denotes the ∞-category of pointed objects in C.

(4) If C is a presentable ∞-category, then Sp(C) is presentable as Sp(C) is a limit in the ∞-category PrR. Let
Sp(C)≤−1 denote the full subcategory of Sp(C) spanned by those objects X such that Ω∞X is a final object in
C. Then Sp(C)≤−1 determines an accessible t-structure on Sp(C), that is, a t-structure such that Sp(C)≥0 is
presentable.

Taking C = S, we obtain the presentable stable ∞-category of spectra Sp, equipped with its canonical t-structure.
The heart of this t-structure is the nerve of the category Ab of abelian groups.

If f ∶ C → D is a left exact functor between ∞-categories admitting finite limits, composition with f induces
a functor Sp(C) → Sp(D). We will later on need to understand this construction as a functor on some suitable
∞-category of ∞-categories into CatEx

∞ , but we will introduce this theory in due time.

2.1.5 Higher algebra

We will make light use of ∞-operadic methods in this work. This subsection is devoted to the recollection of the
relevant notions. We record the following ∞-categories:

• Let N(Fin∗) be the nerve of the category of pointed finite sets, written ⟨n⟩ = {∗,1,2, . . . , n}, and basepoint
preserving maps between them. This category admits a factorization system (SL, SR) given by active and inert
maps: SL consists of maps f ∶ ⟨n⟩→ ⟨m⟩ such that f−1(∗) = ∗, and SR consists of maps g ∶ ⟨n⟩→ ⟨m⟩ such that
g−1(i) consists of exactly one element, for i ∈ ⟨n⟩○ ∶= ⟨n⟩ ∖ {∗}. We let Op∆

∞ be the simplicial subcategory of
(Cat∆

∞)/N(Fin∗) whose objects are ∞-operads: functors p ∶ O⊗ →N(Fin∗) such that the following conditions are
satisfied.

(i) For every ⟨n⟩ and every object C in the fibre O⊗

⟨n⟩ over ⟨n⟩, every inert morphism f ∶ ⟨n⟩ → ⟨m⟩ admits a
p-coCartesian lift starting at C.

(ii) For every ⟨n⟩ ∈ N(Fin∗), there are exactly n inert maps {ρi ∶ ⟨n⟩→ ⟨1⟩}i∈⟨n⟩○ given by

ρi(k) =
⎧⎪⎪⎨⎪⎪⎩

1 if k = i
∗ if k ≠ i

Then the coCartesian transformations ρi! ∶ O⊗

⟨n⟩ → O
⊗

⟨1⟩ determine an equivalence O⊗

⟨n⟩ ≃∏i∈⟨n⟩O⊗

⟨1⟩.

(iii) For every map C → C′ in O⊗ lying over some map f ∶ ⟨n⟩→ ⟨m⟩, the maps C′ → ρ!
i(C) determined by the

coCartesian lifts of the inert maps ρi ∶ ⟨m⟩→ ⟨1⟩ for 1 ≤ i ≤m induce a homotopy equivalence

Homf

O⊗(C,C
′)Ð→ ∏

i∈⟨m⟩○
Homρi○f

O⊗ (C,ρi!(C′)),

where Homf

O⊗(C,C
′) denotes the union of connected components of HomO⊗(C,C ′) of morphisms that lie

over HomN(Fin∗)(⟨n⟩, ⟨m⟩), and similarly for Homρi○f

O⊗ (C,ρi!(C′)).
Equivalently, the maps C → ρi!(C′) determine a p-product diagram

⟨n⟩○ O⊗

(⟨n⟩○)⊲ N(Fin∗)

p

It is easy to see that all ∞-operads O⊗ →N(Fin∗) are categorical fibrations, so that Hom(Cat∆∞)/N(Fin∗)
(O⊗,O⊗

′
)

is a Kan complex. The space of morphisms between two ∞-operads O⊗ and O⊗
′

is the union of those connected

components of Hom(Cat∆∞)/N(Fin∗)
(O⊗,O⊗

′
) of functors over N(Fin∗) that preserve coCartesian lifts of inert

edges. The ∞-category of ∞-operads Op∞ is the nerve of the fibrant simplicial category Op∆
∞. Lurie’s device of

categorical patterns furnishes a simplicial model structure on the category (Set+∆)N(Fin∗) of marked simplicial

sets over N(Fin∗) (where inert edges of N(Fin∗) are marked), such that Op∆
∞ arises as the fibrant objects of

this simplicial model category.
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• A symmetric monoidal ∞-category is a coCartesian fibration C⊗ → N(Fin∗) that is also an ∞-operad. The
∞-category of symmetric monoidal ∞-categories, denoted E∞Alg(Cat∞) (for reasons we explain below) is the
nerve of the fibrant simplicial subcategory of (Cat∆

∞)N(Fin∗) whose objects are symmetric monoidal ∞-categories

and whose space of morphisms is the union of those connected components of Hom(Cat∆∞)/N(Fin∗)
(C⊗,C⊗

′
) of

functors over N(Fin∗) that preserve coCartesian edges. We also have an ∞-category of symmetric monoidal
∞-category and lax monoidal functors between them, defined as the full subcategory E∞Alg(Cat∞)lax ⊂ Op∞
spanned by symmetric monoidal ∞-categories.

Remark 2.1.5.1. Let p ∶ O⊗ → N(Fin∗) be an ∞-operad. Say that a morphism f ∶ C → C′ of O⊗ is inert if p(f)
is inert and f is a coCartesian morphism. We say that f is active if p(f) is active. Then the pair (SL, SR) where
SL consists of active morphisms and SR consists of inert morphisms determines a factorization system on O⊗. One
should think of the inert maps as not participating in the essential structure of the ∞-operad O⊗; indeed, such
maps simply forget colours, whereas all the interesting structure encoded by O⊗ can be extracted from the active
morphisms.

Remark 2.1.5.2. The most basic examples of ∞-operads are obtained from simplicial coloured operads. Let O
be a simplicial multicategory, that is, the data of a collection {X,Y,Z, . . .} of colours, together with a simplicial
set MulO({Yi}i∈I ,X) of multimorphisms for each finite set I. Additionally, for each map of finite sets f ∶ I → J ,
each Z ∈ Col(Op), each collection {Yj}j∈J indexed by J and each family {{Xij}ij∈f−1(I)}j∈J indexed by J consisting
of collections indexed by the fibres of f , the sets of multimorphisms {MulO({Xi}i∈f−1(j), Yj)}j∈J can be composed
with the multimorphisms MulO({Yj}, Z) in a manner that is unital and associative. We may associate to this data
a simplicial category of operators as follows: Define a functor O⊗ → Fin∗ by declaring objects of O⊗ to be pairs
(⟨n⟩, (C1, . . . ,Cn)) of an object in Fin∗ together with a tuple of colours of Op. The simplicial set of morphisms
between two pairs (⟨n⟩, (C1, . . . ,Cn)) and (⟨m⟩, (D1, . . . ,Dm)) is given by the formula

∐
α∶⟨n⟩m

∏
j∈⟨m⟩

MulO({Ci}i∈α−1(j),Yj
),

then the unitality and associative of the composition follows immediately from the definition of a simplicial multicat-
egory. The functor O⊗ → Fin∗ simply forgets colours. Taking the coherent nerve of this diagram yields an ∞-operad
in the sense defined above.

Example 2.1.5.3. The following ∞-operads play a role in the sequel.

• The trivial ∞-operad Triv⊗ ⊂ N(Fin∗) obtained as the subcategory spanned by inert maps.

• The commutative ∞-operad Comm⊗ ∶= N(Fin∗), obtained as the operadic nerve of the discrete simplicial
commutative operad.

• The associative ∞-operad Assoc⊗, obtained as the operadic nerve of the simplicial operad Assoc⊗, whose
objects are those of N(Fin∗) and whose morphism are maps f ∶ ⟨n⟩ → ⟨m⟩ together with a linear order on the

fibre of each element in ⟨n⟩○. The linear order on the fibre over i ∈ ⟨k⟩○ of the composition ⟨n⟩ f→ ⟨m⟩ g→ ⟨k⟩ in
Assoc⊗ is given by concatenating the linear orders of the sets f−1(j) for j ∈ g−1(i) according to the linear order
on g−1(i). There is a Dwyer-Kan equivalence tE1 → Assoc⊗ of fibrant simplicial categories, where tE1 is the
simplicial (1-coloured) operad of little intervals, whose multimorphisms are given by the spaces of rectilinear
embeddings of intervals into another, yielding an equivalence of ∞-operads E⊗1 ≃ Assoc⊗.

• The ∞-operad MComm⊗ controlling pairs (A,M) of a commutative algebra and a module over it. S = {a,m} de-
note the set of colours. Let (xi)i∈I ∈ SI be an I-tuple of colours, then the set of multimaps MulMComm({xi}I ; a)
is the one element set if xi = a for all i ∈ I, and is empty otherwise. The set of multimaps MulMComm({xi}I ;m)
is the one element set if there exists exactly one j ∈ I such that xj = m, and is empty otherwise. Taking
categories of operators, we have a simplicial operad MComm⊗ → Fin∗. We denote by MComm⊗ the operadic
nerve of this operad. We have the following explicit description of MComm⊗:

(1) Objects of MComm⊗ are pairs (⟨n⟩, T ) where T ⊂ ⟨n⟩○.
(2) Morphisms between pairs (⟨n⟩, T ) and (⟨m⟩, T ′) are maps f ∶ ⟨n⟩ → ⟨m⟩ in N(Fin∗) that satisfy the

following conditions.

(i) f carries T ∪ {∗} into T ′ ∪ {∗}.

(ii) For every t′ ∈ T ′, f−1(t′) contains exactly one element of T .

The set T ⊂ ⟨n⟩ indexes the elements of ⟨n⟩○ corresponding to the m-coloured objects.
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• The ∞-operads LM⊗ and RM⊗ controlling pairs (A,M) of an associative algebra with a left module respectively
a right module over it. These ∞-operads are defined similarly to MComm⊗: LM⊗ is defined as the operadic
nerve of the simplicial operad LM⊗ admitting the following description.

(1) Objects of LM⊗ are pairs (⟨n⟩, T ) where T ⊂ ⟨n⟩○.
(2) Morphisms between pairs (⟨n⟩, T ) and (⟨m⟩, T ′) are maps f ∶ ⟨n⟩ → ⟨m⟩ in Assoc⊗ that satisfy the

following conditions.

(i) f carries T ∪ {∗} into T ′ ∪ {∗}.

(ii) For every t′ ∈ T ′, f−1(t′) contains exactly one element of T , and this element is maximal with respect
to the linear order of f−1(t′).

RM⊗ is defined similarly, the only difference being that the element in the fibre of f−1(t′) is minimal with
respect to the linear order.

Example 2.1.5.4. We have the following symmetric monoidal ∞-categories:

(1) For any symmetric monoidal model category M, the underlying ∞-category N(Mc)[W −1] is canonically endowed
with a symmetric monoidal structure.

(2) For any ∞-category C admitting finite products, the ∞-category C× → N(Fin∗) exhibiting the Cartesian sym-
metric monoidal structure on C constructed in section 2.4.1 of HA. Similarly, for any ∞-category admitting finite
coproducts, we have the ∞-category C∐ →N(Fin∗) exhibiting the coCartesian symmetric monoidal structure on
C, constructed in section 2.4.3 of HA.

(3) The ∞-category of presentable ∞-category (PrL)⊗ equipped with the Lurie tensor product on presentable ∞-
categories . The tensor product of two presentable ∞-categories C and D is the presentable ∞-category C ⊗D
universal among presentable ∞-categories that admit functor from C × D that preserves colimits separately in
each variable.

(4) The ∞-category of spectra Sp⊗ with the smash product symmetric monoidal structure. This symmetric monoidal
structure can be recovered in (at least) three ways: one can localize one of the symmetric monoidal model
categories of spectra; for instance, one can take the symmetric monoidal model categories of symmetric or
orthogonal spectra. Alternatively, one can take the Goodwillie derivative of the Cartesian symmetric monoidal
structure on S. In [Lur17a], section 4.8.2, the symmetric monoidal structure on Sp is recovered by observing
that the underlying ∞-category of the unit of the Lurie tensor product on PrEx is Sp. Thus, Sp is initial in
E∞Alg(PrSt) and therefore admits a symmetric monoidal structure that commutes with small colimits separately
in each variable.

Definition 2.1.5.5. Let O⊗ and O⊗
′

be ∞-operads, then ∞-operad maps are functors lying over N(Fin∗) preserving

coCartesian lifts of inert maps. We denote by AlgO(O′) the full subcategory of FunN(Fin∗)(O⊗,O⊗
′
) spanned by

∞-operad maps. More generally, if O⊗
′
→ C⊗ is a categorical fibration and O⊗ → C⊗ is a map of ∞-operads, we

denote the full subcategory of FunC⊗(O⊗,O⊗
′
) (which is an ∞-category by assumption that O⊗

′
→ C⊗ is a categorical

fibration) spanned by ∞-operad maps by AlgO/C(O′).

Example 2.1.5.6. Let O⊗ be an ∞-operad and let C× be a Cartesian symmetric monoidal ∞-category, then the
∞-category AlgO(C) admits a convenient description in terms of O-monoids. Let O⊗

in be the subcategory of O⊗

spanned by inert morphisms, then we say that a functor f ∶ O⊗ → C is an O-monoid if f ∣Oin is a right Kan extension
of f ∣O⊗⟨1⟩ ; that is, for each X ∈ O⊗

⟨n⟩, the images under f of the inert morphisms X → Xi = ρi!(X) exhibit f(X) as

a product of the objects {f(Xi)}i∈⟨n⟩○ . Let MonO(C) ⊂ Fun(O⊗,C) be the full subcategory spanned by O-monoids,
then it follows from [Lur17a], prop. 2.4.1.7 that composition with the projection π ∶ C× → C induces a trivial fibration
AlgO(C)→MonO(C).
In the case C× = Cat×∞, the equivalence above together with unstraightening furnishes an equivalence between
MonO(Cat∞) and the full subcategory of coCart/O spanned by coCartesian fibrations D → O⊗ such that for each
X ∈ O⊗ lying over some ⟨n⟩, the inert maps X → ρi!(X) induce an equivalence DX ≃ ∏i∈⟨n⟩DXi . According to
[Lur17a], prop. 2.1.2.12, this is precisely the condition that D → C → N(Fin∗) is an ∞-operad. Such a coCartesian
fibration is then called a coCartesian fibration of ∞-operads.

Example 2.1.5.7 (Commutative algebras). Let C⊗ be a symmetric monoidal ∞-category, then we denote by
E∞Alg(C) the ∞-category AlgComm(C), the ∞-category of Comm-algebra objects of C. This terminology is justi-
fied as we have an equivalence Comm⊗ ≃ colimnE⊗n , where the ∞-operads E⊗n are the little cubes operads. For
C⊗ = Sp⊗, we simply write E∞Alg for E∞Alg(Sp).
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For C⊗ = Cat×∞, the previous example identifies E∞-algebras in C⊗ with symmetric monoidal ∞-categories. Taking
C⊗ = (PrL)⊗, we obtain presentably symmetric monoidal ∞-categories: those symmetric monoidal ∞-categories whose
underlying ∞-category is presentable such that the tensor products preserves small colimits in each variable.

Remark 2.1.5.8. Suppose that C⊗ → N(Fin∗) is a symmetric monoidal ∞-category such that C admits countable
colimits and the tensor product functors preserve countable colimits in each variable separately, then the forgetful
functor E∞Alg(C) → C admits a left adjoint denoted Sym●

C , the free algebra functor constructed via operadic left
Kan extension in [Lur17a], 3.1.3. The unit of this map can be described as follows: let X ∈ C, then the unit is the
canonical inclusion

X →∐
n≥0

Symn(X) = 1C∐X∐Sym2(X)∐ . . .

where 1C is the tensor unit and Symn(X) ≃ (⊗nX)hΣn are the homotopy coinvariants of the Σn-equivariant object

⊗nX.

Example 2.1.5.9 (Modules over commutative algebras). Let C⊗ → N(Fin∗) be a symmetric monoidal ∞-category,
then there are several ways to think about module objects in C⊗.

(1) As the ∞-operad Comm⊗ is coherent in the sense of [Lur17a], defn. 3.3.1.9, we can define a categorical fibration
Mod(C)⊗ → E∞Alg(C) × N(Fin∗) as in the construction of [Lur17a], section 3.3.3. Taking the fibre at A, we
obtain an ∞-operad Mod⊗A(C) → N(Fin∗), whose fibre over ⟨1⟩ gives an ∞-category of A-modules. The ∞-
operad Mod⊗A(C) is in fact a symmetric monoidal ∞-category.

(2) We can simply take ∞-category AlgMComm⊗(C), which by composition with Comm⊗ → MComm⊗ induces a
categorical fibration AlgMComm⊗(C)→ E∞Alg(C). We will write Mod(C) for AlgMComm⊗(C).

It is a consequence of [Lur17a], thm. 4.4.1.28 that the left vertical map in the pullback diagram

Mod(C)⊗ ×E∞Alg(C)×N(Fin∗) E∞Alg(C) × {⟨1⟩} Mod(C)⊗

E∞Alg × {⟨1⟩} E∞Alg(C) ×N(Fin∗)

is equivalent to AlgMComm(C)→ E∞Alg(C).
Now let k be a commutative ring. We would like to consider commutative algebra objects and modules over them
inside the symmetric monoidal ∞-category of k-modules. To obtain a symmetric monoidal ∞-category of k-modules,
we again have several options.

(i) Think of k ∈ E∞Alg(Ab) ⊂ E∞Alg as lying in the full subcategory of E∞-algebras in spectra spanned by
those E∞-algebras whose underlying spectra lie in the heart, then we have a symmetric monoidal ∞-category
Mod⊗k ∶= Mod(Sp)⊗ ×E∞Alg×N(Fin∗) {k} × N(Fin∗) where the tensor product is given by the smash product of
spectra.

(ii) Consider the left proper combinatorial model category Modk ∶= Ch(Modk) of chain complexes of k-modules
with the projective model structure whose weak equivalences are quasi-isomorphisms and whose fibrations
are taken levelwise (so that all objects are fibrant). This is a symmetric monoidal model category, so the ∞-
category N(Modfck )[W −1] = N(Modck)[W −1] is symmetric monoidal. Via the equivalences N(Modfck [W −1]) ≃
N(Modk)[W −1] ≃ D(Modk), we obtain a symmetric monoidal structure on the dg-nerve of the dg category
Modk.

These two constructions yield equivalent ∞-categories of k-modules, essentially via a kind of monadic reconstruction
(see [Lur17a], prop. 7.2.1.13). For any connective E∞-ring A, the ∞-category ModA is presentably symmetric
monoidal ModA → Sp is stable and comes equipped with a canonical t-structure determined by the forgetful functor
θ ∶ ModA → Sp, that is (Mod≤0

A = θ−1(Sp≤0) and (Mod≥0
A = θ−1(Sp≥0). This t-structure is compatible with the

symmetric monoidal structure (in the sense that for the active map ⟨n⟩→ ⟨1⟩, the map∏i∈⟨n⟩○ C → C carries∏i∈⟨n⟩○ C≥0

into C≥0), and compatible with filtered colimits (in the sense that C≤0 ⊂ C is stable under filtered colimits). If A = k
a commutative ring, the t-structure just described coincides with the one obtained via the derived ∞-category of
Modk.
We can take once again different points of view on (commutative) algebra objects in Modk.

(i′) Let C⊗ be a symmetric monoidal ∞-category, and let A ∈ E∞Alg(C) be an E∞-algebra in C. Then there is a
canonical equivalence of ∞-categories

E∞Alg(ModA)Ð→ E∞Alg(C)A/

of E∞-algebra objects in ModA and commutative algebra objects that come equipped with a map from A.
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(ii′) The model category Modk satisfies the monoid axiom of Schwede and Shipley [SS03], which implies that
E1Alg(Modk), the (ordinary) category of associative algebras in Modk, admits a model structure right trans-
ferred along the adjunction

Modk E1Alg(Modk)

such that the canonical map
E1Alg(Modk)fc[W −1]Ð→ E1Alg(Modk)

is an equivalence. If we assume that Q ⊂ k, then the same statements hold with E1 replaced by E∞. We will
also use the notation cdgak for the model category E∞Alg(Modk); its objects are commutative differentially
graded algebras, or cdga’s over k. The left proper combinatorial model category Mod≥0

k also satisfies the
monoid axiom and is freely powered, so we obtain an equivalence

E∞Alg(Mod≥0
k )fc[W −1]Ð→ E∞Alg(Mod≥0

k )

since Mod≥0,fc
k [W −1]→Mod≥0

k is an equivalence. We will write cdga≥0
k for the model category E∞Alg(Mod≥0

k );
its objects are connective cdga’s over k.

All these perspectives will play a role in this work.

Remark 2.1.5.10. Suppose that C⊗ → N(Fin∗) is presentably symmetric monoidal, then the categorical fibration
Mod(C) → E∞Alg(C) is a presentable fibration. In fact, the map Mod(C)⊗ → E∞Alg(C) ×N(Fin∗) is a coCartesian
fibration, so by straightening, we have a functor E∞Alg(C)→ E∞Alg(PrL). Concretely, this amounts to the assertion
that for any map f ∶ A→ B, the functor f! given by ⊗A B is symmetric monoidal.

Remark 2.1.5.11 (Two-sided Bar construction). Let C⊗ → N(Fin∗) be a symmetric monoidal ∞-category, and
suppose that the symmetric monoidal structure is compatible with geometric realizations of simplicial objects in the
sense that C admits geometric realizations of simplicial objects and all the tensor product functors preserve geometric
realizations of simplicial objects (automatically separately in each variable as N(∆op) is sifted). Then the relative
tensor product functor

ModA ×ModA
⊗AÐ→ ModA Ð→ C

admits an explicit description. Let M2Comm⊗ be the category defined as follows.

(1) Objects are ordered triples (⟨n⟩, T, S), where T,S ⊂ ⟨n⟩○ and T ∩ S = ∅.

(2) Morphisms between ordered triples (⟨n⟩, T, S) and (⟨m⟩, T ′, S′) are maps f ∶ ⟨n⟩ → ⟨m⟩ in N(Fin∗) such that
f(T ) ⊂ T ′ ∪ {∗} and for each t′ ∈ T ′, f−1(t′) contains exactly one element of T , and similarly for S and S′.

This describes the category of operators for the ∞-operad controlling ordered triples (A,M,N) where A is an E∞-
algebra and M and N are A-modules. Note that the corresponding ∞-operad M2Comm⊗ fits into a pushout diagram

Comm⊗ MComm⊗

MComm⊗ M2Comm⊗

among ∞-operads. Let M2Comm⊗
′
⊂ M2Comm⊗ be the full subcategory spanned by objects of the form (⟨n⟩,{1},{n}),

then M2Comm⊗
′

is equivalent to Comm⊗ via the functor

(⟨n⟩,{1},{n})↦ ⟨n⟩ ∖ {1, n}.

Let φ denote an inverse to this functor, then we can consider the composition

U ∶ N(∆op) CutÐ→ Comm⊗ φÐ→M2Comm⊗
′
⊂ M2Comm⊗

where the functor Cut of [Lur17a], construction 4.1.2.9 is the nerve of the functor N(∆op) → Comm⊗ sending [n]
to ⟨n⟩ and α ∶ [n]← [m] to the map Cut(α) ∶ ⟨n⟩→ ⟨m⟩ defined by

Cut(α)(i) =
⎧⎪⎪⎨⎪⎪⎩

j if there is a j ∈ ⟨n⟩ such that α(j − 1) < i ≤ α(j)
∗ otherwise

We have an equivalence ModA×ModA ≃ AlgM2Comm(C)×E∞Alg(C) {A}, so we may identify a pair (M,N) of A-modules
with a functor F ∶ M2Comm⊗ → C⊗ over N(Fin∗) such that F ((⟨1⟩,∅,∅)) = A. Then we denote by BarA(M,N)●
the simplicial object F ○U in C, and we have a canonical equivalence between M ⊗AN and the geometric realization
∣BarA(M,N)●∣.
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Remark 2.1.5.12. Let C⊗ ∈ E∞Alg(PrL) be a presentably symmetric monoidal ∞-category, and let A ∈ C⊗ be an
E∞-algebra in C. Then the forgetful functor

ρA ∶ E∞Alg(ModA)Ð→ModA

admits a left adjoint, the free A-algebra functor, given by Sym●
A =∐n≥0 Symn

A, which induces a functor

ModA ≃ (ModA)/0C Ð→ E∞Alg(C)A//A.

This functor has a right adjoint, denoted by IA, which takes an A-augmented A-algebra B → A to the pullback along
the unit map 0C → A of A-modules ([Lur17b], prop 5.2.5.1), so that we have a fibre sequence

IA(B)Ð→ B Ð→ A

in ModA. We call the functor IA the A-augmentation ideal functor. The unit map of the adjunction (Sym●
A ⊣ ρA) is

given by the map id = Sym1
A →∐n≥0 Symn

A, from which we easily deduce that the unit of the adjunction (Sym●
A ⊣ IA)

is given by the map id = Sym1
A →∐n≥1 Symn

A.
Suppose that we take C⊗ = Modk, the symmetric monoidal ∞-category of k-modules for k a commutative ring, and
suppose that A is connective, then the free A-algebra functor Sym●

A preserves connective objects, so the adjunction
(Sym●

A ⊣ ρA) restricts to an adjunction between connective objects. If A → B → A is an A-augmented A-algebra
such that B is connective, then IA(B) is also connective, as the long exact sequence shows. It follows that the

adjunction (Sym●
A ⊣ IA) also restricts to an adjunction Modcn

A (E∞Alg(Modk)A//A)cn . This construction will

be important in chapter 4.

We discuss some examples of module objects in Cat×∞.

Example 2.1.5.13 (Tensored, cotensored and enriched ∞-categories). Let C⊗ →N(Fin∗) be an ∞-operad andM be
∞-categories, then following [Lur17a], section 4.2.1, we say that a fibration of ∞-operads p ∶ O⊗ →MComm⊗ exhibits
M as weakly enriched over C if there are isomorphisms C⊗ ≅ O⊗ ×MComm⊗ N(Fin∗) and M ≅ O⊗

(⟨1⟩,{1}). Suppose that

the fibration p is coCartesian, so that we can identify p with the data of an MComm-module object (C⊗,M) in Cat∞,
then we say that M is tensored over the symmetric monoidal ∞-category C.
Suppose that p ∶ O⊗ →MComm⊗ exhibits M as tensored over C⊗ so that there is an action map

C ×M ⊗Ð→M,

and let M,N be two objects of M, then a morphism object of M and N is an object MorC(M,N) ∈ C together with
a map MorC(M,N)⊗M → N that is a unit transformation at N of the functor

C ⊗MÐ→M.

If there is a morphism object for every pair of object M,N ∈M then we say that M is enriched over C⊗.
Let N ∈M and C ∈ C, then an exponential object of N and C is an object CN ∈M together with a map N → C⊗CN
that is a counit transformation at C of the functor

M C⊗Ð→M.

If there is an exponential object for every pair of objects N ∈M and C ∈ C, then we say thatM is cotensored over C.

Remark 2.1.5.14. The previous example gives notions of ∞-categories weakly enriched over (symmetric) monoidal
∞-categories. Gepner and Haugseng in [GH15] have given a detailed treatment of weak enrichment over general
monoidal ∞-categories. We will not review this theory here, but we note that if q ∶ O⊗ → MComm⊗ exhibits M
as tensored and enriched over C, then, as explained in section 7 of [GH15], a C-enriched ∞-category in the sense of
Gepner-Haugseng can be extracted from the coCartesian fibration q such that the morphism object in C between any
two M,N ∈M is the morphism object MorC(M,N) satisfying the universal property of the unit transformation as
defined above. In the setup of [GH15], it is quite straightforward to prove that V-enriched ∞-categories with a single
objects are associative monoids in V (see [GH15], remark 6.3.5), so we conclude that for each object M ∈ V the object
End(M) ∶= MorC(M,M) lifts to an associative algebra of C, the endomorphism algebra of M
Replacing MComm⊗ with LM⊗ or RM⊗ yields evident notions of left/right tensored ∞-categories and ∞-categories
enriched in merely monoidal ∞-categories.
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Example 2.1.5.15 (Lurie’s Barr-Beck theorem). We will find many uses for Lurie’s version of the Barr-Beck monadic-
ity theorem, which is indispensable for constructing equivalences of ∞-categories that would otherwise be combina-
torially intractable, by exhibiting ∞-categories as algebras over monads defined on ∞-categories that are easier to
handle. For D,C two ∞-categories, the pair (Fun(D,D),Fun(C,D)) determines a strict simplicial associative monoid
object together with a left module over it, which we can identify with a coCartesian fibration O⊗ → LM⊗. Consider

an adjunction (F ⊣ G) ∶ D C , then the counit map F ○G → id provides a map G ○ F ○G → G which endows
T = G ○ F with the structure of an endomorphism algebra of G such that G canonically lifts to a T -module. The
functor C × Fun(C,D) → D lifts to a functor C × LModT (Fun(C,D)) → LModT (D), so given an adjunction (F ⊣ G)
with its endomorphism monad T as above, we obtain a functor G ∶ C → LModT (D) such that the composition with
the forgetful functor LModT (D)→ C is given by G. Then the adjunction (F ⊣ G) is said to be monadic if the functor
G is an equivalence. According to the Barr-Beck theorem ([Lur17a], thm 4.7.3.5), the following are equivalent.

(1) The adjunction (F ⊣ G) is monadic.

(2) G is conservative and G admits and preserves colimits of G-split simplicial objects.

It follows that if these conditions are satisfied, every object of X ∈ C is the colimit of the monadic Bar construction
BarT (T,X).

2.1.6 Groupoid objects

In ordinary category theory, an epimorphism f ∶ x → y is an effective epimorphism if y is the coequalizer of the
equivalence relation on x determined by y. We obtain a wealth of examples of effective epimorphism in ordinary 1-
topos theory since 1-topoi are obtained, essentially, by turning a class of coverings defined by a Grothendieck topology
on a category into effective epimorphisms. For example, if M is a manifold and we have a collection of submersions
{Uα →M} that cover M in the usual sense, then the induced morphism

ϕ ∶∐
α

j(Uα)→ j(M),

where j ∶ Man → Fun(Manop,Set) is the Yoneda embedding, is an effective epimorphism in the topos of sheaves on
the site of smooth manifolds for the Grothendieck topology generated by submersions. The kernel pair of ϕ is the
pullback ∐α,β j(Uα ×M Uβ), and the diagram

∐α,β j(Uα ×M Uβ) ∐α j(Uα) j(M)

is a coequalizer diagram. The diagram above is a (Lie) groupoid, known as the Čech groupoid of M . In higher
category theory and higher topos theory, effective epimorphism play a very prominent role as well.

Definition 2.1.6.1. (1) Let C be an ∞-category that admits finite limits and let f ∶ X → Y be a morphism in C.
View f as a functor f ∶ N(∆≤0

+ )op → C, then an augmented simplicial diagram U● ∶ N(∆+)op → C is a Čech nerve
of f if U● is a right Kan extension of U●∣N(∆≤0+ )op = f . Note that Čech nerves are defined up to contractible

ambiguity, so we will speak of the Čech nerve of a morphism f and denote the augmented simplicial object by
Č(f)●.

(2) A morphism f ∶X → Y in C is an effective epimorphism if Č(f)● ∶ N(∆+)op = N(∆op)⊳ → C is a colimit diagram.

Remark 2.1.6.2. It follows from the definition of the right Kan extension that for all [n] ∈ ∆, we have an equivalence

Č(f)n ≃X ×Y X ×Y . . . ×Y X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(n+1)−fold product

.

The face maps Č(f)n → Č(f)n−1 correspond to the obvious projections, and the degeneracies correspond to the
obvious maps in the diagram determining the relative product.

Remark 2.1.6.3. In the ∞-topos S of spaces, effective epimorphisms are precisely those maps that induce surjections
on connected components.

As Čech nerves replace coequalizer diagrams of kernel pairs in ordinary category theory, we expect that Čech
nerves are groupoid objects. This is indeed the case.
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Definition 2.1.6.4. Let C be an ∞-category. A simplicial object U● ∶ N(∆op)→ C is a groupoid object if for all n ≥ 0
and every partition [n] = S ∪ S′ such that S ∩ S′ consists of a single element s, the diagram

U([n]) U(S)

U(S′) U({s})

is a pullback.

Definition 2.1.6.5. Let C be an ∞-category that admits finite products, then a group object in C is a groupoid
object G● such that G0 is a final object.

Remark 2.1.6.6. Let C be an ∞-category that admits finite products, then we have equivalences

E1Alg(C) ≃ MonAssoc(C) ≃ Mon(C)

relating E1-algebras in C× to associative monoids in C. An E1-algebra G is grouplike if the associated monoid object
G̃ is a group object in C. The inclusion Mongp(C) ⊂ Mon(C) of grouplike objects into all monoids has a right adjoint,
that we denote G● ↦ G≃

● . For C = S, this operation takes G● to the simplicial space G≃
● that has as G≃

n the union of
connected components of n-fold compositions of elements in G1 that are invertible in the underlying monoid in sets.
For arbitrary C with finite products, we can always reduce to this situation via the Yoneda embedding.

2.2 ∞-Topoi

This section is devoted to the recollection of the basic features of the theory of ∞-topoi.

Definition 2.2.0.1. Let X be an ∞-category. X is an ∞-topos if X arises as a left exact accessible localization of
an ∞-category of presheaves on a small ∞-category; that is, there is a fully faithful inclusion X ↪ PShv(C) which
admits a left exact left adjoint, for some small ∞-category C.

An ∞-category X is an ∞-topos if and only if X satisfies the ∞-categorical Giraud axioms.

Theorem 2.2.0.2 ([Lur17b], thm. 6.1.0.6). Let X be an ∞-category, then X is an ∞-topos if and only if the following
conditions are satisfied.

(1) X is presentable.

(2) Coproducts are disjoint in X .

(3) Colimits in X are universal.

(4) Every groupoid in X is effective.

Remark 2.2.0.3. Condition (2) simply means that the limit of the colimit diagram X → X∐Y ← Y in X is
initial in X . For condition (3), we note that for any ∞-category C that admits pullbacks, the codomain projection
ev{1} ∶ Fun(∆1,C) is a Cartesian fibration, and ev{1}-Cartesian edges are precisely pullback diagrams, so that we have
a functor f∗ ∶ C/Y → C/X for every map f ∶ X → Y . Let K be a collection of small simplicial set, then we say that
K-indexed colimits are universal if these pullback functors f∗ preserve K-indexed colimits.

Remark 2.2.0.4. An n-topos for n ∈ Z≥−1 is an ∞-category X that arises as the left exact localization (automatically
accessible in this case) of an ∞-category of (n−1)-truncated presheaves on a small ∞-category, which we may assume
to be an n-category. If X is an ∞-topos, then the truncation τ≤(n−1)X is an n-topos. In particular, τ≤0X is a 1-topos
that we also denote by Disc(X ), the underlying discrete topos of X , and τ≤−1X is a classical locale.

Remark 2.2.0.5. In any ∞-category C, a map i ∶ U → X is a monomorphism if i is (−1)-truncated in C/X . In
an ∞-topos (or more generally any ∞-pretopos (see [Lur], appendix A.6)) the pair (SL, SR) where SL consists of
monomorphisms and SR of effective epimorphisms constitutes an orthogonal factorization system in the sense of
[Lur17b], defn. 5.2.8.8.

We will use below the following alternative characterizations of ∞-topoi: one by descent and the other in terms
of Cartesian transformations.

Proposition 2.2.0.6. Let X be a presentable ∞-category. Then X is an ∞-topos if and only if X satisfies either of
the following equivalent conditions.

(1) The functor X op → PrL classified by the Cartesian fibration ev{1} ∶ Fun(∆1,X )→ X preserves small limits.
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(2) For each small simplicial set K and each natural transformation α ∶ p → q between functors p, q ∶ K⊳ → X the
following holds: if q is a colimit diagram and α∣K is a Cartesian transformation, then p is a colimit diagram if
and only if α is a Cartesian transformation.

Remark 2.2.0.7. In this proposition, a Cartesian transformation α ∶ f → g between functors f, g ∈ Fun(K,D) is a
natural transformation Fun(∆1 ×K,D) such that for every edge e ∶ ∆1 → K, the induced diagram ∆1 ×∆1 → D is a
pullback.

We record the following ∞-categories:

• The subcategory LTop ⊂ Ĉat∞ whose objects are ∞-topoi, and whose morphisms are functors that are left
exact and admit a right adjoint. Such morphisms between ∞-topoi will be called algebraic morphisms. For
X ,Y ∈ LTop, the full subcategory of Fun(X ,Y) spanned by algebraic morphisms is denoted Fun∗(X ,Y).

• The subcategory RTop ⊂ Ĉat∞ whose objects are ∞-topoi, and whose morphisms are functors that admit a
left exact left adjoint. Morphisms in RTop will be called geometric morphisms. For X ,Y ∈ RTopn, the full
subcategory of Fun(Y,X ) spanned by geometric morphisms is denoted Fun∗(Y,X ). The ∞-categories RTop
and LTop are canonically antiequivalent, as are the ∞-categories Fun∗(X ,Y) and Fun∗(Y,X ).

Algebraic and geometric morphisms are usually denoted as in the adjoint pair (f∗, f∗) ∶ X Y . We will also
need to work with ∞-topoi relative over a given base.

Definition 2.2.0.8. Let C be an ∞-category. A topos fibration over C is a presentable fibration p ∶ X̃ → C such
that for each C ∈ C, the fibre X̃C is an ∞-topos and for each edge f ∶ ∆1 → C, the coCartesian transformation
f! ∶ X̃f({0}) → X̃f({1}) is an algebraic morphism. This is equivalent to demanding that the functor St+,co(p) ∶ C → Ĉat∞
factors through LTop. We let LTopC ⊂ coCartC denote the subcategory whose objects are topos fibrations and whose
morphisms are commutative diagrams

X̃ Ỹ

C
such that the horizontal map preserves coCartesian edges and for each C ∈ C, the induced map on the fibres is an
algebraic morphism of ∞-topoi.

Example 2.2.0.9. Let q ∶ LTop→ LTop be the coCartesian fibration associated to the subcategory inclusion LTop↪
Ĉat∞. Then q is a topos fibration. In fact q is a universal topos fibration, uniquely (up to equivalence) determined
by the property that pulling back along q induces, for any ∞-category C, a canonical bijection between equivalence
classes of topos fibrations over C and functors C → LTop.

The characterization of ∞-topoi by descent shows that equivalences of ∞-topoi are locally determined, in the
following sense.

Lemma 2.2.0.10. Let f∗ ∶ Y → X be an algebraic morphism of ∞-topoi and suppose that there is an effective
epimorphism ∐α Vα → 1Y such that for each α the induced algebraic morphism Y/Vα → X/f∗(Vα) is an equivalence.
Then f∗ is an equivalence.

Proof. Consider a covering ∐α Vα → 1Y such that Y/Vα ≃ X/f∗(Vα), and note that for each object of the form
Vαin × . . . × Vαin , the algebraic morphism

Y/Vαin
×...×Vαin

Ð→ X/f∗(Vαin ×...×Vαin ) ≃ X/f∗(Vαin )×...×f∗(Vαin )

is an equivalence since Y/X×Y ≃ (Y/X)/X×Y for every pair of objects X,Y ∈ Y. Since f∗ ∶ Y → X preserves finite
limits, the functor Fun(∆1,Y) → Fun(∆1,X ) ×X Y over Y carries ev{1}-Cartesian edges into ev{1}-Cartesian edges.
The induced functors on the fibres are algebraic morphisms, so we have a morphism of topos fibrations over Y and
therefore a natural transformation OY → f∗OX of functors Yop → LTop. Composing this transformation with the
Čech nerve of the map

h ∶∐
α

Vα Ð→ 1X

induces a coaugmented cosimplicial object

F ● ∶ N(∆)⊲ Ð→ Fun(∆1,PrL)

that carries the cone point to the functor f∗ and each object [n] to the algebraic morphism

∏
αi1 ,...,αin

Y/Vαin
×...×Vαin

Ð→ ∏
αi1 ,...,αin

X/f∗(Vαin ×...×Vαin ),
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since by descent we have ∏αi1 ,...,αin
Y/Vαin

×...×Vαin
≃ Y/∐αi1

,...,αin
Vαin

×...×Vαin
and similarly for X . This algebraic

morphism is an equivalence, as we have just verified. Since X and Y are ∞-topoi and the maps h and f∗(h) are
effective epimorphisms covering the respective unit objects, the functor F ● is a limit diagram, which implies that f∗

is an equivalence.

The effectiveness of groupoids shows that the functor Gpd(X ) → Fun(∆1,X ) carrying G● to the morphism
G0 → ∣G●∣ determines an equivalence onto the full subcategory spanned by effective epimorphisms, so that we can
pass back and forth between groupoids and their deloopings. In particular, if G0 = ∗, we obtain a version of May’s
recognition principle as an equivalence between groups and pointed 1-connective objects in X , and using Dunn-Lurie
additivity ([Lur17a], thm 5.1.2.2), this equivalence immediately extends to an equivalence between grouplike En-
algebras and pointed n-connective objects in X . In the next subsection, we will deduce some consequences of the
delooping principle for groupoid actions.
In the remainder of this subsection we will give a sample application of the universality of colimits. When a presentable
∞-category C has universal colimits, C is in particular a closed Cartesian symmetric monoidal ∞-category. More
generally, for each object X in an ∞-topos X , the ∞-topos X/X is tensored, cotensored and enriched over X . To
formalize this, we first take a more general point of view and show that a product preserving functor g ∶ D → C
between ∞-categories such that D admits finite products and all products with objects in the image of g exist in C
can be extended to the data of a tensoring of C over D.

Construction 2.2.0.11. Let g ∶ D → C be a functor and let p ∶M → ∆1 be a Cartesian fibration associated to g
such that we have equivalences g−1({0}) ≃ C and g−1({1}) ≃ D. Let Γ×M be the category defined as follows.

(1) Objects of Γ×M are triples ((⟨n⟩, T ), S) where T ⊂ ⟨n⟩○ is a subset and S ⊂ ⟨n⟩○ is a subset containing at most one
element of T . For a pair (⟨n⟩, T ), we let P (n,T ) denote the poset of such subsets S of ⟨n⟩○, ordered by reverse
inclusion.

(2) Morphisms between triples ((⟨n⟩, T ), S) and ((⟨m⟩, T ′), S′) are maps α ∶ ⟨n⟩ → ⟨m⟩ such that the following
conditions are satisfied.

(i) α carries T ∪ {∗} into T ′ ∪ {∗}.

(ii) For every t′ ∈ T ′, the set α−1(t′) contains exactly one element of T .

(iii) α−1(S′) ⊂ S.

There is an obvious forgetful functor N(Γ×M) →MComm⊗. Conditions (i) and (ii) imply that α−1 carries P (m,T ′)
into P (n,T ); then condition (iii) guarantees that the forgetful functor is a Cartesian fibration. Define a simplicial set

Õ⊗
g over MComm⊗ by the universal property that for any map of simplicial sets K →MComm⊗, there is a canonical

bijection

Hom(Set∆)/MComm⊗ (K, Õ⊗
g ) ≅ HomSet∆(K ×MComm⊗ Γ×M ,M).

It follows immediately from [Lur17b], cor. 3.2.2.12 that Õ⊗
g → MComm⊗ is a coCartesian fibration (note that we

apply the result to the map M → ∗, not to the fibration M → ∆1; we do not assume that g has a left adjoint). We

may identify the fibre Õ⊗
g (⟨n⟩,T )

with the ∞-category of functors Fun(N(P (n,T ),M), so that an edge α ∶ f → f ′ over

(⟨n⟩, T )→ (⟨m⟩, T ′) is coCartesian if and only if f(α−1(S′))→ f ′(S′) is an equivalence for all S′ ∈ P (m,T ′). We let

O⊗
g ⊂ Õ⊗

g be the full subcategory spanned by functors f ∶ N(P (n,T )) →M such that the following conditions are
satisfied.

(a) If S ∩ T ≠ ∅, then f(S) ∈ p−1({0}) and if S ∩ T = ∅, then f(S) ∈ p−1({1}).

(b) For all S ∈ P (n,T ), the maps f(S)→ f({i}) exhibit f(S) as a p-product of the objects {f({i})}i∈S .

We observe that (b) is equivalent to the following condition on a functor f ∶ N(P (n,T ))→M.

(b′) For all S ∈ P (n,T ) the following holds: for each object X ∈M and each map ϕ ∶ p(X) → p(f(S)) in ∆1, the
maps βi ∶ f(S)→ f({i}) for i ∈ S determine an equivalence

Homϕ
M(X,f(S))Ð→∏

i∈S

Hom
p(βi)○ϕ
M

(X,f({i}))

where Homϕ
M

(X,f(S)) ⊂ HomM(X,f(S)) is the union of those connected components that lie over ϕ, and

Hom
p(αi)○ϕ
M

(X,f({i})) is defined similarly.

It is then easy to see that if α ∶ f → f ′ is a coCartesian edge of Õ⊗
g and f ∈ O⊗

g , then f ′ ∈ O⊗
g so that O⊗

g →MComm⊗

is again a coCartesian fibration.
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Proposition 2.2.0.12. Let g ∶ D → C be a functor that preserves finite products, and let q ∶ O⊗
g → MComm⊗ be

the coCartesian fibration of construction 2.2.0.11. Then q exhibits the ∞-category C as tensored over the Cartesian
symmetric monoidal ∞-category D× (that is, q is a coCartesian fibration of ∞-operads, and we have identifications
D× ≃ O⊗

g ×MComm⊗ Comm⊗ and C ≃ (O⊗
g )(⟨1⟩,{1})) if and only if D admits finite products and for every pair (D,C) ∈

D × C, the pair (g(D),C) admits a product in C.

Proof. First we note that conditions (a) and (b) imply that (O⊗
g )⟨0⟩ consists of p-final objects of M that lie in

p−1({1}). Using that g preserves finite products and invoking [Lur17b], prop. 4.3.1.10, such p-final objects are
precisely final objects in D, so we may assume that D has a final object. In this case, the ∞-category (O⊗

g )(⟨1⟩,{∅}) is
identified with the full subcategory of Fun(∆1,D) spanned by edges X → Y where Y is final, so that (O⊗

g )(⟨1⟩,{∅}) ≃ D.
The ∞-category (O⊗

g )(⟨1⟩,{1}) is identified with the full subcategory of Fun(∆1,M) spanned by edges X ′ → Y where
X ′ ∈ p−1({0}) and Y ∈ p−1({1}) is p-final. Since g preserves final objects, we may identify (O⊗

g )(⟨1⟩,{1}) with
C ≃ p−1({0}). Now the map q is a coCartesian fibration of ∞-operads precisely if for every (⟨n⟩, T ) ∈ MComm⊗, the
inert maps ρi ∶ (⟨n⟩, T ) → (⟨1⟩,{i} ∩ T ) determine an equivalence φ ∶ (O⊗

g )(⟨n⟩,T ) →∏i∈⟨n⟩○(O⊗
g )(⟨1⟩,{i}∩T ). Condition

(a) of of construction 2.2.0.11 defines a functor ν ∶ N(P (n,T ))→∆1 and we can identify the ∞-category (O⊗
g )(⟨n⟩,T )

with the full subcategory of Fun∆1(N(P (n,T )),M) spanned by functors satisfying condition (b), where the fibre is
taken over ν. Let P0(n,T ) ⊂ P (n,T ) be the full subcategory spanned by subsets {j} ∈ P (n,T ) on a single element,
then a functor f ∶ N(P (n,T ))→M satisfies condition (b) precisely if f is a p-right Kan extension of f ∣N(P0))

. Using
[Lur17b], prop. 4.3.2.15, we see that (O⊗

g )(⟨n⟩,T ) is equivalent to the full subcategory E ⊂ Fun∆1(N(P0(n,T )),M)
spanned by functors that admit finite p-products, and under this equivalence, the functor φ is identified with the
inclusion i ∶ E ⊂ Fun∆1(N(P0(n,T )),M). The inclusion i is an equivalence for all pairs (⟨n⟩, T ) if and only if
every finite collection of objects (M1, . . . ,Mk) in M that contains at most one object in p−1({0}) admits a p-
product, and this p-product lies in p−1({0}) if the collection (M1, . . . ,Mk) contains an object in p−1({0}) and lies in
p−1({1}) otherwise. Using that g preserves finite products and invoking [Lur17b], prop. 4.3.1.10 and cor. 4.3.1.11,
this is equivalent to demanding that the fibre p−1({1}) ≃ D admits finite products and that for a finite collection
(D1, . . . ,Dk,C) ∈ D × . . . ×D × C, the collection (g(D1), . . . , g(Dk),C) admits a product in C. As g preserves finite
products, the collection (g(D1), . . . , g(Dk),C) admits a product if and only if the pair (g(D1 × . . . ×Dk),C) admits
a product, so we may assume k = 1.
The proof also shows that if T = ∅, functors f ∶ N(P (n,T )) →M satisfying (a) and (b) are equivalent to functors
f ∶ N(P (n,∅))→ D that are right Kan extensions of N(P0(n,∅))→ D. Parsing the construction of [Lur17a], section
2.4.1, we obtain an identification D× ≃ O⊗

g ×MComm⊗ Comm⊗.

Corollary 2.2.0.13. Let C be a presentable ∞-category. If colimits in C are universal, then for each object C ∈ C
the coCartesian fibration q ∶ Og →MComm⊗ associated to the functor g ∶ C → C/C right adjoint to the right fibration
C/C → C exhibits C/C as tensored, cotensored and enriched over C.

Proof. Since g is a right adjoint, it follows from proposition 2.2.0.12 that q exhibits C/C as tensored over C. Unwinding
the definitions, we observe that the tensoring is given by the functor ⊗ ∶ C × C/C → C/C which takes (X,D → C)↦
X ×D → C. Under the assumption that colimits are universal, the functor ⊗ (D → C) preserves colimits, which
implies that for every D′ → C the presheaf Cop → S, C′ ↦ HomC/C (C′ ×D,D′) is representable by a mapping object

MapC(D,D′)C (a Weil restriction), so that q exhibits C/C as enriched over C, with morphism object MorC/C (D,D′) =
MapC(D,D′)C . For every C′ ∈ C, the functor C/C → C/C given by taking products with C′ also preserves colimits,
so that C/C is also cotensored over C, and for a pair (C′,D → C), the exponential object is given by the internal
mapping object MapC/C (C′ ×C,D) in C/C .

Remark 2.2.0.14. It follows from the proof that for every morphism D → C of C, the object MapC(D,D)C is the
object in C of morphisms of the full C-enriched subcategory of C/C on the single object D → C, which lifts canonically
to an associative algebra object of C.

Remark 2.2.0.15. One could consider general ∞-categories enriched in X , or more generally, (∞, n)-categories
enriched in X , in the sense of [GH15]. For certain ∞-topoi, this theory can be realized using category objects
within X . It is easy to see that an ∞-topos X is an absolute distributor in the sense of [Lur09] if an only if X
is locally of constant shape and the shape of X is trivial, in the sense of [Lur17a], appendix A.1. Under these
conditions, the results of [Hau15], section 7, show that the ∞-category CSS(X ) of complete Segal space objects
X● ∈ Fun(N(∆op),X ) such that X0 lies in the image of the functor π∗ ∶ S → X is a model for the ∞-category of
X -enriched ∞-categories. As absolute distributors are stable under taking complete Segal space objects, iterating
this construction yields ∞-categories of X -enriched (∞, n)-categories. Thus, X -enriched (∞, n)-categories may be
viewed as stacks of (∞, n)-categories on X whose underlying sheaf of objects is constant. The ∞-topos SmSt of
smooth stacks is an example of an ∞-topos for which this procedure can be performed.
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2.2.1 Groupoid actions in ∞-topoi

In this work, we will at various points switch perspectives between viewing the objects of study as ∞-topoi themselves,
equipped with some geometric structure encoded as sheaf of algebras, and as objects internal to some specific ∞-
topoi we construct (namely, the ∞-topoi that arise as sheaves on some variety of derived manifolds). In the latter
case, our focus will be on groupoid objects in ∞-topoi satisfying some conditions analogous to those satisfied by Lie
groupoids. Since groupoids are effective, they are determined by the quotient map G0 → G−1, and it will prove to be
advantageous to have an understanding of the functor that the quotient object G−1 represents.

Definition 2.2.1.1. Let C be an ∞-category, and let G● be a simplicial object in C. A morphism G′
● → G● of

simplicial objects in C exhibits G′
● as a G●-torsor if the following conditions are satisfied.

(i) G● is a groupoid object of C.

(ii) For each finite ordinal [n] and each k ∈ [n], the diagram

G′
n = G′

●([n]) G′
●({k}) = G′

0

Gn = G●([n]) G●({k}) = G0

is a pullback square.

We denote the full subcategory of Fun(N(∆op),C)/G● spanned by G●-torsors by G●Tor(C), and the full subcategory
of Fun(N(∆op) ×∆1,C) spanned by maps G′

● → G● that exhibit G′
● as a G●-torsor by TorC .

Remark 2.2.1.2. In an arbitrary ∞-category C, there is the notion of a left/right action object of an associative
monoid in C as definition 4.2.2.2 of [Lur17a], and the ∞-category of left action objects is naturally equivalent to the
∞-category of algebras for the ∞-operad controlling pairs of an associative algebra A and a left A-module. In case
the underlying monoid is grouplike, the definition above generalizes action objects to groupoids.

Remark 2.2.1.3. If G′
● → G● is a G●-torsor in C, it is obvious that for all maps [n] → [m] of finite ordinals, the

associated diagram

G′
●([n]) G′

●([m])

G●([n]) G●([m])

is a pullback square, that is, a G●-torsor G′
● → G● is a Cartesian transformation of simplicial objects. Using charac-

terization (4′′′) of [Lur17b], prop. 6.1.2.6, it is easy to see that if G′
● → G● is a G●-torsor, then G′

● is also a groupoid
object, so we have a full subcategory inclusion G●Tor ⊂ Gpd(C)/G● .

Definition 2.2.1.4. Let G● be a groupoid object in C.

(1) The ∞-category of G●-torsor structures on X, denoted G●TorX is the fibre at X ∈ C of the functor

G●Tor ⊂ Gpd(C)/G● Ð→ Gpd(C)
ev{[0]}Ð→ C.

(2) Suppose C admits geometric realizations of simplicial objects, then the ∞-category of G●-torsors with base X,
denoted G●Tor(X) and defined up to a contractible space of choices, is the fibre at X ∈ C of the functor

G●Tor ⊂ Gpd(C)/G● Ð→ Gpd(C) colimÐ→ C.

Remark 2.2.1.5. Suppose that C is presentable and has universal colimits. Let G● be a group object in C viewed as
an associative monoid, then we find that G●TorX is equivalent to the pullback {X}×C LMod(C)×Mon(X) {G●}. As C is
enriched over itself, one can apply [Lur17a], cor. 4.7.1.41 and 4.7.1.42 to see that the projection LMod(C) ×C {X} →
Mon(C) is a right fibration, representable by the endomorphism algebra MorC(X,X); it follows that we have a
canonical equivalence G●TorX ≃ HomMon(C)(G●,MorC(X,X)). Since G● is grouplike and the grouplike monoids form
a coreflective subcategory of the ∞-category of monoids, we have a canonical equivalence of ∞-categories

G●TorX ≃ HomGrp(C)(G●,Aut(X)),

where Aut(X) ∶= MapC(X,X)≃, the automorphism group object of X.
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Remark 2.2.1.6. A map f ∶ X● → Y● of simplicial objects in an ∞-topos X is a realization fibration [Rez14] if for
any map of simplicial objects Z● → Y● the canonical map

∣X● ×Y● Z●∣Ð→ ∣X●∣ ×∣Y● ∣ ∣Z●∣

is an equivalence. It is easy to see that a Cartesian transformation of simplicial objects is a realization fibration. In
particular, a map G●

′′ → G′
● of G●-torsors for some groupoid object G● is a realization fibration. Now suppose that G

is a group object in an ∞-topos X and suppose that X and Y are objects carrying a G-action; that is, we are given
maps G → Aut(X) and G → Aut(Y ) of group objects in X (see remark 2.2.1.5). Let f ∶ X → Y be a map, then the
space of extensions of f to a G-equivariant map X● → Y●, where X● and Y● are the associated action groupoids, is
naturally equivalent to the space of extensions of f that exhibit Y● as an X●-torsor. Thus, we conclude that for any
map of simplicial objects Z● → Y●, the canonical map ∣X● ×Y● Z●∣ → ∣X●∣ ×∣Y● ∣ ∣Z●∣ is an equivalence. In particular, if
Z carries a G-action and Z → Y is a G-equivariant map, then X ×Y Z is a G-torsor and the canonical map

[X ×Y Z/G]Ð→ [X/G] ×[Y /G] [Z/G]

is an equivalence. If Z carries the trivial G-action, this reduces to an equivalence [X ×Y Z/G] ≃ [X/G]×[Y /G]Z ×BG.
If Z = ∗, a final object, then a map y ∶ ∗ → Y determines a group object (Gy)● = ∗ ×Y Y●, the isotropy group of Y
at y, so that the pullback X● ×Y● ∗ carries the structure of a Gy-torsor and we have an equivalence [X ×Y ∗/Gy] ≃
[X/G] ×[Y /G] BGy (which coincides with the previous equivalence if y ∶ ∗→ Y is G-invariant).

Remark 2.2.1.7. Aside from group objects, the notion of a G●-torsor structure on X ∈ C subsumes a variety of
geometric structures. For instance, if we let C = dC∞St, the ∞-topos of derived C∞-stacks, then the fundamental
theorem of (parametrized) derived deformation theory [Lur11e; Nui19; CG18] shows that we can construct for each
derived Lie algebroid A on a quasi-smooth derived manifold X (such as the tangent complex of X) a formal thickening
X → XA which exhibits the groupoid XA as the formal integration of A (in case A = TX , the tangent complex, this
is the de Rham stack of Simpson. Let E ∈ Perf(X) be a perfect complex on X and let V(E)→X denote its relative
spectrum, then we can identify XA-torsor structures on a map f ∶ V(E)→X with flat A-connections on the complex
E.

Using pasting of pullback squares, it is easy to see that all morphism in G●TorX are equivalences. If C is an
∞-topos, this is also true for G●Tor(X).

Proposition 2.2.1.8. Let X be an ∞-topos, then for all X ∈ X , there is a canonical equivalence

HomX (X,G−1) ≃ G●Tor(X),

of ∞-categories, where G−1 = colim N(∆op)G●; in particular, G●Tor(X) is an ∞-groupoid.

Remark 2.2.1.9. See [TV06] for a proof in the setting of model topoi, and [NSS15] for a treatment in the special
case that G● is a group object.

Remark 2.2.1.10. It follows from the proposition that if G−1 is an n-truncated object of X , then G●Tor(X) ≃
HomX (X,G−1) is an n-groupoid for any X ∈ X . In particular, if A is a discrete abelian group object in X , that is,
an abelian group object in Disc(X ), then BnA, the n’th delooping of A which we can also write as the Eilenberg-
MacLane object K(A,n), is n-truncated. If n ≥ 2, we can then identify the n-groupoid of BnA-torsors with base X
with the space of n-gerbes on X banded by A.

To prove the proposition, we pass to a larger model for G●-torsors.

Definition 2.2.1.11. Let X be an ∞-topos and let

Gpd+(X ) ⊂ Fun(N(∆+)op,X )

be the full subcategory spanned by groupoid resolutions, that is, simplicial resolutions G+
● such that the simplicial

object G● ∶= G+
● ∣N(∆op) is a groupoid. Then the full subcategory G+

●Action ⊂ Gpd+(X )/G● spanned by those maps of

augmented simplicial objects G
′
+
● → G+

● such that the diagram

G
′
+

0 G
′
+
−1

G+
0 G+

−1

is a pullback square, is the ∞-category of G+
● -action objects. We denote the full subcategory of Fun(∆1,Gpd+(X ))

spanned by action objects by ActionX
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Proposition 2.2.1.12. The restriction map Gpd+(X )→ Gpd(X ) induces a trivial Kan fibration G+
●Action→ G●Tor.

Proof. First, we show that for α ∶ G
′
+
● → G+

● a G+
● -action object, the restriction G′

● → G● exhibits a G● torsor. An
augmented simplicial object U+

● is a groupoid resolution if and only if U+
● is a right Kan extension of U+

● ∣∆{0,−1} .
Viewing α as a functor ∆1 ×N(∆op

+ )→ X , we have a diagram

∆1 ×∆{0,−1} X

∆1 ×N(∆op
+ )

α∣
∆{0,−1}

α

Restricted to both {0} and {1} in ∆1, the diagram above is a right Kan extension, so the diagram itself is a right Kan
extension, and by assumption, the horizontal functor α∣∆{0,−1} is a pullback, so α is a right Kan extension of α∣Λ2

2
,

where Λ2
2 ⊂ ∆1 ×N(∆op

+ ) is the full subcategory determining the cospan G+
0 → G+

−1 ← G
′
+
−1 ([Lur17b], prop. 4.3.2.8

and 4.3.2.9). Let K denote the full subcategory {1}×N(∆op
+ )∐{1}×{[−1]} ∆1 × {[−1]} ⊂ ∆1 ×N(∆op

+ ) which contains

the full subcategory Λ2
2 ⊂ ∆1 ×N(∆op

+ ), then it follows from the arguments above that α is a right Kan extension of
α∣K ; now let J ∶= K ×∆1×N(∆

op
+ ) ∆1 ×N(∆op

+ )(0,[n])/, then J is the full subcategory of ∆1 ×N(∆op
+ )(0,[n])/ spanned

by the maps

(a) (0, [n])→ (0, [−1]),

(b) (0, [n])→ (1, [−1]),

(c) all the maps (0, [n])→ (1, [m]) for [m] ∈ N(∆op).
Let J ′ ⊂ J be the full subcategory spanned by the morphisms (a) and (b) and the map (0, [n])→ (1, [n]) corresponding
to the identity on [n]. Note that there is an isomorphism J ′ ≅ Λ2

2. Consider for each of the maps (0, [n])→ (i, [m]),
i ∈ {0,1} in J , the full subcategory J ′′ ⊂ ∆1 × N(∆op

+ )(0,[n])//(i,[m]) spanned by compositions (0, [n]) → (j, [k]) →
(i, [m]) where the first map is an object of J ′ and the composition is an object of J . For (i, [m]) = (0, [−1]),
we note that J ′′ is the trivial category, and for each (1, [m]), the category J ′′ has an initial object given by the
composition (0, [n]) → (1, [n]) → (1, [m]) where the first map induces the identity on [n]. Using [Lur17b], thm.
4.1.3.1, we deduce that the inclusion Λ2

2 ≅ J ′ ⊂ J is right cofinal. By definition of right Kan extension we have

G
′
+
● ([n]) ≃ lim(i×[m])∈J α(i × [m]), so we conclude that the diagram

G
′
+
● ([n]) G

′
+
● ([−1])

G+
● ([n]) G+

● ([−1])

is a pullback. Using pasting of pullback squares, one sees that G
′
+
● → G+

● is a Cartesian transformation. It follows
that restriction to N(∆op) induces a functor G+

●Action→ G●Tor. This functor is obviously a categorical fibration, so
we need to show it is an equivalence of ∞-categories. For this, it suffices to show that the projection Fun(N(∆op

+ ) ×
∆1,X ) → Fun(N(∆op) ×∆1,X ) induces a trivial fibration ActionX → TorX . Since all groupoids are effective in the
arrow ∞-topos Fun(∆1,X ), we have a trivial fibration Fun(∆1,Gpd+(X ))→ Fun(∆1,Gpd(X )) with inverse given by

a functor taking colimits. As we have just verified, a map G
′
+
● → G+

● of groupoid resolutions that is a G+
● -action on G

′
+
●

restricts to a Cartesian transformation of simplicial objects. Conversely, if α ∶ G+
′
● → G+

● is a natural transformation
of colimit diagrams and α∣N(∆op) is a Cartesian transformation, then α is a Cartesian transformation since X is an
∞-topos, that is, the diagram

G+
′

0 G+
′

−1

G+
0 G+

−1

is a pullback square.

Proof of proposition 2.2.1.8. Let G● ∈ Gpd(X ) and let G+
● be a corresponding groupoid resolution, unique up to

contractible ambiguity. We have a diagram

G+
●Action

X/G+−1
G●Tor

r p
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where r restricts along ∆{0,−1} ↪ N(∆op)+ and p is the trivial fibration of proposition 2.2.1.12. We now show that
the functor r is also a trivial fibration. As effective groupoids are right Kan extensions along ∆{0,−1}, the restriction
functor Gpd+(X ) → Eff(X ) ⊂ Fun(∆1,X ) taking values in the full subcategory spanned by effective epimorphisms
is a trivial fibration. Since effective epimorphisms are stable under pullbacks, the functor ev{1} ∶ Eff(X ) → X is a
Cartesian fibration. Let u denote the map G+

0 → G+
−1, then the restriction functor G+

●Action → Eff(X )/u is a trivial
fibration onto the full subcategory Eff ′(X )/u ⊂ Eff(X )/u spanned by pullback squares. Notice that the induced
Cartesian fibration Eff ′(X )/u → X/G+−1

is in fact a right fibration. Indeed, a morphism in Eff ′(X )/u depicted as a

diagram ∆2 ×∆1 → X
X ′ X G+

0

Y ′ Y G+
−1

is ev{1}-Cartesian if and only if the left square is a pullback, but by assumption the right square and large rectangle
are pullbacks. It follows that G+

●Action → X is a right fibration, which is representable because it has a final object,
the tautological G+

● -action on G● itself. This implies that the functor r ∶ G+
●Action(X ) → X/G+−1

is a trivial fibration.
Consequently, we have for each object X ∈ X a canonical equivalence

HomX (X,G−1) ≃ G●Tor(X)

of ∞-categories.

The arguments above also yield the following useful result, that can be used to construct gauge groups for arbitrary
groupoid actions in general ∞-topoi.

Corollary 2.2.1.13. Let X be an ∞-topos and let G● be a groupoid object in X . Then the ∞-category G●Tor is
canonically tensored, cotensored and enriched over X . Moreover, for two G●-torsors P● and P ′

●, the morphism object
in X is given up to equivalence by MapG−1

(P−1, P
′
−1)X , where G−1 is a colimit of the simplicial object G●, and similarly

for P−1 and P ′
−1.

Proof. Let g ∶ X → X/G−1
be a functor taking products with G−1 right adjoint to the right fibration X/G−1

→ X .
Choose a section s of the trivial fibration r ∶ G+

●Action→ X/G−1
and apply proposition 2.2.0.12 to the functor p ○ s ○ g,

where p ∶ G+
●Action → G●Tor is the trivial fibration of proposition 2.2.1.12. The resulting coCartesian fibration

O⊗
p○s○g →MComm⊗ is equivalent to O⊗

g →MComm⊗.

Remark 2.2.1.14. Let G● be a groupoid object in an ∞-topos X , then for any P● ∈ G●Tor, the object MorX (P●, P●) ≃
MapG−1

(P−1, P−1) is a monoid in X . The group object AutG●(P ) obtained by discarding noninvertible morphisms in
MorX (P●, P●)X is familiar when G● is a group object: it is the gauge group of P●. If X = dC∞St, the ∞-topos of
derived C∞-stacks with which this work is concerned and G is a compact smooth Lie group, then P● is represented
by an infinite dimensional manifold modelled on nuclear Fréchet spaces. If G is a noncompact Lie group, then P● is
no longer represented by an infinite dimensional manifold in any reasonable sense, yet P● is still smooth in the sense
that the counit of the adjunction Shv(Mfd)⇆ dC∞St applied to this object is an equivalence.

Let us give one final application of the constructions in this section. There are standard notions of a vector
bundle over an orbifold, and more generally, of a vector bundle groupoid (VB-groupoid) [MM03; Mac05]. If G =
G1 G0

s

t
is a Lie groupoid, then a vector bundle over G consists of a vector bundle π ∶ E → G0 together with

an equivalence

α ∶ s∗(E) ≃Ð→ t∗(E)

of vector bundles over G1. We can think of α as a smooth section of the bundle of homomorphisms Hom(s∗E, t∗E)→
G1, that is, as a family of linear isomorphisms

α(e) ∶ Es(e) Ð→ Et(e),

depending smoothly on the morphisms in G, and we require α to satisfy that

α(x id→ x) ∶ Ex Ð→ Ex

is the identity and if e1, e2 ∈ G1 satisfy s(e1) = t(e2), then

α(e2) ○ α(e1) ∶ Es(e1) Ð→ Et(e1)=s(e2) Ð→ Et(e2)
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is the map α(m(e1, e2)) where m ∶ G1 ×G0 G1 → G1 is the groupoid multiplication. If such an α is given, then the
diagram

s∗E E

G1 G0

π∗s

π∗t○α
π

s

t

commutes and s∗E E is a again a Lie groupoid. We can formulate this in general ∞-topoi for torsors with
base being an arbitrary diagram in X .

Definition 2.2.1.15. Let G● be a groupoid object in an ∞-topos X , let K be a small simplicial set and let U ∶K → X
be a diagram in X . The ∞-category of G●-torsors with base U , denoted G●TorKU and defined up to a contractible
space of choices, is the fibre at U of the functor

Fun(K,G●Tor) Fun(K,X ).○colim

Proposition 2.2.1.16. Let G+
● be a groupoid resolution associated to G●. Then there are canonical equivalences of

∞-categories

G●TorKU ≃ Fun(K,X/G+−1
) ×Fun(K,X) {U} ≃ HomX (colim k∈KU(k),G+

−1) ≃ lim
k∈Kop

G●TorU(k).

Proof. The proof of proposition 2.2.1.8 shows thatG●TorKU is canonically equivalent to the ∞-category Fun(K,X/G+−1
)×Fun(K,X)

{U}, which in turn is isomorphic to the space S = FunK(K,K×XX/G+−1
) of sections of the right fibration K×XX/G+−1

→
K. Let U ∶ K⊳ → X be a colimit diagram extending K, then the space of sections T of the right fibration
K⊳ ×X X/G+−1

→ K⊳ is equivalent to S: indeed, the restriction map T → S is a right fibration whose fibre over a
map K →K ×X X/G+−1

can be identified with the space of lifts

K X/G+−1

K⊳ X

p

U

As U is a colimit diagram and p is a representable right fibration, every such lift is a p-left Kan extension, so the space
of such lifts is contractible. As the inclusion of the cone point {∗}↪K⊳ is right anodyne, the space T is equivalent to
the space FunK⊳({∗},K⊳ ×X X/G+−1

) ≃ HomX (U(∗),G+
−1). For the last equivalence, we note that proposition 2.2.1.8

shows that G●TorKU is canonically equivalent to the ∞-category Fun(K,G+
●Action) ×Fun(K,X) {U}, which in turn is

isomorphic to the space of sections of the right fibration K ×X G+
●Action→K. This space is identified with the limit

of the functor

Kop Ð→ X op G●TorÐ→ S

via [Lur17b], corollary 3.3.3.2

Lemma 2.2.1.17. Let G● be a groupoid object in an ∞-topos X , let K be a small simplicial set and let V ∶K → G●Tor
be a G●-torsor with base U ∶ K → X . Consider the induced functor V ∶ K → G+

●Action, which may be viewed as a
diagram

K⊳ ×N(∆op
+ )Ð→ X .

For each morphism e ∶ ∆1 →N(∆op
+ ), the induced functor K⊳ ×∆1 → X is a Cartesian transformation.

Proof. We need to show that for each morphism e′ ∶ ∆1 → K⊳, the square ∆1 ×∆1 → X induced by V is Cartesian.
This is obvious from fact that ∆1 ×N(∆op

+ )→ X is morphism of G+
● -action objects.

Corollary 2.2.1.18. Let U● and G● be groupoid objects in an ∞-topos X and let V ∶ N(∆op)→ G●Tor be a G-torsor
with base U●. Then for each [n] ∈ N(∆op), the induced functor

V ∶ N(∆op)Ð→ G●Tor
ev{[n]}Ð→ X

is a U●-torsor.
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2.2.2 Grothendieck topologies

We discuss some generalities on Grothendieck topologies and sheaves, taken from [TV04] and [Lur17b].

Definition 2.2.2.1. Let C be an ∞-category, then we say that sieve on C ∈ C is a subobject of j(C) ∈ PShv(C),
where j ∶ C ↪ PShv(C) denotes the Yoneda embedding.
A Grothendieck topology on a small ∞-category consists of a collection of sieves {U ↪ j(C)} for each object C ∈ C,
called covering sieves, such that

(1) j(C)→ j(C) is covering.

(2) If U → j(C) is covering and D → C is any map, then U ×j(C) j(D) is covering on D.

(3) If U → j(C) is a sieve and V → j(C) is a covering sieve, then if for each j(D) → j(C) that factors through V ,
j(D) ×j(C) U is a covering sieve on D, then U is a covering sieve on D.

Let τ be a Grothendieck topology on C, then the full subcategory Shv(C) ⊂ PShv(C) spanned by objects that are
S-local for S the class of covering sieves U → j(C) are sheaves. If C is small so that PShv(C) is presentable, localizing
at the collection of monomorphisms that are covering sieves induces a sheafification functor L ∶ PShv(C) → Shv(C),
which is left exact, so that Shv(C) is an ∞-topos. Conversely, if X ⊂ PShv(C) is a localization obtained by inverting a
strongly saturated class S of morphisms that is stable under pullbacks and generated by a small set of monomorphisms
(so that the class S is topological in the sense of [Lur17b], defn. 6.1.2.4), then X coincides with the ∞-topos Shv(C) for
the Grothendieck topology given by those sieves i ∶ U ↪ j(C) such that Li is an equivalence. It is easy to characterize
the τ -coverings in PShv(C); that is, those maps X → Y of presheaves that become effective epimorphisms after
sheafifying.

Proposition 2.2.2.2. Let C be a small ∞-category equipped with a Grothendieck topology, and let f ∶ X → Y be a
map in PShv(C). Let L denote a sheafification functor, then the following are equivalent.

(1) The map Lf is an effective epimorphism in Shv(C).

(2) For each map j(C) → Y in PShv(C), there exists a collection of morphism {Ci → C} which generate a covering
sieve and a commuting diagram

∐i j(Ci) j(C)

X Y
f

Proof. [Lur17b] lem. 6.2.4.5 gives (2)⇒ (1) when X and Y are sheaves, but the proof also holds for presheaves. For
the converse, factor X → Č(f) → Y as an effective epimorphism followed by a monomorphism and form a pullback
diagram

U j(C)

Č(f) Y

then U → j(C) is a subobject, that is, a sieve on C. After sheafifying, Č(f)→ Y becomes an equivalence, so we deduce
that U is covering as sheafification is left exact. Choose a collection of objects {Ci → C} that generates this sieve (i.e.
each Ci → C factors through U and the map ∐i j(Ci) → U → j(C) exhibits an epi-mono factorization in PShv(C)),
then we should show that the associated map ∐i j(Ci) → U → Č(f) factors through X. But the functors evaluating
on objects of C on presheaves preserve effective epimorphisms as limits and colimits are computed objectwise, so the
map of spaces X(Ci)→ Č(f)(Ci) is a surjection on connected components.

Usually, we will specify a topology on an ∞-category C by giving a collection of morphisms {Uα → j(C)} on
each object C ∈ C that does not necessarily form a subobject of j(C). We can always turn a collection into a sieve
by taking the epi-mono factorization ∐αUα → U → j(C). The following definition gives conditions for when this
procedure produces a Grothendieck topology.

Definition 2.2.2.3. Let C be an ∞-category. A Grothendieck pretopology B on C is the following data.

• For each object C ∈ C, a collection B(C) of families {Uα → C} of morphisms. Such distinguished families will
be called coverings.

These collections are required to satisfy the following conditions.
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(i) For each C ∈ C, the family {id ∶ C → C} is a covering.

(ii) For each map f ∶ C′ → C, and each covering {Uα → C} of C, the pullbacks Uα ×C C′ exist for all α and the
family {Uα ×C C′ → C′} is a covering of C′.

(iii) Let {Uα → C} be a covering, and suppose we are given a covering {Wβα → Uα} for each α. Then the induced
family {Wβα → C} is a covering.

Proposition 2.2.2.4. Let B be a Grothendieck pretopology on an ∞-category C. Consider, for each C ∈ C, the
collection of those sieves U ↪ j(C) that contain a sieve generated by some covering in B(C). Then this collection of
sieves specifies a Grothendieck topology on C.

Proof. We show that the three conditions on covering sieves defining a Grothendieck topology hold. Since for each
C ∈ C, the collection B(C) is nonempty, the maximal sieve j(C)→ j(C) on C is a covering sieve.
Let U → j(C) be a sieve on C, and let {Vα → C} be a covering generating a sieve V ↪ U ↪ j(C). Let f ∶ C′ → C be
any morphism. As colimits are universal and taking pullbacks preserves subobjects, we have an epi-mono factorization

∐α(j(Vα ×C C′)→ V ×j(C) j(C′)→ j(C), so V ×j(C) j(C′)→ j(C) is a covering sieve by (ii). It follows that we have
an inclusion of covering sieves V ×j(C) j(C′)↪ U ×j(C) j(C′)→ j(C).
Now suppose that we have a covering sieve V on C and sieve U on C, and that for each (f ∶ D → C) that factors
through V , the sieve U ×j(C) j(D) is a covering sieve on D. Choose a covering {Vα → C} on C that generates
a sieve contained in V and choose for each Vα a covering family {Wβα → Vα} that generates a sieve contained in
U ×j(C) j(Vα). Now every morphism in the family {Wβα → C} factors through U → j(C), so this sieve is a covering
sieve, by (iii).

Definition 2.2.2.5. Let C be an ∞-category equipped with a Grothendieck topology τ . Let B be a Grothendieck
pretopology, then B induces a Grothendieck topology described by the previous proposition. If this topology is τ , we
say that B is a basis for τ .

The following construction gives another way to express that a Grothendieck topology is determined by a basis.
It asserts that the sheafification procedure only involves covering sieves generated by covering families.

Construction 2.2.2.6. Let C be an ∞-category equipped with a Grothendieck topology and let B be a basis for this
topology. Let Cov(C) be the full subcategory of Fun({1},C) ×Fun({1},PShv(C)) Fun({∆1},PShv(C)) spanned by pairs
(C,U → j(C)) where U → j(C) is a covering sieve. The functor ρ ∶ Cov(C) → C is a Cartesian fibration by (2) of
definition 2.2.2.1. For each C ∈ C, the set B(C) is partially ordered by refinement, and the assignment C ↦ B(C)
determines a functor Cop → Cat∞ (which factors through hC). We let CovFam(C)→ C denote the associated Cartesian
fibration, whose objects are pairs (C,{Uα → C}) where C is an object in C and {Uα → C} a covering family of C.
By sending covering families to the covering sieves they generate, we obtain a fully faithful functor

CovFam(C) Cov(C)

C
ϕ ρ

(C,{Uα → C})↦ (C, τ≤−1(∐ j(Uα)→ j(C)))

preserving Cartesian edges.

Proposition 2.2.2.7. Let C be an ∞-category equipped with a basis for a Grothendieck topology. Then a presheaf
F ∈ PShv(C) is a sheaf for the induced topology if and only if F is local for covering sieves generated by covering
families.

Proof. It follows from proposition 2.2.2.4 that B induces a Grothendieck topology τ . Let S denote the class of covering
sieves for τ and let S′ ⊂ S denote the collection of sieves generated by covering families, and let S and S′ denote
their respective strong saturations. We clearly have S′ ⊂ S. For the other inclusion, we need to show that S ⊂ S′. We
claim that it suffices to show that for any map X → j(C) in PShv(C) and any covering sieve V → j(C) generated by
a covering family, the pullback X ×j(C) V →X lies in S′. Suppose this is the case, then we note that for any map of
subobjects V ↪ U → j(C) the pullback diagram

V U

V j(C)

guarantees that V → U lies in S′ if V is generated by a covering family. Since S′ has the 2-out-of-3 property,
U → j(C) also lies in S. To prove the claim, we use that colimits are universal in PShv(C) and that any X ∈ PShv(C)
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is generated under colimits by a representables, so that the map X ×j(C) V → X is a colimit of maps of the form

j(C′)×j(C) V → j(C′). Any such map is a sieve generated by a covering family, by (ii) of definition 2.2.2.3. As S′ is
stable under colimits of arrows, we conclude.

Definition 2.2.2.8. Let f ∶ C → D be a functor between small ∞-categories equipped with Grothendieck pretopolo-
gies. We say that this functor is covering-preserving if

(1) For every covering family {Ui → C}, f preserves pullbacks along each Ui → C.

(2) Each covering family {Ui → C} in C, the family {f(Ui)→ f(C)} is a covering.

Remark 2.2.2.9. It’s easy to see that if f is covering-preserving, then the pullback f∗ ∶ PShv(D)→ PShv(C) carries
sheaves to sheaves, since in this case f carries (−1)-truncations of covering families to (−1)-truncations of covering
families (we refrain from calling such functors continuous; this terminology is reserved for functors commuting with
filtered colimits).

Example 2.2.2.10. Given any topology τ on an ∞-category C, there is a maximal basis for τ , whose covering
families are those families of morphisms that generate a covering sieve.

Example 2.2.2.11. Let C be an ∞-category and let B be a pretopology on C. Then we say that B is finitary if
each covering family has a finite refinement. Given any pretopology B, there is an associated finitary pretopology B
such that the identity functor C → C, where the first copy of C is endowed with B′ and the second copy with B, is
covering-preserving: say that a family {fi ∶ Ui → C}i∈I lies in B′(C) if it lies in B(C) and I is finite. Conditions (i)
through (iii) are obvious.

Remark 2.2.2.12. If B is finitary, the associated ∞-topos is locally coherent in the sense of [Lur11c], definitions 3.1
and 3.12; that is, for each sheaf X ∈ Shv(C) there is an effective epimorphism ∐i Fi → X, such that the sheaves Fi
belong to the collection of sheaves F ∈ Shv(C) satisfying the following.

(0) F is quasi-compact : for effective epimorphism of the form ∐i∈I Gi → F there is a finite subset I ′ ⊂ I such that

∐i∈I′ Gi → F is still an effective epimorphism.

(1) For each morphism F ′ → F , the object F ′ admits a cover ∐j∈J Vj → F ′ by quasi-compact objects Vj , and the
collection of all quasi-compact objects in Shv(C)/F is stable under products in Shv(C)/F .

(2) For each morphism F ′′ → F , the object F ′′ admits a cover ∐j∈J′ V
′
j → F ′′, by object V ′

j that satisfy (0) and
(1) with F replaced by V ′

j and the collection of such objects satisfying (0) and (1) is stable under products in
Shv(C)/F .

(3) . . .

(i) For each morphism F ′′′ → F , the object F ′′′ admits a cover ∐j∈J′′ V
′′
j → F ′′′, by object V ′′

j that satisfy (0)
through (i− 1) with F replaced by V ′′

j and the collection of such objects satisfying (0) through (i− 1) is stable
under products in Shv(C)/F .

(> i) etc.

Sheaves F satisfying (0) through (n) above are said to be n-coherent.

We will often use the following elementary yet useful principle.

Proposition 2.2.2.13. Let f ∶ C → C′ be a covering-preserving functor between ∞-categories equipped with Grothendieck
topologies, and denote by f∗ ∶ PShv(C′) → PShv(C) the functor induced by composing with f , which descends to a
functor f∗ ∶ Shv(C′)→ Shv(C)

(1) If for each α ∶ F → F ′ that exhibits F ′ as a sheafification of F in PShv(C′), the map f∗(α) exhibits a sheafification,
then f∗ preserves colimits and admits a right adjoint.

(2) Suppose that f is fully faithful and that both the topology on C and C are subcanonical. If the condition in (1) is
satisfied, then the left adjoint f! and the right adjoint f∗ to f∗ are fully faithful.

Proof. To prove (1), it suffices to show that f∗ preserves colimits, in view of the adjoint functor theorem. Let
q ∶ K⊳ → Shv(C′) be a colimit diagram, then q is of the form L′ ○ q′ for q′ ∶ K⊳ → PShv(C′) a colimit diagram, where
q′∣K = q∣K and L′ ∶ PShv(C′)→ Shv(C′) is a sheafification functor. We have a natural equivalence f∗○L′○q′ ≃ L○f∗○q′,
where L is a sheafification functor on PShv(C). Since both f∗ ∶ PShv(C′) → PShv(C) and L ∶ PShv(C) → Shv(C)
preserve colimits, we are done.
For (2), we first show that the unit id → f∗f! is an equivalence. Point (1) grants that f∗f! preserves colimits, so
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using [Lur17b], prop. 4.3.2.15 we deduce that the full subcategory D ⊂ Shv(C) spanned by those sheaves F such that
F → f∗f!F is an equivalence, is stable under small colimits. Now we conclude by observing that under the hypothesis
that the pretopologies are subcanonical, the image of the Yoneda embedding j ∶ C ↪ Shv(C) lies in D. We have a pair
of adjunctions (f! ⊣ f∗ ⊣ f∗) and an induced adjunction (f∗f! ⊣ f∗f∗). Since f∗f! is homotopic to the identity via
the unit, f∗f∗ is homotopic to the identity via the counit, so it follows that f∗ is also fully faithful.

Remark 2.2.2.14. Let Site be the category whose objects are pairs (C,B) of a small idempotent complete ∞-category
C together with a Grothendieck pretopology on C, and whose morphisms are equivalence classes of covering-preserving
functors, then we have an obvious forgetful functor Site→ hCat∨∞, where Cat∨∞ is the full subcategory of Cat∞ spanned
by idempotent complete ∞-categories. The ∞-category of sites denoted Site is the pullback Cat∨∞ ×hCat∨∞ Site. The
forgetful functor Site→ Cat∨∞ is a Cartesian fibration and the fibre over each small idempotent complete ∞-category
C can be identified with the partially ordered set of pretopologies on C. Let PrL

ccont be the subcategory containing
all objects whose morphisms are completely continuous functors, that is, those functors that preserve small colimits
and carry completely compact objects to completely compact objects. The construction C ↦ PShv(C) determines
a functor Cat∨∞ → PrL that factors fully faithfully through the subcategory PrL

ccont, so we can identify Cat∨∞ with a
certain (non full) subcategory χ ⊂ PrL and we have a Cartesian fibration Site→ χ. Unwinding the definitions, we see
that Site is equivalent to the nerve of the fibrant simplicial category whose objects are pairs (PShv(C),B) where B is
a pretopology on the idempotent complete ∞-category C. The Kan complex of morphisms

HomSite((PShv(C),B), (PShv(D),E))

is the union of those connected components of Hom
Ĉat

∆
∞
(PShv(C),PShv(D)) spanned by functors f! ∶ PShv(C) →

PShv(D) that are left Kan extensions of functors of the form C f→ D ↪ PShv(D) such that f is covering-preserving. It
follows that the spaces of morphisms of ∞-category Siteop is the union of connected components of Hom

Ĉat
∆
∞
(PShv(C),PShv(D))

spanned by functors f∗ ∶ PShv(D)→ PShv(C) obtained as the pullback of some covering-preserving functor f ∶ C → D.
Consider the functor Sys ∶ hĈat

op

∞ → Poset carrying an ∞-category D to the partially ordered set of systems (lluf
subcategories of hD) on D (see [Lur17a], section 4.1.8) which is classified by a Cartesian fibration WĈat∞ → Ĉat∞.
We can identify The assignment B ↦ S carrying a pretopology on C to the strong saturation of the class of covering
sieves in PShv(C) is a natural transformation hPretop→ Sys that corresponds via unstraightening to a diagram

Site Wχ

χ

p q

where the horizontal functor takes p-Cartesian edges to q-Cartesian edges. The functor q admits a section sending
an ∞-category D to the system containing only the equivalences of D, and this section has a left adjoint that
sends a pair (D,W ) to the localization D[W −1]. By construction of the functor Siteop → WĈat∞, the composition
Siteop →WĈat∞ → Ĉat∞ factors through PrR, so we obtain a functor

Shv( ) ∶= SiteÐ→ PrL

informally given by the formula (C,B)↦ ShvB(C). Beware that Shv( ) need not send covering-preserving functors to
algebraic morphisms.

2.2.3 n-Topoi and localic ∞-topoi

The class of n-topoi is extrinsically defined as containing the ∞-categories that come about as left exact localizations
of (n−1)-truncated presheaves on small ∞-categories. There are more intrinsic characterization as well in the form of
Giraud axioms and descent conditions for n-topoi, summarized as [Lur17b], theorem 6.4.1.5. We record the following
∞-categories.

• The subcategory LTopn ⊂ Ĉat∞ whose objects are n-topoi, and whose morphisms are functors that are left
exact and admit a right adjoint. Such morphisms between ∞-topoi will be called algebraic morphisms. For
X ,Y ∈ LTopn, the full subcategory of Fun(X ,Y) spanned by algebraic morphisms is denoted Fun∗(X ,Y).

• The subcategory RTopn ⊂ Ĉat∞ whose objects are n-topoi, and whose morphisms are functors that admit a
left exact left adjoint. Morphisms in RTop will be called geometric morphisms. For X ,Y ∈ LTopn, the full
subcategory of Fun(Y,X ) spanned by geometric morphisms is denoted Fun∗(Y,X ). The ∞-categories RTopn
and LTopn are canonically antiequivalent, and the ∞-categories Fun∗(X ,Y) and Fun∗(Y,X ) are canonically
equivalent.
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[Lur17b], theorem 6.4.1.5 in particular implies that taking full subcategories of (n − 1)-truncated objects induces a
functor

RTop
τ≤(n−1)Ð→ RTopn.

This functor admits a fully faithful right adjoint that embeds the ∞-category of n-topoi into the ∞-category of
∞-topoi. The essential image of this embedding is characterized as follows.

Definition 2.2.3.1. Let n ∈ Z≥0. An ∞-topos X is n-localic if for every ∞-topos Y, the canonical map

Fun∗(Y,X )Ð→ Fun∗(τ≤(n−1)Y, τ≤(n−1)X )

is an equivalence of ∞-categories.

For any n-topos X , there exists an n-localic ∞-topos Y together with an equivalence g∗ ∶ τ≤nY → X such that for
each ∞-topos Z, taking (n − 1)-truncated objects and composing with g∗ induces an equivalence

Fun∗(Z,Y)Ð→ Fun∗(τ≤(n−1)Z,X ).

Using [Lur17b], theorem 6.4.1.5, we may assume that there is a small n-category C that admits finite limits equipped
with a Grothendieck topology such that X ≃ Shv(n−1)(C), the ∞-category of (n−1)-truncated sheaves on C. Then the
associated n-localic ∞-topos is simply Shv(C) and the equivalence g∗ is the identity. This construction determines
a collection of counit transformations (which are equivalences) yielding the fully faithful right adjoint to the functor
τ≤n. We denote this right adjoint by υn:

RTop RTopn.
τ≤n

υn

Recall (from [MM92] for instance) that taking set-valued sheaves on topological spaces furnishes an equivalence of
categories between sober topological spaces and spatial locales. Let SobSp be the category of sober topological spaces,
then by composing υn we have in particular a fully faithful inclusion

N(SobSp) ↪Ð→ RTop,

which coincides with the functor Shv( ) of the previous subsection, restricted to locales. We have the following
important stability result for n-localic ∞-topoi.

Proposition 2.2.3.2. Let X be an n-localic ∞-topos and let U ∈ X be an object. Then the following are equivalent.

(1) X/U is n-localic.

(2) U is n-truncated.

Proof. This is lemma 2.3.16 of [Lur11b].

Being n-localic is not a local property of ∞-topoi, but we nevertheless have the following useful characterization.

Proposition 2.2.3.3. Let X be an ∞-topos, then the following are equivalent for all n ∈ Z≥0 .

(1) X is n-localic.

(2) X is equivalent to the ∞-category of sheaves on an n-category that admits finite limits equipped with a Grothendieck
topology.

(3) There exists a collection of (n − 1)-truncated objects Uα ∈ X determining an effective epimorphism ∐αUα → 1X
such that X/Uα is n-localic for all α.

Proof. If X is n-localic, then the unit map π∗ ∶ X → Y of the adjunction constructed above is an equivalence (this
map is the n-localic reflection). The construction shows that Y is of the form Shv(C) for C an n-category that admits
finite limits. The converse follows from [Lur17b], lem. 6.4.5.6. The implication (1) ⇒ (3) is immediate. For the
reverse implication, we will show that the canonical geometric morphism

π∗ ∶ X Ð→ Y = υn(τ≤(n−1)X )

to the n-localic reflection is an equivalence. Choose a collection of (n − 1)-truncated objects Uα such that X/Uα is
n-localic for all n. Since the adjoint π∗ induces an equivalence of n-topoi τ≤(n−1)Y → τ≤(n−1)X , the objects Uα are of
the form π∗Wα for a collection of objects Wα ∈ Y. Moreover, the map h ∶∐αWα → 1Y is an effective epimorphism. To
see this, we note that if we factorize h as ∐αWα → W̃ → 1Y , an effective epimorphism followed by a monomorphism
in Y, then we also have such a factorization ∐αUα → π∗(W̃ ) → 1X so that π∗(W̃ ) ≃ 1X . Since W̃ and π∗(W̃ ) are
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(−1)-truncated, and π∗ is an equivalence on (n − 1)-truncated objects, we also have W̃ ≃ 1Y . We now show that for
each α, the algebraic morphism

π∗∣Wα ∶ Y/Wα Ð→ X/Uα

is an equivalence. By assumption, X/Uα is n-localic and Y/Wα is n-localic by proposition 2.2.3.2; thus it will suffice
to show that π∗∣Wα induces an equivalence on (n− 1)-truncated objects. As Wα and Uα are (n− 1)-truncated and Y
is an n-localic reflection, we have equivalences

τ≤(n−1)(Y/Wα) ≃ τ≤(n−1)Y/Wα ≃ τ≤(n−1)X/Uα ≃ τ≤(n−1)(X/Uα),

the composition being induced by π∗∣Wα . This finishes the proof as the conditions of lemma 2.2.0.10 for the functor
π∗ are satisfied.

Warning 2.2.3.4. In classical topos theory, a 1-topos X is by definition localic if X is generated under colimits
by subobjects of the unit object [MM92]. The obvious generalization of this definition to n-topoi is adequate for
n <∞ but breaks down for ∞-topoi. On the one hand, an n-localic ∞-topos is clearly generated under colimits by its
(n−1)-truncated objects, but the converse is false in general; indeed, consider the hypercompletion of the ∞-category
of sheaves on the Hilbert cube H (see [Lur17b], sections 6.5.3 and 6.5.4). This ∞-topos is generated under colimits
by its (−1)-truncated objects, but the hypercompletion L ∶ Shv(H)→ Ŝhv(H) is the 0-localic reflection.

2.2.4 Simplicial homotopy theory in ∞-topoi

To any object X in an ∞-topos X , one associates homotopy sheaves in the underlying discrete topos Disc(X ) by the
0’th truncation of the morphism XSn → X, using the cotensoring of X over S. These homotopy sheaves have the
same properties as do homotopy groups of spaces; in particular, we can define homotopy sheaves for maps f ∶X → Y
of objects in X ; we say that a map is n-connective if f is an effective epimorphism and πk(f) is final for 0 ≤ k < n.
For any n ≥ 0 the classes of n-connective and n-truncated objects form a factorization system. In the case n =∞, the
class right orthogonal to ∞-connective morphisms does not necessarily consist only of equivalences. For any ∞-topos
X , the hypercompletion is the accessible left localization L∧ ∶ X → X ∧ by the set S∧ of ∞-connective maps ([Lur17b],
6.5.2.8). The S∧-local objects (those objects that have the property that for maps between them, Whitehead’s
theorem holds), are intimately related to objects in X that satisfy a stronger descent property.

Definition 2.2.4.1. Let X be an ∞-topos, then we say that an augmented simplicial object C● in X with augmen-
tation map C0 → C−1 =X is a hypercover if the unit map Cn → coskn−1C● is an effective epimorphism for all n ≥ 0.
Let C be a small ∞-category equipped with a Grothendieck topology τ , then we say that an augmented simplicial
object C● in PShv(C) with augmentation map C0 → C−1 = j(C) is a semi-representable hypercover if each Cn is a small
coproduct of representables and if the unit map Cn → coskn−1C● is a τ -covering (i.e. a map that becomes an effective
epimorphism after localization). An augmented simplicial object C● in ShvC is a semi-representable hypercover if it
is a hypercover and Cn is a small coproduct of sheafified representables.
A presheaf F on X is a hypersheaf or satisfies hyperdescent if F satisfies descent with respect to hypercovers.

To explain what these stricter sheaf conditions have to do with ∞-connectiveness, we make the following obser-
vation.

Lemma 2.2.4.2. A map f ∶X → Y in an ∞-topos X is ∞-connective if and only if the matching map

fn ∶X Ð→XSn ×Y Sn Y

is an effective epimorphism for all n ≥ 0.

Proof. The truncation of the map XSn ×Y Sn Y → X in X/X yields the object πn(f). The maps fn are effective
epimorphisms if and only if their 0’th truncations are effective epimorphisms. We can view fn as a map in X/X , then
after taking the 0’th truncation, we have a map 1Disc(X/X) → πn(f) which is an equivalence of discrete sheaves over
X for all n if and only if f is ∞-connective.

Let X → Y be map of sheaves in Shv(C). This map is an equivalence if and only if the map X(C) →
(XSn ×Ysn Y ) (C) of spaces is an effective epimorphism for all objects C ∈ C. However, if f is an ∞-connective

map between sheaves, this condition is not necessarily satisfied, since we cannot lift maps j(C) → XSn ×Ysn Y to
X; we can only find a covering of C that lifts. Crucially though, by iterating (in a suitable sense) the procedure of
passing to coverings, we can construct a (semi-representable) hypercover of C that lifts to X. Thus, if X sees all such
hypercoverings as effective, the map X → Y is an equivalence after all. This result is due to Dugger-Hollander-Isaksen
and Toën-Vezzosi:
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Proposition 2.2.4.3 ([DI04; TV04]). Let C be a small ∞-category equipped with a Grothendieck topology. Then the
hypercompletion of Shv(C) can be identified with the full subcategory of PShv(C) of S-local objects for S any of the
following collections of morphisms.

(1) The collection of morphisms f ∶ X → Y that induces an equivalence on all homotopy sheaves (equivalently, the
morphisms that become ∞-connective after sheafifying with respect to the topology)

(2) The collection of morphisms f ∶X → Y of the form ∣C●∣→ Y for C● a hypercover of Y .

(3) The collection of morphisms f ∶X → Y of the form ∣C●∣→ j(C) for C● a semi-representable hypercover of j(C).

(4) The collection of morphisms f ∶ X → Y of the form ∣C●∣ → j(C) for C● a semi-representable hypercover of j(C)
where each Cn is a τ -small coproduct of representables for τ a sufficiently large regular cardinal.

Proof. Choose, using [Lur17b], prop. 5.4.7.4, an uncountable regular cardinal τ such that C is τ -small and the full
subcategory PShvτ(C) ⊂ PShv(C) spanned by τ -compact objects is stable under finite limits. According to [Lur17b],
prop. 5.3.4.7, every τ -compact object Z of PShv(C) is a retract of a τ -small colimit of representables, so using that
every representable object of PShv(C) is completely compact, we deduce that Z(C) is a τ -small space for each object
C ∈ C. The full subcategory Fun(N(∆op)⊳,PShvτ(C)) ⊂ Fun(N(∆op)⊳,PShv(C)) spanned by augmented simplicial
objects with τ -compact simplices is essentially small. Consider the full subcategory D ⊂ Fun(N(∆op)⊳,PShvκ(C))
spanned by augmented simplicial sets that are semi-representable hypercovers C● of representable objects, and choose
for each homotopy class of objects [C●] in hD a colimit ∣C●∣→ j(C′). Denote by S the collection of all such maps, which
is a small set, then it follows from [Lur17b], prop. 5.5.4.15 that the subcategory inclusion S−1PShv(C) ⊂ PShv(C) is an
accessible localization. Since every hypercover determines an ∞-connective morphism, all hypercomplete objects in
PShv(C) satisfy hyperdescent, so we have an inclusion Shv∧(C) ⊂ S−1PShv(C), corresponding to the localization at the
first and fourth collections of morphisms described in the proposition. The second and third collection lie in between
these two, so in order to prove the proposition, it suffices to prove the reverse inclusion S−1PShv(C) ⊂ Shv∧(C). We
show that the unit X → LX of the hypercompletion is an equivalence whenever X satisfies hyperdescent. Note that
since ∞-connective morphisms form a strongly saturated collection, the map X → LX is ∞-connective. We will show
more generally that every ∞-connective morphism between S-local objects is an equivalence. Let f ∶X → Y be such
a morphism, then we are required to show that for every C ∈ C and all n ∈ Z≥0, the map X(C) → XSn ×Y Sn Y (C)
is an effective epimorphism of spaces. If f ∶ X → Y is ∞-connective, then so are all the maps X → XSn ×Y Sn Y ,
so we may replace XSn ×Y Sn Y by Y , and it is sufficient to show that X(C) → Y (C) is surjection on connected
components. Now we build a hypercover in D of the object j(C) compatible with the map f ∶ X → Y using Reedy
methods (also known as an Artin-Mazur argument in this case [AM69]). We inductively define a sequence of functors
gn ∶ N(∆≤n)op → PShv(C)/j(C) for all n ≥ 0, together with a sequence of natural transformations αn ∶ gn →Xn, where
Xn ∶ N(∆≤n)op → PShv(C)/Y is the constant n-truncated simplicial object on X. We require that gn satisfies the
following conditions.

(1) For n ≥ 0, let Ln(g) denote then n’th latching object, given by the colimit of composite functor

N(∆≤n−1)op ×N(∆)op N(∆[n]/)op Ð→N(∆≤n−1)op gn−1Ð→ PShv(C)/j(C),

which has a canonical map Ln(g) → gn([n]). We require that there exists an object Vn ∈ PShv(C) which is a
τ -small coproduct of representables and a map Vn → gn([n]) such that the induced map Vn∐Ln(g) → gn([n])
is an equivalence.

(2) For n ≥ 0 let Mn(g) denote the n’th matching object, given by the limit of the composite functor

N(∆≤n−1)op ×N(∆)op N(∆/[n])op Ð→N(∆≤n−1)op gn−1Ð→ PShv(C)/j(C),

which has a canonical map gn([n]) → Mn(g) in PShv(C)/j(C), and we require that this map is an effective
epimorphism.

We construct this sequence by induction: for n = 0, we take a covering sieve of C, necessarily generated by τ -small set
of maps {Ci → C}, such that each map Ci → Y factors through X, and set g0([0]) =∐i j(Ci). We have a commuting
square

∐i j(Ci) j(C)

X Y

in PShv(C) which determines a natural transformation g0 → X0 of functors ∆0 ≅ N(∆≤0)op → PShv(C)/Y . Now let
n ≥ 1 and suppose that gm and αm ∶ gm → Xm have been constructed for m < n. To construct gn and αn, we use
[Lur17b], prop. A.2.9.14 to conclude that it suffices to provide the following data:
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(i) An object Vn which is a τ -small coproduct of representables.

(ii) An effective epimorphism g ∶ Vn →Mn(g) in PShv(C).

(iii) Let Mn(X) denote the n’th matching object of X, given by the limit

N(∆≤n−1
/[n] )op Ð→N(∆≤n−1)op

Xn−1Ð→ PShv(C)/Y ,

and note that the canonical map X →Mn(X) may be identified with the map X →XSn ×Y Sn Y . The natural
transformation αn−1 determines a map M ′

n(g) → Mn(X), where M ′
n(g) is the matching object of gn−1 taken

in PShv(C)/Y , and the right fibration PShv(C)/j(C) → PShv(C)/Y determines a map Mn(g) → M ′
n(g). The

effective epimorphism from (ii) may be composed with these maps to produce a map Vn →Mn(X). Then we
require the existence of a lift Vn →X fitting into a 2-simplex

X

Vn Mn(X).

in PShv(C) (such a simplex will automatically extend to a 2-simplex in PShv(C)/Y because PShv(C) is an
∞-category).

By induction, the matching object Mn(g) is a finite limit τ -compact objects and therefore also τ -compact. It follows
that the domain of the effective epimorphism

∐
C′∈C

∐
π0(Mn(g)(C′))

j(C′)Ð→Mn(g)

is a coproduct of representables indexed by a τ -small set. Using that X → Mn(X) is an effective epimorphism, we
can choose for each summand j(C′) → Mn a τ -small collection {C′

i → C′} generating a covering sieve such that
each composition j(C′

i) → Mn(g) → Mn(X) factors through X. Taking the (τ -small) coproduct over all j(C′
i) for

all C′ ∈ C, we obtain an object Vn which satisfies the required conditions. This concludes the construction of the
hypercover. By construction, we have a commuting diagram

colim
[n]∈N(∆op)

gn([n]) j(C)

X Y

where the upper horizontal map is equivalent to one in S. Since X and Y are S-local, we conclude.

Remark 2.2.4.4. An ∞-topos has enough points if all the functors X → S in LTop are jointly conservative. By
(strictly) decreasing strength, we have the following conditions on an ∞-topos.

(1) X has enough points.

(2) Postnikov towers converge in X .

(3) X is hypercomplete.

If X is locally coherent (think locally compact space) and hypercomplete, then X has enough points, by the Lurie-
Deligne completeness theorem. If X is locally of homotopy dimension ≤ n, then Postnikov towers converge in X . If
X = Shv(X), the ∞-topos of sheaves on a space, then X has enough points if X is locally of homotopy dimension ≤ n,

Remark 2.2.4.5 (Godement resolution). Let X be an ∞-topos and X ∈ X an object. If there exists a space K ∈ S, a
geometric morphism p∗ ∶ S → X (i.e. a point), and an equivalence X ≃ p∗K, then we say that X is a skyscraper object
(at p). Let Sky

∏
(X ) ⊂ X be the smallest full subcategory stable under finite products that contains all skyscraper

objects. The functor Skyop
∏
↪ X op extends to a colimit preserving functor Ψ ∶ Funπ(Sky

∏
,S) → X op. Then it can be

shown that the functor Ψ is essentially surjective if and only if X has enough points.

We have looked in some detail at 1-groupoid objects and their spaces of torsors in ∞-topoi. In the remainder of
this subsection, we will study n-groupoids internal in some ∞-topos.

55



Notation 2.2.4.6. Let C be an arbitrary ∞-category and let X● ∶ N(∆op) → C be a simplicial object in C, then we
denote by XK

● the matching object
XK
● ∶= lim

(∆n→K)∈N(∆op)K/
Xn,

provided this limit exists. Consider the faithful inclusion i ∶ N(∆)nd
/K ↪ N(∆)/K on the nondegenerate simplices in

K and assume that every face of every nondegenerate simplex is nondegenerate, then the Eilenberg-Zilber lemma
implies that i has a left adjoint and is therefore left cofinal. In this case, it follows, for instance, that if C has finite
limits, the object XK

● exists if K is a finite simplicial set.
Suppose that for some fixed simplicial set K and simplicial object X● in C, all the matching objects XK×∆n

● exist
in C. Then we denote by [K,X●]● ∈ Fun(N(∆op),C) the simplicial object whose n-simplices are given by the object

XK×∆n

● and whose face and degeneracy operators are the ones induced from the canonical cosimplicial simplicial set
∆↪ Set∆.

Remark 2.2.4.7. If C has all small limits, it is not very difficult to enhance the assignment (K,X●) ↦ [K,X●]● to
the data of a tensoring of Fun(N(∆op),C)op over the Cartesian monoidal category Set∆.

It is proven in [Lur17b], prop. 6.1.2.6 that a simplicial object U● is a groupoid if and only if for every n ≥ 2 and

0 ≤ i ≤ n, the map Un → U
Λni
● is an equivalence. The following definition is essentially due to Duskin and Glenn.

Notation 2.2.4.8. Recall that a semitopos is a presentable ∞-category X such that colimits are universal in X , and
the Čech nerve of any morphism in X determines an effective groupoid. In a semitopos, effective epimorphisms and n-
truncated morphisms are stable under the formation of pullbacks. Moreover, equivalences and effective epimorphisms
are reflected by pullback functors along effective epimorphisms.

Definition 2.2.4.9. Let X be a semitopos.

(1) Let n ∈ Z>0 ∪ {∞}. A morphism f ∶X● → Y● of simplicial objects in X is an n-fibration if f satisfies the following
conditions.

• For all m ≥ 1 and all 0 ≤ i ≤m, the natural map Xm →X
Λmi
● ×

Y
Λm
i

●
Ym is an effective epimorphism.

• For k > n, the natural map Xk → X
Λki
● ×

Y
Λk
i

●
Yk is an equivalence. Note that for n =∞, this condition does

not apply.

We call an ∞-fibration simply a fibration. A simplicial object X● is an n-hypergroupoid if the map X● → ∗ to
a final object is an n-fibration. We denote by Gpdn(X ) the full subcategory of Fun(N(∆op

+ ),X ) spanned by
n-hypergroupoids.

(2) Let n ∈ Z≥0 ∪ {∞}. A morphism f ∶X● → Y● of simplicial objects is a trivial n-fibration if f satisfies the following
conditions.

• For all m ≥ 0, the natural map Xm →X∂∆m

● ×Y ∂∆m
●

Ym is an effective epimorphism.

• For k ≥ n, the natural map Xk → X∂∆k

● ×
Y ∂∆k
●

Yk is an equivalence. Note that for n = ∞, this condition

does not apply.

We call a trivial ∞-fibration simply a trivial fibration, or a hypercover. A simplicial object X● is a trivial n-
hypergroupoid if the map X● → ∗ to a final object is a trivial n-fibration.

Example 2.2.4.10. For n = 1 and X a semitopos, an n-hypergroupoid is simply a groupoid object in X . If G● is
a groupoid object in an ∞-topos X and G′

● is a G●-torsor, then the map G′
● → G● is a 1-fibration. For m > 1, we

clearly have that

G
′
m Ð→ G

′Λmi
● ×

G
Λm
i

●
Gm

is an equivalence since both Gm → G
Λmi
● and G

′
m → G

′Λmi
● are equivalences. For m = 1, the maps G′

1 → G′
0 ×G0 G1 are

equivalences, so in particular effective epimorphisms.

We study n-hypergroupoids and n-fibrations in ∞-topoi for some finite n. The following easy lemma summarizes
the elementary consequences of the definition of (trivial) n-fibrations in semitopoi.

Lemma 2.2.4.11. Let X be a semitopos.

(1) If f ∶X● → Y● is a trivial n-fibration, then f is an n-fibration.
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(2) If f ∶X● → Y● is a trivial fibration and an n-fibration and X is an ∞-hypergroupoid, then f is a trivial n-fibration.

(3) For any n ∈ Z≥0 ∪ {∞}, the classes of n-fibrations and trivial n-fibrations are stable under compositions in
Fun(N(∆op),X ).

(4) Let ∆2 → Fun(N(∆op),X ) be a diagram depicted as

Y●

X● Z●

gf

h

and suppose all maps are fibrations. Then if g is an n-fibrations, f is an n-fibration if and only if h is an
n-fibration. The same result holds for trivial fibrations.

(5) For any n ∈ Z≥0 ∪ {∞}, the classes of n-fibrations and trivial n-fibrations are stable under the formation of
pullbacks in Fun(N(∆op),X ).

Proof. (1) We should show that the map

Xm Ð→X
Λmi
● ×

X
Λm
i

●
Ym

is an effective epimorphism for all m and an equivalence for m > n. The pushout ∂∆m = Λmi ∐∂∆m−1 ∆m−1 yields
a pullback diagram

X∂∆m

● ×Y ∂∆m
●

Ym Xm−1

X
Λmi
● ×

Y
Λm
i

●
Ym X∂∆m−1

● ×
Y ∂∆m−1
●

Ym−1

By hypothesis, the right vertical map is an effective epimorphism and for m > n an equivalence. Since we have a
factorization

Xm Ð→X∂∆m

● ×Y ∂∆m
●

Ym Ð→X
Λmi
● ×

Y
Λm
i

●
Ym

and the first map is an effective epimorphism and for m ≥ n an equivalence, we conclude.

(2) We should show that the map

Xm Ð→X∂∆m

● ×Y ∂∆m
●

Ym

is an equivalence for m ≥ n. Consider again the composition

Xm
αÐ→X∂∆m

● ×Y ∂∆m
●

Ym
βÐ→X

Λmi
● ×

Y
Λm
i

●
Ym.

For m ≥ n + 1, this composition is an equivalence. Since the map α is an effective epimorphism, both maps are
equivalences. For the remaining case m = n we consider again the pullback diagram

X∂∆n+1

● ×
Y ∂∆n+1
●

Yn+1 Xn

X
Λn+1
i

● ×
Y

Λn+1
i

●
Yn+1 X∂∆n

● ×Y ∂∆n
●

Yn

β

γ

ζ

θ

The left vertical map β is an equivalence as was just proven, and the right vertical map ζ is an effective epimor-
phism because f is a hypercover. We note that the composition

Xn+1
αÐ→X∂∆n+1

● ×
Y ∂∆n+1
●

Yn+1
γÐ→Xn

is an effective epimorphism because the face map ∆n → ∆n+1 is anodyne, so it follows that γ is an effective
epimorphism as well. Thus, ζ ○ γ is an effective epimorphism, so the lower horizontal map θ is one as well. Since
β is an equivalence, the right vertical map ζ is also an equivalence, by [Lur17b], lem. 6.2.3.16.
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(3) Let ∆2 → Fun(N(∆op),X ) be a diagram of simplicial objects depicted as

Y●

X● Z●

gf

h

and suppose that g and f are n-fibrations. The map

Xm Ð→X
Λmi
● ×

Z
Λm
i

●
Zm

factorizes as
Xm Ð→X

Λmi
● ×

Y
Λm
i

●
Ym Ð→X

Λmi
● ×

Z
Λm
i

●
Zm.

The first map is an effective epimorphism and for m > n an equivalence. The second map fits into a pullback
diagram

X
Λmi
● ×

Y
Λm
i

●
Ym Ym

X
Λmi
● ×

Z
Λm
i

●
Zm Y

Λmi
● ×

Z
Λm
i

●
Zm

where the right vertical map is an effective epimorphism and for m > n an equivalence. The same argument
applies for trivial n-fibrations.

(4) We need to show that for k > n, the first map in the diagram

XkÐ→XΛki
● ×

Y
Λk
i

●
Yk Ð→X

Λki
● ×

Z
Λk
i

●
Zk

is an equivalence if and only the composition is an equivalence, but the second map is a pullback of an equivalence
by assumption. The same argument applies for trivial n-fibrations.

(5) Let Z● → Y● be an arbitrary map between simplicial objects in X , and let X● → Y● be an n-fibration. We are
required to show that the map

Xm ×Ym Zm Ð→X
Λmi
● ×

Y
Λm
i

●
Z

Λmi
● ×

Z
Λm
i

●
Zm ≃XΛmi

● ×
Y

Λm
i

●
Zm

is an effective epimorphism and for m > n an equivalence. Consider the following diagram

Xm ×Ym Zm X
Λmi
● ×

Y
Λm
i

●
Zm Zm

Xm X
Λmi
● ×

Y
Λm
i

●
Ym Ym

X
Λmi
● Y

Λmi
●

α

in which all squares are pullbacks. Since the indicated map α is an effective epimorphism and for m > n an
equivalence, we conclude. The same argument shows that trivial n-fibrations are stable under the formation of
pullbacks.

Now we will give some results showing that fibrations and trivial fibrations behave well with respect to the
geometric realization functor. The common idea in the proofs below is to use Boolean localization [Jar15] to reduce
to the case X = S, where the results are amenable to elementary bisimplicial homotopy theory. To facilitate this
strategy, we recall that the diagonal of a bisimplicial set X●● is weakly equivalent to the homotopy colimit of the
simplicial diagram [n] ↦ Xn● (or of the diagram [n] → X●n). We will need a functorial version of this fact. The

diagonal functor ∆∗ ∶ Fun(∆op,SetC
op

∆ )Ð→ SetC
op

∆ is obtained by pulling back along the functor

∆op × Cop ∆×idÐ→ ∆op ×∆op × Cop.
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The functor ∆∗ admits a right adjoint ∆∗ that takes a simplicial presheaf F ∶ Cop → Set∆ to the composition

Cop Set∆ Fun(∆op,Set∆)F Fun(∆●, )

where the second functor sends a simplicial set S to the bisimplicial set whose (n, k)-bisimplices are given by
HomSet∆(∆n × ∆k, S). The functor ∆∗ preserves weak equivalences and sends Reedy cofibrations to cofibrations

for both the projective and injective model structures on SetC
op

∆ , so we have a Quillen adjunction

Fun(∆op,SetC
op

∆ ) SetC
op

∆

∆∗

∆∗

of combinatorial simplicial model categories. This is a simplicial Quillen adjunction: let F● be a bisimplicial presheaf,
then for S ∈ Set∆, the tensoring F● ⊗S is given by the product F● ×S, where we now view S as the simplicial object
constant on the simplicial presheaf taking the constant value S. Since the functor ∆∗ preserves limits, we have
∆∗(F● ⊗ S) ≅ ∆∗(F●) ⊗ S functorially in F● and S. To see that ∆∗ is a simplicial adjoint to ∆∗, we note that the
fact that ∆∗ is simplicial induces via the adjunction a map

∆∗(F)S Ð→∆∗(FS)

between cotensorings for F a simplicial presheaf and S a simplicial set. It is immediate from the definition of ∆∗

that this map is an isomorphism, which implies that (∆∗ ⊣∆∗) is a simplicial adjunction.

Lemma 2.2.4.12. Let C be a small fibrant simplicial category, and let SetC
op

∆ be the category of simplicial presheaves
on Cop, equipped with the injective model structure making it a combinatorial simplicial model category. Then for the
Reedy model structure on Fun(∆op,SetC

op

∆ ), the left derived functor of the simplicial left Quillen diagonal functor

∆∗ ∶ Fun(∆op,SetC
op

∆ )Ð→ SetC
op

∆

is equivalent to the colimit functor

colim ∶ Fun(N(∆op),PShv(N(C))Ð→ PShv(N(C))

in the ∞-categorical sense (e.g. produced by [Lur17b], prop. 4.3.2.15) defined up to a contractible space of choices.

Proof. It follows from theorem 7.5.30 of [Cis18] that we have an adjunction between derived functors. To see that
∆∗ is a colimit functor, it suffices to show that the right derived functor of ∆∗ is equivalent to the constant diagram
functor

PShv(N(C))Ð→ Fun(N(∆op),PShv(N(C)).
It follows from theorem 7.9.8 of [Cis18] that the constant diagram functor is the right derived functor of the constant
diagram functor

cst ∶ SetC
op

∆ Ð→ Fun(∆op,SetC
op

∆ ).
We can view this functor as the one that takes a simplicial presheaf F ∶ Cop → Set∆ to the composition

Cop Set∆ Fun(∆op,Set∆)F Fun(∗, )

where we view ∗ as the constant cosimplicial simplicial set on the final object. The map of cosimplicial simplicial
sets ∆● → ∗ induces a (simplicial) natural transformation α ∶ cst → ∆∗. On the category (SetC

op

∆ )f , the natural
transformation α is a weak equivalence since for each pair (X, [n]) ∈ Set∆ × Cop we have a retraction

F(X)Ð→ Fun(∆n,F(X))
ev{0}Ð→ F(X)

where the second map is a trivial Kan fibration because F(X) is a Kan complex.

Corollary 2.2.4.13. The following diagram among ∞-categories

N(Fun(∆op,SetC
op

∆ )) N(SetC
op

∆ )

Fun(N(∆op),PShv(N(C)) PShv(N(C)

γ

∆∗

γ

colim

canonically commutes, where the vertical functors implement localizations. More precisely, the left vertical functor is
obtained by adjunction from the functor

N(Fun(∆op,SetC
op

∆ ) ×∆op) evÐ→N(SetC
op

∆ ) γÐ→ PShv(N(C)
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Proof. In the category Fun(∆op,SetC
op

∆ ), viewed as an ∞-category with weak equivalences and cofibrations, every
object is cofibrant, so the functor γ ○∆∗ carries weak equivalences to equivalences in PShv(N(C). It follows that the
left derived functor fits into a commuting diagram

N(Fun(∆op,SetC
op

∆ )) N(SetC
op

∆ )

Fun(N(∆op),PShv(N(C)) PShv(N(C)

∆∗

γ

L∆∗

but lemma 2.2.4.12 shows that the lower horizontal map is equivalent to colim .

Homotopy colimits of diagrams in model categories are computed by taking colimits of projectively cofibrant
replacements. Using the previous result, we can show that for simplicial diagrams in simplicial sets, there is a way
to extract a homotopy colimit from an injectively fibrant replacement.

Corollary 2.2.4.14. Let X● be a simplicial space and let X● → X ′
● be a Reedy fibrant replacement of X●. Then for

any n ≥ 0, there is an isomorphism

X
′
⊥
n ≅ hocolim

∆op
X●

in the homotopy category H.

Proof. Since weakly equivalent diagrams have weakly equivalent homotopy colimits, we may assume that X● = X ′
●,

that is, X● is Reedy fibrant. Let S ↪ T be a trivial cofibration of simplicial sets. By formal nonsense of two variable
adjunctions [JT07], there is a bijection of lifting problems

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S Xm

T X∂∆m

●

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂∆m X⊥T●

∆m X⊥S●

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

so we deduce that the map X⊥T● → X⊥S● is a trivial Kan fibration. In particular, for every injective map of ordinals
[n] → [m], the face map X⊥n → X⊥m is a trivial fibration. By 2-out-of-3, all degeneracy maps of X⊥● are trivial
cofibrations, so it follows that the diagram X⊥● is essentially constant, and its homotopy colimit is therefore equivalent
to any of the simplicial sets X⊥n. Since we have weak equivalences

hocolim
∆op

X⊥● ≃ ∆∗(X⊥● ) = ∆∗(X●) ≃ hocolim
∆op

X●

by lemma 2.2.4.12, we conclude.

The following proposition is a version of the Bousfield-Friedlander theorem for bisimplicial sets ([GJ99], chapter
IV, thm. 4.9) in the setting of ∞-topoi.

Proposition 2.2.4.15. Let X be an ∞-topos, and let X● → Y● be a fibration in X , then for any simplicial object Z●,
the canonical map ∣X● ×Y● Z●∣→ ∣X●∣ ×∣Y● ∣ ∣Z●∣ is ∞-connective.

Proof. We have a functor Q ∶ Λ2
2 ×N(∆op)→ X determining the diagram

X●

Z● Y●

f

We claim that the functor sending an ∞-topos X to the ∞-category of diagrams of shape Λ2
2 × N(∆op) such that

the vertical map is an ∞-fibration in X admits a locally coherent classifying ∞-topos. More precisely, we assert the
following.

(∗) There is a locally coherent ∞-topos Y that comes equipped with a functor P ∶ Λ2
2 ×N(∆op) → Y determining

a diagram

R●

T● S●
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such that for each ∞-topos X , restriction along P determines an equivalence

Fun∗(Y,X ) ≃Ð→ Fun′(Λ2
2 ×N(∆op),X )

where Fun′(Λ2
2 ×N(∆op),X ) denotes the full subcategory spanned by pullback diagrams where X● → Y● is a

fibration between simplicial objects.

Assuming this for a moment, we may find some algebraic morphism g∗ ∶ Y → X such that Q ≃ g∗ ○P . As g∗ preserves
finite limits and small colimits, it suffices to show that the canonical map h ∶ ∣R●×S● T●∣→ ∣R●∣×∣S● ∣ ∣T●∣ is ∞-connective
in Y. Since Y is locally coherent, this will follow once we show that for every point p∗ ∶ S → Y, the induced map
p∗(h) is an equivalence. Using again that Y is a classifying ∞-topos for pullbacks along fibrations, we are reduced
to proving the proposition for X = S. We can identify Q with a diagram Λ2

2 → Fun(N(∆op),S), so using [Lur17b],
prop. 4.2.4.4, we may suppose that Q with is an injectively fibrant diagram Λ2

2 → Fun(∆op,Set∆) where the category
of bisimplicial sets is equipped with the injective model structure; that is, we may suppose that the maps X● → Y●
and Z● → Y● are injective fibrations between injectively fibrant diagrams of simplicial sets. As X● → Y● is a Reedy
fibration, the relative matching maps

Xn Ð→X
Λni
● ×

Y
Λn
i

●
Yn

are Kan fibrations. By assumption, the map

π0(Xn)Ð→ π0(XΛni
● ×

Y
Λn
i

●
Yn)

is a surjection, so the map Xn →X
Λni
● ×

Y
Λn
i

●
Yn is a levelwise surjection for all n and all 0 ≤ i ≤ n. Denoting by V ⊥● the

simplicial object Fun(∆op,Set∆) obtained by adjunction from a simplicial object V● by interchanging the two opposite
categories of ordinals, we deduce that X⊥● → Y ⊥● is a levelwise fibration. This implies that the map ∆∗(X●)→∆∗(Y●)
is a Kan fibration, which by right propereness of the Kan-Quillen model structure on Set∆ guarantees that the
pullback diagram

∆∗(X● ×Y● Z●) ∆∗(X●)

∆∗(Z●) ∆∗(Y●)

is a homotopy pullback diagram. It follows from lemma 2.2.4.12 that after a fibrant replacement, this diagram is
equivalent to the square

∣X● ×Y● Z●∣ ∣X●∣

∣Z●∣ ∣Y●∣.

We are left to prove the assertion (∗). Let J ∶ Λ2
2 ×N(∆op) → C be the ∞-category obtained from Λ2

2 ×N(∆op) by
freely adding finite limits according the procedure described in [Lur17b], section 5.3.6 and remark 2.1.0.5; that is, we
have for each ∞-category admitting finite limits D an equivalence Funlex(C,D) → Fun(Λ2

2 × N(∆op),D). Equip C
with the coarsest Grothendieck pretopology such that the single map

(i) J (1, n)Ð→ J (1, ●)Λni ×
J (2,●)

Λn
i
J (2, n)

constitutes a covering family for all n and all 0 ≤ i ≤ n. This Grothendieck topology is finitary: if it were not, we
would obtain via example 2.2.2.11 a coarser finitary pretopology containing the covering family above. Thus, Shv(C)
is a locally coherent ∞-topos. Now it follows easily from [Lur17b], prop. 6.2.3.20 that the composition

Λ2
2 ×N(∆op) JÐ→ C jÐ→ PShv(C) LÐ→ Shv(C)

satisfies the conditions of assertion (∗).

The following proposition appears in [Lur11c], and its proof is slightly easier version of that of proposition 2.2.4.15.

Proposition 2.2.4.16. Let X be an ∞-topos, and let f ∶ X● → Y● be a hypercover (i.e, a trivial ∞-fibration) in X ,
then the canonical map ∣X●∣→ ∣Y●∣ is ∞-connective.

61



Proof. We can reduce this proposition to the case of spaces using the same stratagem as in the proof of proposition
2.2.4.15; we construct a locally coherent classifying ∞-topos for hypercovers between simplicial objects in X to reduce
to the case X = S. Using [Lur17b], prop. 4.2.4.4 we may suppose that the hypercover f is given by an injectively
fibrant diagram

Q ∶ ∆1 Ð→ Fun(∆op,Set∆)
where Fun(∆op,Set∆) is endowed with the injective model structure. As X● → Y● is a Reedy fibration, the relative
matching maps

Xn Ð→X∂∆n

● ×Y ∂∆n
●

Yn

are Kan fibrations. By assumption, the maps

π0(Xn)Ð→ π0(X∂∆n

● ×Y ∂∆n
●

Yn)

are surjections, so using that the relative matching maps above are Kan fibrations, we find that the maps

Xn Ð→X∂∆n

● ×Y ∂∆n
●

Yn

are levelwise surjections. Denoting by V ⊥● the simplicial object Fun(∆op,Set∆) obtained by adjunction from a
simplicial object V● by interchanging the two opposite categories of ordinals, we deduce that f⊥ ∶ X⊥● → Y ⊥● is a
levelwise trivial fibration. The diagonal functor preserves weak equivalences and takes injective (Reedy) fibrations
that are also horizontal fibrations to Kan fibrations, so we deduce that the map

∆∗(X●)Ð→∆∗(Y●)

is a trivial fibration. But this map is isomorphic to the map ∣X●∣→ ∣Y●∣ in hS, by lemma 2.2.4.12.

We now give a converse to proposition 2.2.4.16.

Proposition 2.2.4.17. Let X be an ∞-topos and suppose that f ∶ X● → Y● be a fibration between ∞-hypergroupoids
in X and suppose that ∣X●∣→ ∣Y●∣ is ∞-connective. Then f is a trivial fibration.

Proof. By Boolean localization, there exists a surjective algebraic morphism X → Shv(B) to the ∞-topos of sheaves
on a complete Boolean algebra, so we may suppose that X = Shv(B). The ∞-topos of sheaves on any complete
Boolean algebra has homotopy dimension 0, so using that Shv(B)/j(U) ≃ Shv(B/U) and that B/U is again a complete
Boolean algebra for any U ∈ B, we see that a morphism X → Y is an effective epimorphism in Shv(B) if and only if
X(U) → Y (U) is an effective epimorphism in S for each U ∈ B. We claim that this property of Shv(B) implies the
following:

(∗) Let X● be an ∞-hypergroupoid in Shv(B), then the canonical map ∣X●(U)∣→ ∣X●∣(U) of spaces is an equivalence
for every U ∈ B.

Assuming this for the moment, it follows easily that we are reduced to proving the proposition for X = S. We may
assume that X● → Y● is an injective fibration between injectively fibrant diagrams, so that the relative matching maps

Xk →X∂∆k

● ×
Y ∂∆k
●

Yk are Kan fibrations. We wish to show that

(●) The map Xk →X∂∆k

● ×
Y ∂∆k
●

Yk is a surjection on connected components for all k. As this map is a Kan fibration,

this is equivalent to the map being a surjection in simplicial degree 0. In turn, this means that f●0 ∶X●0 → Y●0 is
a trivial Kan fibration.

To prove this, it suffices to show that the map f●0 ∶ X●0 → Y●0 has contractible fibres, since it is a Kan fibration
between Kan complexes. The fibre of f●0 at any element {p} of Y0,0 is given by the Kan complex (X●● ×Y●● {p})●0,
the horizontal simplicial set in degree 0 of the pullback of bisimplicial sets. We note that the bisimplicial set

F●● ∶=X●● ×Y●● {p}

has the following properties:

(1) F●● is injectively fibrant with respect to the vertical model structure.

(2) The maps Fk● → F
Λki
●● are levelwise surjections for all k and all 0 ≤ i ≤ k; that is, the simplicial sets F●l are Kan

fibrant.

(3) The diagonal ∆∗(F●●) is a weakly contractible Kan complex.
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Now we show that for bisimplicial sets that satisfy the properties (1) through (3) above, the horizontal simplicial set
F●0 is weakly contractible Kan complex (note that this implies that F●l is then a weakly contractible for all l ≥ 0 by
(1)). Consider the flipped simplicial space F ⊥● . By corollary 2.2.4.14, this is a essentially constant simplicial space
such that each level F ⊥n is weakly equivalent to the homotopy colimit of F●, so by (3), F ⊥n is weakly contractible for
all n. Since F ⊥n is a Kan complex, we conclude.
It remains to prove assertion (∗). The map ∣X●(U)∣→ ∣X●∣(U) is given by applying the evaluation functor evU to the
map colim N(∆op)X● → Lcolim N(∆op)X● in PShv(B) exhibiting Lcolim N(∆op)X● as a sheafification of colim N(∆op)X●

(taken in presheaves), so it suffices to show that this latter presheaf is already a sheaf. Since the diagonal is a homotopy
colimit functor, it suffices to show that the map

h ∶ ∆∗(X●●)Ð→R∆∗(X●●)

is an objectwise weak equivalence.
Let C be a category equipped with a Grothendieck topology, then recall that a morphism Z● → Z′

● of simplicial objects
in ShvSet(C) ≃ Disc(Shv(C)) is a local (trivial) fibration if the map Zn → ZΛni ×

Z
′Λn
i
Z′
n (the map Zn → Z∂∆n×Z′∂∆nZ

′
n)

is an effective epimorphism. Just as in the category Set∆, it is not hard to prove that a map that is both a local weak
equivalence and a local fibration is a local trivial fibration (see for instance [Jar15], lemma 4.18). In ShvSet(B) for B
a complete Boolean algebra, all effective epimorphism are objectwise epimorphisms (i.e. the axiom of choice holds
in this topos), so local (trivial) fibrations are simply projective (trivial) fibrations. As X● is an ∞-hypergroupoid,
∆∗(X●●) is locally fibrant and thus also projectively fibrant, and because R∆∗(X●●) is injectively fibrant for the local
model structure, it is automatically projectively fibrant. It follows that we have a factorization

∆∗(X●●) ∆∗(X●●) ×R∆∗(X●●) R∆∗(X●●)∆1

R∆∗(X●●)
h

where the horizontal map is an objectwise weak equivalence (as it is a section of a projective trivial fibration) and the
vertical map is a projective fibration and a local weak equivalence, and therefore a local trivial fibration. Since local
trivial fibrations are projective trivial fibrations in ShvSet(B), we deduce that h is an objectwise weak equivalence.

Corollary 2.2.4.18. Let X be a hypercomplete ∞-topos and suppose that f ∶ X● → Y● is a fibration between ∞-
hypergroupoids in Fun(N(∆op),X ), then f is a trivial fibration if and only if f induces an equivalence ∣X●∣→ ∣Y●∣.
Remark 2.2.4.19. Let us remark that in an arbitrary (hypercomplete) ∞-topos X , we cannot conclude that an
n-fibration between n-hypergroupoids which induces an equivalence after geometric realization is a trivial n-fibration,
because it is not necessarily the case that an n-fibration between n-hypergroupoids that is also a hypercover is a
trivial n-fibration. However, this becomes if we slightly modify the notion of fibrations and hypergroupoids, when we
work with ∞-topoi of sheaves on affine scheme-like objects in a quite general sense that come equipped with notions
of submersive and local diffeomorphisms, for instance. In such a context, it is natural to demand that the matching
maps of fibrations are not only epimorphisms of sheaves, but also a submersion or local diffeomorphism.

Remark 2.2.4.20. It is possible to remove the hypercompleteness assumption in the results above, but we do not
bother as all our ∞-topoi will be hypercomplete.

2.2.5 C-valued sheaves

One of the advantages of applying (higher) topos theory to geometry is the fact that it treats two kinds of mathematical
objects on the same footing: ∞-topoi serve as generalized spaces underlying the geometric objects of interest, while
the arena in which this geometry takes place forms itself an ∞-topos. In the first instance, it does not suffice to study
bare ∞-topoi: we will have need of structured spaces, that is, we will need to consider notions of sheaves of algebras
and modules on an ∞-topos. This subsection is meant as an introduction to this theory, containing the basic results
that we will have need of.

Definition 2.2.5.1. Let C be an ∞-category and X an ∞-topos, then we denote

ShvC(X ) ⊂ Fun(X op,C)

for the ∞-category of C-valued sheaves, the full subcategory spanned by those functors that preserve small limits.

Remark 2.2.5.2. Clearly we have an isomorphism Fun(X op,C) ≅ Fun(X ,Cop)op, identifying ShvC(X ) with the full
subcategory of Fun(X ,Cop)op spanned by functors preserving small colimits. Suppose that C is locally small, then
by [Lur17b], prop. 5.5.2.9 and cor. 5.5.2.10, this full subcategory coincides with FunL(X ,Cop)op, so that ShvC(X ) is
identified with FunR(X op,C).
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Definition 2.2.5.3. Let C be a small ∞-category equipped with a Grothendieck pretopology B and let D be an
∞-category that admits small limits, then a functor f ∶ Cop → D is a D-valued sheaf if for every C ∈ C and every
covering family {Ci → C}i∈I ∈ B(C), the Čech nerve Č(h)● ∶ N(∆op)⊳ → PShv(C) of the map

h ∶∐
i

j(Ci)Ð→ j(C)

determines a colimit diagram F ○Č(h)● ∶ N(∆op)⊳ → Dop, where F is a left Kan extension of fop along j ∶ C → PShv(C).
The ∞-category of D-valued sheaves on C is denoted ShvD(C). If C = N(Open(X)) for some topological space X, we
write ShvD(X) for ShvD(C).
The functor f is a hypersheaf if the left Kan extension F of f along j sends every augmented semi-representable
hypercover C● ∶ N(∆op) → PShv(C) to a colimit diagram in Dop. The ∞-category of D-valued hypersheaves on C is
denoted Shv∧D(C).

Remark 2.2.5.4. If D is an arbitrary ∞-category, we say that a functor j ○ f ∶ Cop → D is a sheaf if the composition
f ∶ C → PShv(D) is a sheaf.

Remark 2.2.5.5. If D is an ∞-category that admits small limits, then unwinding definition 2.2.5.3 above, we see
that a functor f ∶ Cop → D is a sheaf if the cosimplicial diagram

f(C) ∏i f(Ci) ∏i,j f(Ci ×C Cj) . . .

is a limit diagram for all covering families {Ci → C}. A similar explicit description holds for hypersheaves.

Remark 2.2.5.6 ([Lur11b], prop. 1.1.12). The notation of definitions 2.2.5.1 and 2.2.5.3 is consistent in the following
sense: let C be a small ∞-category equipped with a Grothendieck pretopology and let D be an ∞-category that admits
small limits, then [Lur17b], prop. 5.5.4.20 implies that the functor

ShvD(Shv(C)) L○Ð→ Fun′(PShv(C)op,D) ≃ Fun(Cop,D)

is fully faithful, where Fun′(PShv(C)op,D) is the full subcategory spanned by functors preserving small limits. The
essential image consists of those colimit preserving functors F ∶ PShv(C)→ D that take the class of maps that become
an equivalence after sheafifying to equivalences in D. This class is the strongly saturated collection S generated
by the class S of Čech nerves of covering families. Because F is presumed to preserve colimits, the collection of
maps in PShv(C) that become an equivalence after applying F is strongly saturated, so it contains S if and only
if it contains S, which is the case precisely if F is a sheaf in accordance with definition 2.2.5.3. Thus we have an
equivalence ShvD(Shv(C)) ≃ ShvD(C). We can repeat this argument with the class S∧ of morphisms in PShv(C)
that become an equivalence after sheafifying and passing to the hypercompletion. This strongly saturated class is
generated by the class S∧ of maps ∣C●∣ → j(C) for C● a semi-representable hypercover of C, so we see that the
equivalence ShvD(Shv(C)) ≃ ShvD(C) restricts to an equivalence ShvD(Shv∧(C)) ≃ Shv∧D(C).

Lemma 2.2.5.7. Let X be an ∞-topos and let C be an ∞-category that admits small limits, then the functor

ShvSp(C)(X )Ð→ ShvC(X )

induced by Ω∞
C induces an equivalence ShvSp(C)(X ) ≃ Sp(ShvC(X )).

Proof. If C is presentable, this can be viewed as a consequence of the associativity (up to coherent homotopy) of the
tensor product on presentable ∞-categories, which gives equivalences

(X ⊗ C)⊗ Sp ≃ X ⊗ (C ⊗ Sp).

In general, we have the following argument. We have isomorphisms of simplicial sets

Fun(X op,Fun(Sfin
∗ ,C)) ≅ Fun(Sfin

∗ ×X op,C) ≅ Fun(Sfin
∗ ,Fun(X op,C))

Since the full subcategory ShvC(X ) ⊂ Fun(X op,C) is stable under limits, a functor f ∶ Sfin
∗ → ShvC(X ) is reduced

excisive if and only if it is reduced excisive as a functor into Fun(X op,C), which is the case if and only the corresponding
functor Sfin

∗ ×X op → C is reduced excisive in the first argument and limit-preserving in the second. Similarly, because
Sp(C) ⊂ Fun(Sfin

∗ ,C) is stable under limits, a functor g ∶ X op → Sp(C) preserves limits if and only if the corresponding
functor Sfin

∗ × X op → C is reduced excisive in the first argument and limit preserving in the second. We conclude
that the isomorphisms above restrict to an isomorphism ShvSp(C)(X ) ≅ Sp(ShvC(X )) which intertwines the functor
evaluating at S0.
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If C is presentable, then the proposition guarantees the existence of a canonical t-structure on ShvSp(C)(X ), but
in general, it seems we cannot say much about this t-structure unless we put some extra conditions on C. In the
following, we will assume that C is compactly generated.

Lemma 2.2.5.8. Let C be a compactly generated ∞-category, then for any ∞-topos X , ShvC(X ) is an accessible left
exact localization of an ∞-category of C-valued presheaves.

Proof. We have a natural equivalence C ≃ Ind(C0) for C0 the full subcategory of compact objects, then using [Lur17b],
prop. 5.5.3.3, prop 5.3.5.10 and prop. 5.5.1.9 we have canonical equivalences

FunR(X op,C) ≃ FunR(Cop,X ) ≃ Funlex(Cop0 ,X ).

Realize X as a left exact accessible localization L ∶ PShv(D) → X for some small ∞-category D, then the ad-
junction Fun(Cop0 ,X ) ⇆ Fun(Cop0 ,PShv(D)) induced by the reflection L restricts to an adjunction Funlex(Cop0 ,X ) ⇆
Funlex(Cop0 ,PShv(D)) because both L and the fully faithful inclusion X ↪ PShv(D) are left exact. The counit of
the adjunction (L ⊣ ι) is an equivalence, so the counit of the induced adjunction on functor ∞-categories is one as
well. Thus, the functor Funlex(Cop0 ,X ) → Funlex(Cop0 ,PShv(D)) is fully faithful, so this functor is right adjoint to an
accessible ([Lur17b], prop. 5.5.1.2) localization. This localization is left exact because L is left exact and limits in
the ∞-categories Funlex(Cop0 ,X ) and Funlex(Cop0 ,PShv(D)) are computed objectwise.

Corollary 2.2.5.9. Let C be a compactly generated ∞-category, then for any ∞-topos X , filtered colimits are left
exact in ShvC(X ) (see [Lur17b], defn. 7.3.4.2).

Proof. First we claim that filtered colimits are left exact in C because C is compactly generated: we may choose a
small ∞-category C′ and an equivalence C ≃ Ind(C′), so the assertion follows from the fact that the full subcategory
Ind(C′)↪ PShv(C′) is stable under filtered colimits and finite limits, and filtered colimits are left exact in PShv(C′). It
follows that for any simplicial set K, filtered colimits are left exact in Fun(K,C). By lemma 2.2.5.8, the ∞-category
ShvC(X ) is an accessible left exact localization of such an ∞-category of C-valued presheaves, which implies the
result.

Remark 2.2.5.10. Let L ∶ PShv(E) → X be an ∞-topos arising as a left exact localization of the ∞-category
of presheaves on a small ∞-category E , and let C compactly generated presentable ∞-category. Then we have a
commuting diagram of fully faithful inclusions

ShvC(X ) Fun(X op,C)

ShvC(PShv(E)) ≃ Fun(Eop,C) Fun(PShv(E)op,C)

f

i i′

g

The functor g is given by right Kan extension along the opposite of the Yoneda embedding, and thus admits a left
adjoint, and the functor i has a left adjoint LD given by composition with L as in lemma 2.2.5.8. It follows that the
functor f also has a left adjoint, that we denote with by FC .
Suppose that C0 ⊂ C is a full subcategory stable under small colimits that is generated under small colimits by compact
objects, then it is easy to see that C0 is also compactly generated so that the inclusion C0 ⊂ C has a right adjoint,
that we denote G. Composing with G induces a functor ShvC(X )→ ShvC0(X ) that admits a fully faithful left adjoint
given by the composition

ShvC0(X ) ⊂ Fun(X op,C0)Ð→Fun(X op,C) FCÐ→ ShvC(X ).
These facts are easy to show; see proposition 1.21 of [Lur11c] for instance.

Definition 2.2.5.11. Let C be a presentable ∞-category, then an object C ∈ C is n-connective for n ≥ −1 if τ≤(n−1)C
is a final object.

If C is stable and admits a t-structure, there is a clash of terminology with the connective objects defined by the
t-structure, but context should allow one to avoid confusion.

Definition 2.2.5.12. Let X be an ∞-topos and let C be a compactly generated ∞-category. Consider the following
full subcategories of ShvSp(C)(X ):

(a) ShvSp(C)(X )≤0 consists of those objects F such that Ω∞F is a discrete object in ShvC(X ).

(b) ShvSp(C)(X )≥0 consists of those objects F such that Ω∞−nF is n-connective in ShvC(X ) for all n ≥ 0.

Proposition 2.2.5.13. Let X be an ∞-topos, and let C be a compactly generated ∞-category.
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(1) The full subcategories (ShvSp(C)(X )≤0,ShvSp(C)(X )≥0) determine an accessible t-structure on ShvSp(C)(X ).

(2) The t-structure on Sp(ShvC(X )) ≃ ShvSp(C)(X ) is compatible with filtered colimits.

(3) The t-structure on ShvSp(C)(X ) is right complete.

Proof. It follows from [Lur17a], prop. 1.4.3.4 and prop. 1.4.4.11 that ShvSp(C)(X ) admits an accessible t-structure
such that ShvSp(C)(X )≤0 consists of those spectrum objects F such that Ω∞+1F is a final object and ShvSp(C)(X )≥0 is
the smallest full subcategory containing the essential image of the suspension functor Σ∞

+ ∶ ShvC(X ) → ShvSp(C)(X )
that is stable under extensions and small colimits. Ω∞+1F ≃ ΩShvC(X)Ω

∞F is final if and only if Ω∞F is 0-truncated,
which shows that coconnective part of the t-structure coincides with the full subcategory described in (a). A spectrum
object G is connective if and only if the map unit map G → G≤−1 is equivalent to G → 0. The following useful criterion,
which is easy enough to prove and left to the reader, shows that this is equivalent to demanding that Ω∞−nG is
n-connective for all n ≥ 0.

(∗) For all k ∈ Z, a map F → F ′ exhibits F ′ as τ≤k-localization in ShvSp(C)(X ) if and only if for all n ≥ 0, the
map Ω∞−nF → Ω∞−nF ′ exhibits an (n + k)-truncation, where use the convention that a map exhibiting an
m-truncation is the canonical map to a final object if m ≤ −2.

Since filtered colimits are left exact in ShvC(X ) by corollary 2.2.5.9, the loop functor commutes with filtered colimits,
which implies that the functor Ω∞−n ∶ Sp(ShvC(X ))→ ShvC(X ) preserves filtered colimits for all n ∈ Z. This implies
in turn that the fibre of Ω∞+1 over the final object is stable under filtered colimits, which proves (2).
To prove (3), we note that in view of [Lur17a], prop. 1.2.1.19, it suffices to show that ShvSp(C)(X )≤0 is stable under
countable coproducts and that if Ω∞−nF is discrete for all n ∈ Z, then F is a zero object in ShvSp(C)(X ). The first
assertion is true because ShvSp(C)(X )≤0 is stable under filtered colimits and the second assertion is obvious.

Remark 2.2.5.14. For each ∞-topos X and each stable ∞-category D, there is an objectwise t-structure on
Fun(X op,D). Letting D = Sp(C) for C compactly generated, we have

Lemma 2.2.5.15. Let f∗ ∶ X → Y be an algebraic morphism of ∞-topoi, then the functor ShvSp(C)(X )→ ShvSp(C)(Y)
induced by composing reduced excisive functors with the left exact functor

f∗ ○ ∶ Funlex(Cop0 ,X )Ð→ Funlex(Cop0 ,Y)

is t-exact, where C0 ⊂ C is the full subcategory spanned by compact objects, and the adjoint functor ShvSp(C)(Y) →
ShvSp(C)(X ) induced by composition with f∗ right adjoint to f∗ is left t-exact.

Proof. By formal nonsense, it suffices to show that the functor induced by f∗ is t-exact. Denote by ∂(f∗ ○ ) the
functor obtained by composing reduced excisive functors with f∗ ○ . We have a commuting diagram

ShvSp(C)(X ) ShvSp(D)(Y)

ShvC(X ) ShvC(Y)
Ω∞

∂(f∗○ )

Ω∞

f∗○

where ∂(f∗ ○ ) is exact. Using the description of the t-structures of definition 2.2.5.12, it suffices to show that the
functor f∗ ○ preserves truncatedness and connectivity. Since f∗ ○ is a left exact left adjoint, this follows from
[Lur17b], prop. 5.5.6.28.

Remark 2.2.5.16. It follows from the previous lemma that if we realize the ∞-topos X as a left exact accessible
localization L ∶ PShv(D)→ X , then the functor ShvSp(C)(X )→ ShvSp(C)(PShv(D)) ≃ Fun(Dop,Sp(C)) is left t-exact.
Similarly, for any ∞-topos, the global sections functor Γ ∶ ShvSp(C)(X )→ Sp(C) induced by the geometric morphism

X → S to the final ∞-topos in RTop is left t-exact. Also, if i∗ ∶ S → X is a point, then the functor Sp(C)→ ShvSp(C)(X )
is left t-exact.

In the remainder of this section, we will assume that the ∞-category C is projectively generated, that is, C is
generated under small colimits by a set of compact projective object. Recall that C ∈ C is compact projective if the
S-valued functor HomC(C, ) corepresented by C preserves sifted colimits. This implies that C ≃ Funπ(Cop0 ,S), where
C0 is the smallest full subcategory of C that is stable under finite coproducts and contains a set of compact projective
generators.
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Remark 2.2.5.17. If C is a presentable ∞-category, then C is projectively generated if and only if there exists a
small collection of functors {gα ∶ C → S}α∈A that is jointly conservative and preserves limits and sifted colimits, by
the Barr-Beck theorem ([Lur17a], prop 4.7.3.18). For our purposes, we will only need ∞-categories with a single
projective generator. In fact, since we intend to stabilize anyway, the reader may assume that C0 is additive, that is,
C is a Grothendieck prestable ∞-category in the sense of [Lur], appendix C. In this case, the ∞-categorical version
of the Gabriel-Popescu theorem asserts that C is an accessible left exact localization of the connective objects in an
∞-category of right modules for some E1-ring.

Remark 2.2.5.18. Let C be presentable and projectively generated and let C0 be the smallest full subcategory stable
under finite coproducts containing the compact projective objects, then restriction along C0 ↪ C yields an equivalence
ShvC(X ) ≃ Funπ(Cop0 ,X ) ([Lur17b], prop. 5.5.8.15). For any sifted diagram J ∶K → X , the colimit functor preserves
finite products because colimits are universal in X , which shows that evaluation at any object C ∈ C0 preserves small
limits and small sifted colimits. Moreover, an object F ∶ Cop0 → X is n-truncated in this ∞-category if and only if it

takes n-truncated values in X and the n-truncation functor τ
ShvC(X)

≤n is equivalent to the composition with τX≤n; this
follows easily from the fact that the truncation functor τ≤n ∶ X → X preserves finite products.

For the following proposition, we will use that the inclusion X ∧ ↪ X induces a fully faithful left t-exact functor
ShvSp(C)(X ∧)↪ ShvSp(C)(X ) whose essential image is the full subcategory spanned by Sp(C)-values sheaves F such
that Ω∞−nF is a hypercomplete C-valued sheaf for all n ≥ 0, and this functor is moreover a right adjoint.

Proposition 2.2.5.19 (Left completion is hypercompletion). Let X be an ∞-topos and let C be a projectively
generated presentable ∞-category, then a sheaf F valued in C-spectrum objects is left complete if and only if F lies in
the essential image of the inclusion ShvSp(C)(X ∧)↪ ShvSp(C)(X ).

Proof. If F is left complete, then F ≃ limn τ≤nF , but using criterion (∗) of proposition 2.2.5.13, the object Ω∞−mτ≤nF
is (n +m)-truncated in ShvC(X ) for all m ≥ 0. By remark 2.2.5.18, this means that the for each C ∈ C0, the object
Ω∞−mτ≤nF(C) in X is (n +m)-truncated, which implies that Ω∞−mτ≤nF is hypercomplete for all m ≥ 0. It follows
that τ≤nF lies in ShvSp(C)(X ∧) for all n ∈ Z, so we conclude as the inclusion ShvSp(C)(X ∧) ↪ ShvSp(C)(X ) preserves
limits.
Conversely, suppose that Ω∞−mF is hypercomplete for all m ≥ 0, then we should show that the fibre G of the map
F → limn τ≤nF (which also has the property that Ω∞−mG is hypercomplete for all m ≥ 0) vanishes. This fibre is
identified with limn τ≥(n+1)F , which lies in ShvSp(C)(X )≥∞. This means that for any m ≥ 0, the sheaf Ω∞−mG is
∞-connective in ShvC(X ). By remark 2.2.5.18, this means that for all C ∈ C0, the object Ω∞−mG(C) is ∞-connective
in X . Since Ω∞−mG is hypercomplete, this object is final. This holds for all m ≥ 0, implying that G is the zero
object.

Remark 2.2.5.20. The construction of homotopy sheaves for objects in an ∞-topos via the canonical cotensoring over
spaces carries over without change to ShvC(X ) (if C is presentable and projectively generated), so for each C-valued
sheaf Y on X , we have for each k ≥ 0 an object πk(Y ) which lives in ShvC(Disc(X )) ≃ Shvτ≤0C(Disc(X )). Moreover,
the homotopy sheaves detect connectiveness; indeed, for an object X ∈ ShvC(X ) the following are equivalent.

(1) X is n-connective, i.e. τ≤(n−1)X is a final object.

(2) View X as a product preserving functor X ∶ Cop0 → X , then for all C ∈ C0, X(C) is n-connective in X .

(3) For all C ∈ C0, πk(X(C)) is a final object in X for k < n and the canonical map X(C) → 1X is an effective
epimorphism.

(4) The object πk(X) is final in ShvC(X ) for all k < n and the canonical mapX → 1ShvC(X) is an effective epimorphism.

The equivalence (1)⇔ (2) follows because final objects are detected objectwise in Funπ(Cop0 ,X ) and the truncation
functor commutes with all evaluations functors by the previous remark. [Lur17b], prop. 6.5.1.12 gives (2) ⇔ (3),
and (3) ⇔ (4) follows because the construction of homotopy sheaves commutes with all evaluation maps (because
the homotopy sheaves are constructed using only limits) and effective epimorphisms are detected objectwise.

Proposition 2.2.5.21. Let C be projectively generated presentable ∞-category, then for ShvSp(C)(X ), points (1)
through (3) hold and in addition we have

(4) The functor π0 ∶ ShvSp(C)(X ) → ShvSp(C)(X )♡ identifies the latter ∞-category with ShvAb(τ≤0C)(Disc(X )), the
nerve of the category of sheaves of abelian group objects in the category τ≤0C on the Disc(X ).

Proof. The heart of ShvSp(C)(X ) is identified with the full subcategory of the limit of the tower

. . .
ΩÐ→ EMn(ShvSp(C)(X )) ΩÐ→ EMn−1(ShvSp(C)(X )) ΩÐ→ . . .

ΩÐ→ EM1(ShvSp(C)(X )) ΩÐ→ ShvSp(C)(X )
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where EMn(ShvSp(C)(X )) is the ∞-category of Eilenberg-MacLane objects, the full subcategory spanned by n-
connective n-truncated objects. This tower stabilizes at n = 2 and is then given by the nerve of the category of
abelian group objects in τ≤0ShvC(X ) ≃ Shvτ≤0C(Disc(X )), which is canonically equivalent to the nerve of the category
of Ab(τ≤0C)-valued sheaves on Disc(X ).

Now suppose that C⊗ is presentably symmetric monoidal, then Sp(C) has a canonical presentably symmetric
monoidal structure, since the underlying presentable ∞-category of the coproduct Sp⊗∐C⊗ in E∞Alg(PrL) is given
by the tensor product Sp ⊗ C, and this symmetric monoidal structure is easily seen to be compatible with the t-
structure (so that Sp(C)≥0 is stable under the tensor product and contains the tensor unit). We let D⊗ denote this
presentably symmetric monoidal ∞-category. For any simplicial set K, we get an objectwise symmetric monoidal
structure on Fun(K,D), that is, the ∞-operad Fun(K,D⊗) ×Fun(K,N(Fin∗)) N(Fin∗) =∶ Fun(K,D)⊗ is a symmetric
monoidal ∞-category. Let L ∶ PShv(E) → X be an ∞-topos arising as a localization of the ∞-category of presheaves
on a small ∞-category E , and let C compactly generated presentable ∞-category. In remark 2.2.5.10 we describe the
commuting diagram of fully faithful inclusions

ShvD(X ) Fun(X op,D)

ShvD(PShv(E)) ≃ Fun(Eop,C) Fun(PShv(E)op,D)

f

i i′

g

where f has a left adjoint FD given by the restriction to Fun(X op,D) of the left adjoint to g ○ i. In the diagram
above, the functor ∞-categories admit objectwise symmetric monoidal structures, and the functors g and i′ exhibit
Fun(Eop,D) respectively Fun(X op,D) as symmetric monoidal subcategories. The objectwise symmetric monoidal
structure on Fun(Eop,D) ≃ ShvD(PShv(E)) localizes to ShvD(X ). Indeed, according to [Lur17a], prop. 2.2.1.9
it suffices to show that for an LD-equivalence F → F ′ in Fun(Eop,D) and any G ∈ Fun(Eop,D), the morphism
F ⊗ G → F ′ ⊗ G is an LD-equivalence. This follows because the functor Fun(Eop,D × D) → Fun(Eop,D) given
by composition with the tensor product takes LD×D-equivalences to LD-equivalences. It follows easily that the
symmetric monoidal structure on ShvD(X ) is also the localization of the one on Fun(X op,D); that is, given an object
F1 ⊕ . . . ⊕Fn ∈ ShvD(X )⟨n⟩ where each Fi ∶ X op → D preserves limits, then the coCartesian lift of the unique active
map ⟨n⟩→ ⟨1⟩ starting at this object is given by

F1 ⊕ . . .⊕Fn Ð→ F1 ⊗ . . .⊗Fn Ð→ FD(F1 ⊗ . . .⊗Fn)

where the first map is the objectwise tensor product.

Remark 2.2.5.22. Let f∗ ∶ X → Y be an algebraic morphism of ∞-topoi. Then the preceding discussion implies
that the map ShvD(X )→ ShvD(Y) is symmetric monoidal.

The symmetric monoidal structure on ShvD(X ) allows for the consideration of algebra objects for ∞-operads. In
particular, the map of ∞-operads Comm⊗ ↪ MComm⊗ induces a map Mod(ShvD(X )) → E∞Alg(ShvD(X )), but as
the map Mod(D)→ E∞Alg(D) preserves small limits, there is also a map ShvMod(D)(X )→ ShvE∞Alg(D)(X ).
Lemma 2.2.5.23. For an ∞-topos X and any presentable symmetric monoidal ∞-category C, there is a canonical
isomorphism of maps of simplicial sets between

Mod(ShvC(X ))Ð→ E∞Alg(ShvD(X ))

and
ShvMod(C)(X )Ð→ ShvE∞Alg(C)(X ).

The lemma is obvious enough when the definitions are unwinded, which we do below.

Construction 2.2.5.24. Let X be an ∞-topos, and let C⊗ →N(Fin∗) be an ∞-category with a symmetric monoidal
structure. Define a simplicial set S(O⊗) by the universal property that for each simplicial set K, there is a canonical
bijection

HomSet∆(K,S(O⊗)) ≅ Hom(Set∆)/N(Fin∗)
(K ×O⊗ ×X op,C))

Let AlgX ,C(O⊗) ⊂ S(O⊗) denote the full simplicial subset spanned by those maps

O⊗ ×X op C⊗

N(Fin∗)

F

such that
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(1) for all C ∈ O, the functor F ∣{C}×Xop ∶ X op → C⊗⟨1⟩ ≅ C preserves small limits.

(2) for all X ∈ X , the functor FO⊗×{X} ∶ O⊗ → C⊗ is a map of ∞-operads.

Clearly, the construction of the simplicial set AlgX ,C(O⊗) is contravariantly functorial in the sense that a map
O⊗ → O′⊗ of ∞-operads induces a map of simplicial sets AlgX ,C(O′⊗) → AlgX ,C(O⊗). When (2) is satisfied, (1) is
equivalent to the apparently stronger condition

(1′) For all n ≥ 1 and all C = C1 ⊕ . . .⊕Cn ∈ O, the functor F ∣{C}×Xop ∶ X op → C⊗⟨n⟩ preserves small limits.

Indeed, using that F preserves coCartesian lifts of each map ρi ∶ ⟨n⟩→ ⟨1⟩, there is a commuting diagram

O⊗

⟨n⟩ ×X
op C⊗

⟨n⟩

O⊗

⟨1⟩ ×X
op C

ρi!

F ∣⟨n⟩

ρi!
F ∣⟨1⟩

so we see that the composition ρi! ○ F ∣{C}×Xop is equivalent to F{Ci}×X
op . The functors ρi! induce an equivalence

C⊗
⟨n⟩ ≃∏

n
i=1 C, so we see that the functor F ∣{C}×Xop preserves small limits if each of the functors F ∣{Ci}×Xop preserves

small limits.

Proof of lemma 2.2.5.23. For each ∞-operad O⊗, the ∞-categories AlgO(ShvC(X )⊗) and ShvAlgO(C⊗)(X ) are both
full simplicial subsets of the simplicial set S(O⊗) of construction 2.2.5.24. Under these identifications, both functors

Mod(ShvC(X )⊗)Ð→ E∞Alg(ShvC(X )⊗)

and

ShvMod(C⊗)(X )Ð→ ShvE∞Alg(C⊗)(X )

are the one induced by the obvious map of ∞-operads Comm⊗ ↪MComm⊗. Thus, it suffices to check that the two
simplicial subsets of S(Comm⊗) and S(MComm⊗) are the same. We only treat the case of MComm⊗, the other one
is similar (and easier).
We show that Mod(ShvC(X )⊗) and ShvMod(C⊗)(X ) correspond by adjunction to the simplicial subset AlgX ,C(O⊗) ⊂
S(Comm⊗). A map G ∶ MComm⊗ → ShvC(X )⊗ over N(Fin∗) is a map of ∞-operads if and only if the composition
MComm⊗ → ShvC(X )⊗ ⊂ Fun(X op,C)⊗ is a map of ∞-operads, and this condition is satisfied if and only if the
adjoint map F to G in S(MComm⊗) satisfies condition (2). Using the fact that ShvC(X )⊗ ⊂ Fun(X op,C)⊗ consists
of those pairs (n,F ) of an integer n ≥ 1 and a functor F ∶ X op → C⊗

⟨n⟩ such that for each i ∈ ⟨n⟩○ the composition

X op → C⊗
⟨n⟩

ρi!→ C preserves small limits, we see that G takes values in ShvC(X )⊗ if and only if the adjoint F satisfies

(1′) and (2).
Conversely, we immediately see that an object F ′ ∈ S(MComm⊗) satisfies (2) if and only if the adjoint G′ ∶ X op →
FunN(Fin∗)(MComm⊗,ShvC(X )⊗) lands in the full subcategory of ∞-operad maps. We are left to show that the map
G′ preserves small limits if and only if (1) is satisfied. For this, we note that the functor Mod(C) → C × C taking a
pair (A,M) of an algebra and module over it to the pair of underlying spectrum objects is conservative and preserves
small limits. But the composition X op → Mod(C) → C × C is precisely given the pair of functors described in (1) for
the two objects a and m of MComm.

Remark 2.2.5.25. The full subcategory D≥0 ⊂ D of connective objects is stable under colimits and is generated
by the compact objects of D that are connective, so remark 2.2.5.10 yields a fully faithful functor g ∶ ShvD≥0(X ) ↪
ShvD(X ). An object F lies in the essential image of this functor if and only if the counit map τ̃≥0F → F is an
FD-equivalence. As FD is t-exact, this is the case precisely if F ∈ ShvD(X )≥0, so that the functor g induces an
equivalence ShvD≥0(X )↪ ShvD(X )≥0

Similarly, the full subcategory E∞Alg(D))cn ⊂ E∞Alg(D)) spanned by connective E∞-algebras is stable under colimits
and generated by compact objects of E∞Alg(D)) whose underlying object in D is connective. We obtain a fully
faithful functor g ∶ ShvE∞Alg(D)cn(X ) ↪ ShvE∞Alg(D)(X ). Let OX ∈ ShvE∞Alg(D)(X ), then OX lies in the image of g
if and only if the counit τ̃≥0OX → OX is an FE∞Alg(D)-equivalence, where τ≥0 is the functor taking the connective
cover of E∞-algebras. The forgetful functor E∞Alg(ShvD(X )) → ShvD(X ) is conservative and commutes with the
connective cover functor, so, as we have an equivalence ShvD≥0(X ) ≃ ShvD(X )≥0, we deduce that the functor g̃
induces an equivalence ShvE∞Alg(D)cn(X ) ≃ ShvE∞Alg(D)(X )cn onto the full subcategory of E∞-algebras in ShvD(X )
whose underlying E∞-algebra is connective in the t-structure on ShvD(X ).
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Now that these subtleties are dealt with, we have, for any sheaf of (connective) E∞-algebras OX in ShvSp(C)(X ), a
presentably symmetric monoidal ∞-category ModOX via the procedures of example 2.1.5.9. This symmetric monoidal
structure is moreover stable by [Lur17a], prop. 7.1.1.4.

Proposition 2.2.5.26. Suppose that OX is a connective E∞-algebra in ShvSp(C)(X ).

(1) The full subcategories (θ−1(ShvSp(C)(X)≤0), θ−1(ShvSp(C)(X)≥0)) determine an accessible t-structure on ModOX .

(2) The t-structure on ModOX is compatible with filtered colimits.

(3) The t-structure on ModOX is compatible with with the symmetric monoidal structure.

(4) The t-structure on ModOX is right complete.

(5) If X is hypercomplete, then the t-structure on ModOX is left complete.

Proof. Once (1) is proven, (2), and (4) are obvious consequences of the fact that θ is limit and colimit preserving and
conservative, using that the t-structure on ShvSp(C)(X ) satisfies the analogous conditions, and (5) is proven similarly
using proposition 2.2.5.19. To prove (3), we need to show that given OX -modules F and G such that the underlying
objects of ShvSp(C)(X ) are connective, the tensor product θ(F ⊗OX G) is also connective in ShvSp(C)(X ), but this
last object can be identified with the colimit of the Bar construction BarO(F ,G) whose entries are of the form

F ⊗O ⊗ . . .⊗O ⊗ G.

We conclude that θ(F ⊗OX G) is connective since O is connective and the t-structure on ShvSp(C)(X ) is compatible
with the symmetric monoidal structure. Part (1) follows as in proposition 2.1.3 of [Lur11d].

The last part of this subsection is concerned with abelian sheaf cohomology; that is, we study the following
problem.

● Let X be a topological space and OX a sheaf of commutative algebras on X. F be a (differentially graded or
simplicial) sheaf of OX -modules on X. How does one compute the homology/homotopy groups of Γ(OX) in
terms of the homology/homotopy groups of sheaves of OX?

The global sections functor is in general only left t-exact, so we merely have a functor

Γ ∶ ShvModk(X )♡ Ð→Mod≤0
k .

Definition 2.2.5.27. Let C be a presentable projectively generated ∞-category, and consider for each n ≥ 0 the
functor

Hn( ,X ) ∶ ShvN(Ab(τ≤0C))(Disc(X )) ≃ ShvSp(C)(X )♡ ΓÐ→ Sp(C)≤0 π−nÐ→ Sp(C)♡ ≃ N(Ab(τ≤0C)).
Let F be a sheaf of abelian group objects in τ≤0C on Disc(X ), then we call the abelian group object Hn(F,X ) the
n’th sheaf cohomology group of F . The functor H0( ,X ) coincides with the global sections functor of 1-categories

ShvN(Ab(τ≤0C))(Disc(X ))Ð→N(Ab(τ≤0C)).

To a sheaf F of k-modules on space X, we may assign the homotopy sheaves πn(F) in the abelian category of
discrete sheaves of k-modules. Then we may ask how the discrete graded k-modules H∗(πn(F),X) and π∗(Γ(F))
are related. We will show that if F is a left bounded object in X ⊗ Sp⊗ C for C an arbitrary projectively generated
presentable ∞-category, there is a hypercohomology spectral sequence relating these two graded objects of Ab(τ≤0C).
First, we treat the case when the relation is very simple.

Proposition 2.2.5.28. Let F be an injective object in ShvN(Ab(τ≤0C))(X ), then Hn(F,X) ≅ 0 for n > 0.

Proof. View F as a functor Eop →N(Ab(τ≤0C)), then under the equivalence ShvN(Ab(τ≤0C))(Disc(X )) ≃ ShvSp(C)(X )♡,
F is sent to LSp(C)(F ). Since the global sections of the presheaf F is acyclic, it suffices to show that under the
assumption that F is injective, the sheafification map F → LSp(C)(F ) is an equivalence; that is, F is already a
Sp(C)-valued sheaf on E . Let {Ci → C}i be a covering family in E , then we should show that the coaugmented
cosimplicial diagram

F (C) ∏i F (Ci) ∏i,j F (Ci ×C Cj) . . .

is a limit diagram in Sp(C). This follows as in the proof of lemma 2.1.10 of [Lur11d].

Definition 2.2.5.29. Let D be a stable ∞-category equipped with a t-structure, then we say that an object X in D
is quasi-injective if there exists an integer k such that X is of the form ∏n∈Z≤k In[n] for In an injective object of D♡.
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Warning 2.2.5.30. The terminology introduced in the previous definition is not standard, and bears no relation to
the notion of a quasi-injective object in an abelian category (i.e. every submodule inclusion extends to an endomor-
phism).

Lemma 2.2.5.31. Let X be an ∞-topos and C a projectively generated presentable ∞-category, then for each quasi-
injective object F of ShvSp(C)(X ), the canonical map

H0(π∗(F),X )Ð→ π∗(Γ(F))

is an equivalence of Z-graded objects in Ab(τ≤0C).

Proof. By lemma 2.2.5.28, we have for each injective I of ShvSp(C)(X ) an equivalence H0(πk(I[n]),X ) ≃ πk(Γ(I[n]))
for all k and n (both sides are only nonzero for k = n). Thus, it suffices to show that for each k ∈ Z, both the functors
H0(πk(F), ) and πk(Γ( )) commute with taking products indexed by Z≥l for some l such that for each n ∈ Z≤l, the
n’th factor is an injective object sitting in degree n. To see this, it suffices to note that Γ and H0( ,X ) commute with
limits, and that the functor πk = τ≤0 ○ τ≥0 ○ [−k] commutes with Z≤l-indexed products of the form described above
because the connective cover functor τ≥0 preserves limits and applying τ≥0 to a quasi-injective object returns a finite
product, which commutes with τ≤0.

Lemma 2.2.5.32. Let A be a Grothendieck abelian category (i.e. A is presentable and the collection of monomor-
phisms is stable under filtered colimits in Fun(∆1,A)), and let D+(A) ⊂ D(A) be the left bounded derived ∞-category
of A. Suppose that πn(F) is an injective object of A for all n ∈ Z. Then F is quasi-injective.

Proof. By the characterization of fibrant(-cofibrant) objects in D+(A) and the assumption that F ∈ D≤k(A) for some
k ∈ Z, the chain complex π●(F) given by

. . .
0Ð→ πn(F) 0Ð→ πn−1(F) 0Ð→ πn−2(F) 0Ð→ . . .

with zero differential is fibrant in the model structure on A which models the object ∏n≤k πn(F)[n] in the ∞-category
D(A). Let F● be a left bounded chain complex of injectives that models F , then using injectivity of πn(F), we can
find a dotted lift in the diagram

ker(∂n) πn(F)

Fn

for every n ≤ k. These maps determine a map F● → π●(F) of chain complexes, which is clearly a quasi-isomorphism.

Lemma 2.2.5.33. Let F be a left bounded object of ShvSp(C)(X ), then there exists a coaugmented cosimplicial object
I ● such that I −1 ≃ F with the following properties.

(1) The diagram I ● is a limit diagram.

(2) For each n ∈ N(∆), the object I n is quasi-injective.

(3) For each q ∈ Z, the map πq(F)→ πq(I 0) exhibits the unnormalized cochain complex

πq(I 0)Ð→ πq(I 1)Ð→ πq(I 2)Ð→ . . .

as an injective resolution of πq(F).

Proof. It is a classical fact (see [Bry07] for instance) that every left bounded chain complex K● admits an injective
resolution K● ↪ I●●, where I●● is a Z×Z≤0 graded double complex consisting of injective objects that has the following
properties

(1) For each m ≥ 0, the chain complex I●m has injective homology (and is thus quasi-injective in ShvSp(C)(X )).

(2) For each n ∈ Z, the chain complex HV
n (I●●) of the vertical homology of I●● is an injective resolution of Hn(K●).

The stable Dold-Kan correspondence now provides the desired object.
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Since A = ShvN(Ab(τ≤0C))(X ) is a Grothendieck abelian category with enough injective objects, the inclusion
Ainj ⊂ ShvN(Ab(τ≤0C))(X ) → ShvSp(C)(X ) induces an equivalence D+(A) ≃ Shv+Sp(C)(X ). We deduce that each left
bounded object F has a cosimplicial resolution I ● satisfying (2) and (3) of lemma 2.2.5.33. Let F ∈ ShvSp(C)(X ) be
coconnective and let I ● be a cosimplicial resolution, then we have an equivalence

Γ(F) ≃Ð→ Tot(Γ(I ●))

as Γ preserves limits. The stable Dold-Kan correspondence provides a cofiltered object N(Z≥0)op → Sp(C) which
induces a cohomological spectral sequence {Ep,qr , dr}r≥1 that converges

Ep,q1 ⇒ πq−p(Tot(Γ(I ●))) ≅ πq−p(Γ(F)).

The complex {E∗,q
1 , d1} is the normalized cochain complex associated to the cosimplicial object πq(Γ(I ●)) ≅ Γ(πq(I ●)).

But the normalization of πq(I ●) is an injective resolution of the object πq(F). Thus, we have proven the following.

Proposition 2.2.5.34 (Hypercohomology spectral sequence). Let X be an ∞-topos, C a projectively generated
presentable ∞-category and F a left bounded object in ShvSp(C)(X ). Then there is a convergent spectral sequence

Ep,q2 =Hp(πq(F),X)⇒ πq−p(Γ(F))

Remark 2.2.5.35. Note that lemma 2.2.5.31 ceases to hold if we were to work with quasi-injective indexed by
Z. This has the consequence that in the absence of a hypercompleteness condition on X , the construction of the
hypercohomology spectral sequence does not work for unbounded objects.

The underlying topological spaces of derived manifolds are closed subspaces of Rn, which are a paracompact
Hausdorff of finite covering dimension. Moreover, all sheaves of algebras and modules we will consider have partitions
of unity, which has rather strong consequences for the interaction between the (stable) homotopy theory and the
sheaf theory on such spaces, some of which we will establish in what follows.

Lemma 2.2.5.36. Let k be a commutative ring and let F be a left bounded sheaf of k-modules on a topological space
X such that each homotopy sheaf of F is acyclic, then there is an equivalence

H0(πn(F)) ≃ πn(Γ(R)).

In particular, if πn(F) = 0 as a sheaf, then πn(Γ(F)) = 0.

Proof. As F is left bounded, this follows at once from the collapse at the E2-page of the hypercohomology spectral
sequence associated to F .

For the next proposition, recall that an Fσ-subset of a space X is a countable union of closed sets. An Fσ subset
of a paracompact space is paracompact, and the collection of open Fσ-sets of a paracompact space forms a basis for
the topology that is closed under finite intersections.

Proposition 2.2.5.37. Let X be a paracompact Hausdorff space, and let OX be sheaf of connective E∞-algebras over
a commutative ring k on X = Shv(X) (which we can view as a connective E∞-algebra object in ShvModk(X ) or as a
E∞Algcn

k -valued sheaf on X). Suppose that π0(OX ) is a fine sheaf on X. Then

(1) For each left complete sheaf F ∈ ModOX of OX-modules, the map Γ(F) → Γ(τ≤nF) induced by the unit of the
truncation functor F → τ≤nF exhibits Γ(τ≤nF) as a τ≤n-localization of Γ(F).

(2) Let B be the basis of open Fσ-sets of X, so that restriction induces an equivalence Shv(X) ≃ Shv(N(B)). Then
for each left complete sheaf F ∈ ModOX , the presheaf τ̃≤nF ∈ PShvModk(N(B)) given by applying the functor τ≤n
objectwise is already a sheaf.

(3) For each left complete sheaf F ∈ ModOX , the presheaf π̃n(F) on B given by applying the n’th homotopy group
functor objectwise is already a sheaf.

Proof. (1) First, let F be a left bounded sheaf of OX -modules. Because F is left bounded, all the objects in the
fibre sequence

F ′ Ð→ F Ð→ τ≤nF
are left bounded. Since τ≤nF is n-truncated, Γ(τ≤nF) is also n-truncated. For any sheaf G of OX -modules,
the homotopy sheaves of G are sheaves of π0(OX)-modules, which are fine sheaves on a paracompact Hausdorff
space and therefore acyclic, as π0(OX) is fine. Applying this to F ′, we see that because this sheaf of modules is
(n + 1)-connective and left bounded, Γ(F ′) is also (n + 1)-connective by lemma 2.2.5.36. Since Γ preserves fibre
sequences, the result follows.
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If F is left complete, F is the limit of its left bounded truncations, that is, Γ(F) ≃ limn Γ(τ≤nF). To show that
the fibre of θn ∶ Γ(F )→ Γ(τ≤nF) is (n + 1)-connective, consider the factorization

Γ(F) θn+1Ð→ Γ(τ≤(n+1)F)
θn+1,nÐ→ Γ(τ≤nF)

then the octahedral axiom provides a fibre sequence

fib(θn+1)Ð→ fib(θn)Ð→ fib(θn+1,n)

whose long exact sequence implies that it suffices to show that fib(θn+1) and fib(θn+1,n) are (n + 1)-connective.
Using the first part of the proof, we see that θn+1,n exhibits an n-truncation so that fib(θn+1,n) is indeed
(n + 1)-connective. As we have the equivalence Γ(F) ≃ limk≥n+1 Γ(τ≤(n+1)F), we also have an equivalence
fib(θn+1) ≃ limk≥n+2 fib(θk,n+1), but by the first part of the proof, the map θk,n+1 exhibits an (n + 1)-truncation
so fib(θk,n+1) is (n + 2)-connective for all k ≥ n + 2. Since the limit of a tower of (n + 2)-connective objects in
Modk is (n + 1)-connective, we conclude.

(2) We have to show that the sheafification map τ̃≤nF → τ≤nF is an equivalence, but as truncation is preserved by

passing to slice topoi, the map τ̃≤nF(U) → τ≤nF(U) is identified with the global sections of the map τ̃≤nF ∣U →
τ≤n(F ∣U) for each open set U ⊂ X. Then letting U range over the basis B, we see that (1) applies because each
U ∈ B is paracompact Hausdorff and left completeness is preserved by passing to slice topoi, which implies that
Γ(τ̃≤nF ∣U)→ Γ(τ≤n(F ∣U)) is an equivalence.

(3) The homotopy groups of sheaves are given by a composition of Ωn for some integer n, τ≤0 and τ≥0. The functor
Ωn is clearly defined objectwise because the functor ShvModk(X )↪ Fun(N(B)op,Modk) is exact, and by (2), the
functor τ≤0 is defined objectwise on left complete sheaves. We wish to show that τ≥0 is also defined objectwise
on a left complete sheaf F of ModOX . We have a morphism of fibre sequences

τ̃≥0F F τ̃≤−1F

τ≥0F F τ≤−1F .

in Fun(N(B)op,Modk). Since the right vertical map is an equivalence by (2), the left vertical map is one as well.

Remark 2.2.5.38. In view of proposition 2.2.5.19, we can remove the left completeness assumption if the space X of
proposition 2.2.5.37 has finite covering dimension. In this case, proposition 2.2.5.37 can be equivalently expressed by
stating that the functors ModOX →ModΓ(OX) and ModOX →ModÕX are t-exact, where ÕX is the object OX viewed

as a connective E∞-algebra in Fun(N(B),Modk) (note that ÕX is indeed connective in the objectwise t-structure as
its homotopy groups are fine sheaves).
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Chapter 3

(Pre)geometries and Geometric Contexts

In this chapter, we will add additional layers of categorical structure permitting discussions on geometry. Let us
outline the general procedure we have in mind, following [Lur11b] and [TV04; TV06]:

(1) We start with a suitably ‘geometric’ ∞-category T with a Grothendieck topology, consisting of the objects we
would like to think of as ‘affine’. We may consider ‘scheme-like’ objects that locally look like objects of T , by
taking the cocompletion with respect to étale maps in the ∞-category of T -structured spaces.

(2) We notice that our ∞-category of affine objects does not have all finite limits and/or not all limits that exist are
of the correct geometric nature. However, we can identify a natural subcategory for which limits do exist and
are correct (e.g. transverse pullbacks). This gives T the structure of what we shall call a pregeometry. We wish
to ‘derive’ this pregeometry, that is, consider the ∞-category G such that G comes with a map T ↪ G which
respects the limits we have deemed correct, and is otherwise freely generated by finite limits. G is known as the
geometric envelope of T , and is an example of a geometry.

(3) An essentially unique geometric envelope always exists for a pregeometry and it is characterized by a universal
property. We show that in our case of interest, we can explicitly realize a geometric envelope for T as a natural
subcategory of the ∞-category of T -structured spaces.

(4) The geometry G gives us an ∞-site of derived affine T -spaces, which has finite limits. To get all colimits as well,
we take the localization of PShv(G) with respect to covers and the resulting ∞-topos contains the objects that
we call derived T -stacks.

(5) General derived T -stacks are just homotopy sheaves on G and one can not expect to make sense of deformation
theory for such objects. Our next goal is to identify a subcategory of stacks having a good infinitesimal theory.
To this end, we introduce a subcategory P in G that is local for the topology, and the pair (G,P) becomes a
geometric context. We can then inductively define n-geometric derived T -stacks as those derived T -stacks that
have an atlas by (n − 1)-geometric stacks, where (−1)-geometric stacks are the derived T -spaces, the stacks in
the essential image of the Yoneda embedding.

For T = Man the étale site of smooth manifolds, we obtain the enveloping geometry of affine derived manifolds
dSmAff and the ∞-topos dSmSt of derived C∞-stacks. Letting P be the subcategory spanned by étale or submersive
morphisms yields the ∞-category dSmDM or dSmAr of derived Deligne-Mumford or derived Artin geometric C∞-
stacks respectively.

3.1 Pregeometries and Geometries

In this section, we introduce the notion of a pregeometry, a structure on an ∞-category T that will ensure the existence
of a scheme theory for T . The structure we are looking for should somehow blend two pieces of data:

(1) A collection of well behaved pullbacks in T , generating the finite limits that are good, such as transverse inter-
sections.

(2) A Grothendieck topology on T , specifying which maps are local.

We expect these data to be suitably compatible. The desired structure is encapsulated by J. Lurie’s elegant notion
of an admissibility structure.

Definition 3.1.0.1 (J. Lurie [Lur11b]). Let T be an ∞-category. An admissibility structure on T is the data of
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(1) A subcategory T ad ⊆ T that contains all objects of T . Morphisms in T ad will be called admissible.

(2) A Grothendieck topology on T such that for each covering sieve T S/X ⊆ T/X of an object X in T , there is covering

sieve in T S/X generated by a collection {Uα →X} of admissible morphisms. In other words, there is a basis for the
topology on T whose covering families contain only admissible morphisms. If a collection {Uα →X} generates a
covering sieve, it is called an admissible covering.

This data is required to satisfy the following conditions:

(1) For every admissible map f ∶ U →X and any map g ∶ Y →X, there is a pullback

V U

Y X

f ′

g′

f

g

with f ′ an admissible map.

(2) For a commutative diagram

A C

B
f

h

g

with f and g admissible, h is also admissible.

(3) A retract of an admissible map is admissible.

Definition 3.1.0.2. (1) A pregeometry is a pair (T ,T ad) of an essentially small ∞-category T with finite products,
together with an admissibility structure T ad on T .

(2) A geometry is a pair (G,Gad) of an essentially small idempotent complete ∞-category G with finite limits together
with an admissibility structure Gad on G

Definition 3.1.0.3. (1) Let T and T ′ be pregeometries. A transformation of pregeometries is a functor f ∈
Fun(T ,T ′) that preserves products and pullbacks along admissibles such that f(T ad) ⊂ (T ′)ad, and f takes
admissible coverings to admissible coverings.

(2) Let G and G′ be geometries. A transformation of geometries is a functor f ∈ Funlex(G,G′) such that f(Gad) ⊂
(G′)ad, and f takes admissible coverings to admissible coverings.

We will usually just write T (or G) for a pregeometry (T ,T ad) (or a geometry (G,Gad)). Now we will define what
it means to be a T - or G-structure on an ∞-topos X , which, having the theory of Lawvere theories and algebraic
theories in mind, one should think of as being a kind of ‘algebra object’ in X with possibly very intricate multiplication
rules determined by the (pre)geometry.

Definition 3.1.0.4. Let T be a pregeometry and let C be an ∞-category. We denote by Funad(T ,C) the full
subcategory of Fun(T ,C) spanned by those functors O ∶ T → C such that

(1) O preserves finite products.

(2) O preserves pullbacks along admissible maps.

Definition 3.1.0.5. Let X be an ∞-topos.

(1) For T a pregeometry, the ∞-category StrT (X ) of T -structures on X is the ∞-category Funad(T ,X ).

(2) For G a geometry, ∞-category StrG(X ) of G-structures on X is the ∞-category Funlex(G,X )

Warning 3.1.0.6. Note that while a geometry G can also be viewed as a pregeometry, a G-structure on an ∞-topos
X with G viewed as a geometry is not the same thing as a G-structure on X with G viewed as a pregeometry. To
prevent ambiguity, we will always use the symbol G to mean a geometry, and T to mean a pregeometry.
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Remark 3.1.0.7. Let C be an ∞-category with finite limits, and let X be an ∞-topos. By [Lur17b], prop. 5.5.1.9
and 5.3.5.10, the Yoneda embedding j ∶ C → Pro(C) induces an equivalence

FunR(Pro(C),X ) ≃Ð→ Funlex(C,X ),

where the left hand side is the ∞-category of functors that admit a left adjoint. We have a natural equivalence
FunR(Pro(C),X ) ≃ FunR(X op, Ind(Cop)), and because a functor from X op to Ind(Cop) admits a left adjoint if and
only if it preserves small limits (apply the adjoint functor theorem [Lur17b], prop 5.5.2.9 to the functor of opposite
categories), we get FunR(X op, Ind(Cop)) = ShvInd(Cop)(X ). We conclude that for a geometry G, a G-structure on X
can be equivalently viewed (perhaps more geometrically intuitively) as an Ind(Gop)-valued sheaf on X . To cement
this intuition, we encourage the reader to have for Gop the category (CAlgk)fp of k-algebras of the form k[x1, . . . , xn]/I
in mind, where k is a commutative ring and I a finitely generated ideal, whose opposite category is the category of
finitely presented affine k-schemes. By taking the ind-completion we obtain Ind((CAlgk)fp) ≃ CAlgk, the category of
all commutative k algebras. Thus, a (CAlgk)opfp -structure on an ∞-topos Shv(X) for X a topological space can be
canonically identified with a sheaf of commutative k-algebras on the space X. We will make (CAlgk)fp into an actual
geometry in examples 3.1.0.15 and 3.1.0.16.
A similar geometric intuition applies to T -structures for some pregeometry T , but only after we have introduced the
crucial notion of a ‘geometric envelope’.

Using the Grothendieck topology on a (pre)geometry arising from the admissibility structure, we can ask that T -
or G-structures and maps between them on an ∞-topos X can be recovered from local data on T or G.

Definition 3.1.0.8. Let T be a pregeometry and let O be a T -structure on an ∞-topos X . O is a local T -structure if
for each collection of admissible maps {Uα →X} that generates a covering sieve, the induced map ∐αO(Uα)→ O(X)
is an effective epimorphism in X .
For O, O′ local T -structures on X , a morphism of local T -structures is a natural transformation α ∶ O → O′ such
that for all admissible maps X → Y , the commuting diagram of induced maps

O(X) O′(X)

O(Y ) O′(Y )

is a pullback square. We denote by StrlocT (X ) the subcategory of StrT (X ) spanned by local T -structures on X and
morphisms of local T -structures.
Replacing the pregeometry T with a geometry G in this definition, we obtain the ∞-category of local G-structures
on X .

Some examples of geometries and pregeometries are in order.

Example 3.1.0.9 (Discrete (pre)geometries). Let T be an ∞-category with finite products. We make T into a
pregeometry by declaring that only equivalences are admissible, which generates the trivial Grothendieck topology.
Pregeometries for which the subcategory of admissible maps is the subcategory spanned by equivalences are called
discrete pregeometries. For a discrete pregeometry T , all T -structures are local. Discrete pregeometries are the same
thing as finite limit theories, a subclass of which will be studied in more detail in section 4.1. A basic example of a
discrete pregeometry is the following: let k be a commutative ring, and let T disc

k L ∶= N(Polyk), where Polyk is the
(ordinary) category whose objects are the affine k-spaces Ank for n ≥ 0, and whose morphisms are polynomial maps.
Of course, starting from an ∞-category G that has finite limits and is idempotent complete, we have an associated
discrete geometry with underlying ∞-category G. By remark 3.1.0.7, there are equivalences StrlocG (X ) ≃ StrG(X ) ≃
ShvInd(Gop)(X ) for any ∞-topos X .

Example 3.1.0.10 (Pregeometry of Smooth Manifolds). The motivating example in this work is the following: let
TDiff be the pregeometry whose underlying ∞-category is N(Man), endowed with the étale topology. A morphism
f ∶ U →M is admissible if it is an injective local diffeomorphism, that is, an open embedding. Similarly, we let T open

Diff

be the pregeometry whose underlying ∞-category is the nerve of the category of open submanifolds of Rn, for some
n ≥ 0, endowed with the étale topology. Admissible morphisms are again open embeddings. There is an obvious
transformation of pregeometries T open

Diff → TDiff .

Example 3.1.0.11 (Pregeometry of Smooth Manifolds with Corners). Let Manc be the category whose objects are
manifolds with corners, and whose morphisms are the b-maps of Melrose [Mel93; Mela; JF19]. A map f ∶ M → N
between manifolds with corners is locally of the form Rn × Rk≥0 → Rm × Rl≥0 so we may replace M and N by these
Cartesian spaces with corners. f is a b-map if f is smooth (i.e. there is an extension f̃ of f to some neighbourhood
U ⊂ Rn ×Rk such that f̃ is smooth) and either of the following two conditions hold.
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(1) f maps Rn ×Rk≥0 into {0} ×Rl≥0

(2) Write f = (f1, . . . , fm, fm+1,...,fn+l), then each fn+i decomposes uniquely as gn+k∏hα1
1 . . . hαkk where gn+k > 0, the

αj are nonnegative integers and the {hj} form a complete set of boundary defining functions.

If a b-map f does not satisfy (1), we say that f is an interior b-map. We define a pregeometry TDiffc as the nerve of
the category of manifolds with corners and interior b-maps among them. The pregeometry structure is generated by
open inclusions.

Example 3.1.0.12 (Pregeometry of Complex Manifolds). The starting point of derived analytic geometry as de-
veloped in the final sections of [Lur11a] and in [Por15; PY17] is the complex analytic pregeometry TAnC . Here, the
underlying ∞-category is the nerve of the category of open submanifolds of Cn for some n ∈ N, and a morphism is
admissible if it is an injective local biholomorphism.

The following pregeometries are among the main players in the passage from classical algebraic geometry to
derived algebraic geometry. We will explain later on how these pregeometries ‘generate’ the geometries wherein
derived algebraic geometry takes place.

Example 3.1.0.13 (Pregeometry of Zariski open subschemes of affine k-space). Let k be a commutative ring, and let
TZar(k) ∶= N(CAlgZar

k )op, where CAlgZar
k is the (ordinary) category of k-algebras of the form k[x1, . . . , xn, (f(x1, . . . , xn))−1],

where f is a polynomial function on affine n-dimensional k-space Ank . Given an object A ∈ CAlgZar
k , we denote the

corresponding object in TZar(k) by SpecA (for the moment, this is just abstract notation, not meant to indicate that
SpecA is a locally ringed space). Recall that, given a commutative k-algebra and any element b ∈ B, the localization
of B by b is the universal object (defined up to isomorphism) f ∶ B → B[1/b] such that f(b) is invertible, and should
be thought of as the algebra of functions on the open set where b is nonzero. With these preliminaries out of the way,
we can make the ∞-category TZar(k) into a pregeometry by endowing it with the following admissibility structure:

(1) A morphism SpecA → SpecB is admissible if and only if there exists some element b ∈ B such that the map
B → A induces an isomorphism B[1/b] ≅ A.

(2) A collection of admissible morphism {SpecBi[1/bi]→ SpecB}i is an admissible covering if and only if the elements
{bi} generate the unit ideal in B.

Example 3.1.0.14 (Pregeometry of étale open subschemes of affine k-space). Let k be a commutative ring, and
let Tét(k) ∶= N(CAlgsmk )op, where CAlgsmk is the (ordinary) category of k-algebras A that admit an étale map f ∶
k[x1, . . . , xn] → A (that is, f is finitely presented, flat, and the module of relative Kähler differential Ωf vanishes).
We can make the ∞-category Tét(k) into a pregeometry by endowing it with the following admissibility structure:

(1) A morphism SpecA→ SpecB is admissible if and only if the map B → A is étale.

(2) A collection of admissible morphism {SpecBi → SpecB}i is an admissible covering if and only if there exists a
finite set of indices {ij}1≤j≤n such that the induced map g ∶ B → ∏1≤j≤nBij is faithfully flat (that is, the base
change functor along g preserves and reflects exact sequences of B-modules).

The following two examples of geometries describe the arena of classical algebraic geometry.

Example 3.1.0.15 (Geometry of affine k-schemes (Zariski)). Let k be a commutative ring, and let GZar(k) ∶=
N((CAlgk)fp), where (CAlgk)fp is the (ordinary) category of finitely presented k-algebras; that is k-algebras of the
form k[x1, . . . , xn]/I for some finitely generated ideal I. We make GZar(k) into a geometry by endowing it with the
following admissibility structure, which is the obvious extension of the admissibility structure on TZar(k) ⊂ GZar(k),
using the same notations:

(1) A morphism SpecA → SpecB is admissible if and only if there exists some element b ∈ B such that the map
B → A induces an isomorphism B[1/b] ≅ A.

(2) A collection of admissible morphism {SpecBi[1/bi]→ SpecB}i is an admissible covering if and only if the elements
{bi} generate the unit ideal in B.

Example 3.1.0.16 (Geometry of affine k-schemes (étale)). Continuing the notation of the previous examples, we
let Gét(k) be the geometry that has the same underlying ∞-category as GZar(k), and whose admissibility structure
is as follows:

(1) A morphism SpecA → SpecB is admissible if and only if the map B → A is an étale map of commutative
k-algebras.

(2) A collection of admissible morphism {SpecBi → SpecB}i is an admissible covering if and only if there exists a
finite set of indices {ij}1≤j≤n such that the induced map g ∶ B →∏1≤j≤nBij is faithfully flat.
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We will introduce some geometries describing various levels of derived differential geometry in later subsections.
Recall from chapter 1 and [Lur17b], section 6.3 the two antiequivalent ∞-categories LTop and RTop of ∞-topoi and
algebraic respectively geometric morphisms between them. We have a non-full subcategory inclusion LTop ↪ Ĉat∞
which classifies a coCartesian fibration over LTop, the universal topos fibration, which was denoted as p ∶ LTop→ LTop.

Definition 3.1.0.17. Let T be a pregeometry. Let LTop(T ) denote the subcategory of Fun(T , LTop)×Fun(T ,LTop)
LTop

defined as follows:

(1) An object V of Fun(T , LTop)×Fun(T ,LTop)
LTop, which we can identify with a pair (X ,OX ), for some ∞-topos X

and a functor OX ∶ T → X , lies in LTop(T ) precisely if OX is a local T -structure on X .

(2) For a morphism α ∶ (X ,OX ) → (Y,O′
Y) in Fun(T , LTop) ×Fun(T ,LTop)

LTop, let f∗ ∶ X → Y be the underlying

algebraic morphism. We declare α to be a morphism in LTop(T ) if the induced morphism f∗ ○OX → O′
Y is a

morphism of local T -structures on Y.

Replacing the pregeometry T with a geometry G in this definition, we obtain an ∞-category which we denote by
LTop(G).

Remark 3.1.0.18. The canonical projection p ∶ LTop(T ) → LTop is a coCartesian fibration. To see this, recall that
the class of coCartesian fibrations is stable under formation of functor categories and pullbacks, showing that the
map p′ ∶ Fun(T , LTop)×Fun(T ,LTop)

LTop→ LTop is a coCartesian fibration; for an algebraic morphism f∗ ∶ X → Y and
a T -structure OX on X , the (unique up to contractible ambiguity) p′-coCartesian lift of f∗ with domain OX is the
morphism OX → f∗ ○OX . Because f∗ preserves small colimits and finite limits, f∗ ○OX is als a local T -structure on
Y, we also have a p-coCartesian lift of f∗. The fibre of p over an ∞-topos X can be identified with StrlocT (X ′) with
X ′ an ∞-topos canonically equivalent to X (not isomorphic, because the fibre over X of the universal topos fibration
is in general only canonically categorically equivalent to X ).

Definition 3.1.0.19. We call the opposite category of LTop(T ) the ∞-category of T -structured spaces, and denote
it RTop(T ). Similarly, we have the category RTop(G) of G-structured spaces.

Remark 3.1.0.20. The definition of T - or G-structured spaces allows for structured spaces (X ,OX ) for which the
underling ∞-topos is not 0-localic, that is, not the ∞-category of sheaves on a topological space. The underlying
n-localic ∞-topos of a structured space (X ,OX ) will (for specific (pre)geometries) have to be interpreted as the
∞-category of sheaves on the small ∞-site of a higher orbifold, or n-Deligne-Mumford stack.

The existence of certain limits and colimits in the ∞-category of T - or G-structures spaces is of great import to
us. Remark 3.1.0.18 and the theory of relative colimits suggests that limits in the ∞-category of structured spaces
are controlled by limits in the ∞-categories StrlocT (X ) and StrlocG (X ).

Remark 3.1.0.21. It’s easy to see that the ∞-category StrG(X ) is presentable for G a geometry; this follows from
the equivalence StrG(X ) ≃ ShvInd(Gop)(X ) of remark 3.1.0.7. Furthermore, the ∞-category ShvInd(Gop)(X ) can be
identified with the ∞-category Shv(X )⊗ Ind(Gop), where ⊗ is the Lurie tensor product of presentable ∞-categories.
The same is true for a pregeometry T , since there exists a geometry G′ such that StrT (X ) ≃ StrG′(X ) (this is the
geometric envelope of T , see definition 4.1.4.6)

Proposition 3.1.0.22. Let X be an ∞-topos.

(1) Let T be a pregeometry. The ∞-category StrlocT (X ) has sifted colimits and the inclusion StrlocT (X ) ↪ Fun(T ,X )
preserves sifted colimits.

(2) Let G be a pregeometry. The ∞-category StrlocG (X ) has filtered colimits and the inclusion StrlocG (X )↪ Fun(G,X )
preserves filtered colimits.

Proof. (1) is proposition 3.3.1 of [Lur11b] and (2) is proposition 1.5.1 of [Lur11b].

Corollary 3.1.0.23. (1) Let T be a pregeometry. The ∞-category LTop(T ) has sifted colimits and the projection
p ∶ LTop(T )→ LTop preserves sifted colimits.

(2) Let G be a pregeometry. The ∞-category LTop(G) has filtered colimits and the projection p ∶ LTop(G) → LTop
preserves filtered colimits.

Proof. The proof is the same in both cases, using proposition 3.1.0.22; we write it for a pregeometry T only. Given a
sifted diagram q ∶K → LTop(T ), we have a sifted diagram p○ q in LTop which has a colimit, by [Lur17b], cor. 6.3.4.7.
By proposition 3.1.0.22 and [Lur17b], cor. 4.3.1.11, we can lift this colimit to a p-colimit in LTop(T ), which is also a
colimit in LTop(T ) by [Lur17b], prop. 4.3.1.5.
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The existence of limits in LTop(T ) is a little bit more subtle, but for the moment, we will have need only of
geometric realizations in LTop(T ) by étale maps.

Definition 3.1.0.24. Let T be a pregeometry. A map (f∗, α) ∶ (X ,OX ) → (Y,OY) of T -structured spaces is étale
if the underlying algebraic morphism f∗ is étale ([Lur17b], section 6.3.5) and the morphism α ∶ f∗ ○ OX → OY is
an equivalence of local T -structures on Y. Replacing T with G in this definition, we obtain the notion of an étale
morphism of G-structured spaces.

The collection of étale maps defines a Grothendieck topology on the ∞-category of T -structured spaces; the
following proposition shows that this topology is subcanonical.

Proposition 3.1.0.25. Let (X ,OX ) be a T -structured space and let ∐Uα → 1 be an effective epimorphism in X with
codomain the final object in X . Then (X ,OX ) is a colimit of the Čech nerve of the étale covering {(X/Uα ,O∣Uα) →
(X ,OX )} in RTop(T ).

Proof. The Čech nerve is an augmented simplicial diagram q ∶ (N(∆)op)⊳ → RTop(T ) such that p ○ q is a colimit
diagram in RTop. Moreover, by definition of étale morphisms, every edge in (N(∆)op)⊳ is sent to a p-Cartesian edge
of RTop(T ). The result now follows by proposition 1.5.6 of [Lur11b].

Definition 3.1.0.26. Let T be a pregeometry. We say that a morphism α ∶ O → O′ of T -structures on an ∞-topos
X is an effective epimorphism if α is objectwise an effective epimorphism. A map (f∗, α) ∶ (X ,OX ) → (Y,OY) of
T -structured ∞-topoi is a closed immersion if the algebraic morphism f∗ is a closed immersion of ∞-topoi ([Lur17b],
definition 7.3.2.7) and α ∶ f∗ ○OX → OY is an effective epimorphism.

Definition 3.1.0.27. Let T be a pregeometry. We say that a morphism f ∶ U → X in PShv(T ) is admissible if f
fits into a pullback diagram

U Lj(U ′)

X Lj(X ′)

f

where L is a left exact left adjoint to the inclusion Shv(T )↪ PShv(T ) and U ′ →X ′ is admissible in T .

Warning 3.1.0.28. Admissible morphisms in PShv(T ) are not in general stable under composition.

The following proposition is a variation on [Lur17b], prop. 6.2.3.20, characterizing sheaves on pregeometries
(instead of ∞-sites with finite limits) via a universal property, replacing ‘finite limits’ with ‘finite products and
admissible pullbacks’ in the aforementioned proposition in [Lur17b].

Proposition 3.1.0.29. Let T be a pregeometry, and let X be an ∞-topos. Let Fun∗ad(Shv(T ),X ) and Fun∗ad(Shv(T ),X )
denote the full subcategories spanned by those functors that preserve all small colimits, finite products and admissible
pullbacks. Then the composition

J ∶ Fun∗ad(Shv(T ),X ) L○Ð→ Fun∗ad(PShv(T ),X ) j○Ð→ Fun(T ,X )

is fully faithful, and if a functor O ∶ T → X lies in the essential image of J , then O is a local T -structure. If the
Grothendieck topology on Shv(T ) is subcanonical, then O is a local T -structure if and only if O lies in the essential
image of J .

Proof. It follows from [Lur17b], prop. 5.5.4.20 that the functor L○ is fully faithful, and the functor j○ is fully faithful
by the universal property of presheaf ∞-categories.
Let O ∶ T → X be a functor in the essential image of J , then O is equivalent to a functor of the form F ○ Lj, with
F ∈ Fun∗ad(Shv(T ),X ). Because L and j preserve finite limits, F ○Lj is a T -structure. To show that F ○Lj is local,
we note that the functor Lj ∶ T → Shv(T ) sends admissible coverings to effective epimorphisms, so it suffices to show
that F preserves effective epimorphisms of the form

∐
i

Lj(Ui)Ð→ Lj(X)

where each Ui →X is admissible. This follows because F preserves admissible pullbacks and small colimits.
Now assume that the Grothendieck topology on Shv(T ) is subcanonical. Suppose that O ∶ T → X is a local T -
structure, then O is the restriction of a left Kan extension j!O ∶ PShv(T ) → X . We note that j!O preserves final
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objects, since final objects are representable and O preserves final objects. To show that j!O preserves finite products,
consider a pullback square

X × Y Y

X ∗
where ∗ is a final object, then we should show that the square

j!O(X × Y ) j!O(Y )

j!O(X) ∗ ≃ j!O(∗)

is a pullback. Writing Y as a colimit of representables, and using the fact that colimits are universal in PShv(T ) and
X , and that j!O preserves small colimits, we may assume that Y is itself representable. The same holds for X, so the
claim reduces to the assertion that O preserves binary products. To show that j!O preserves admissible pullbacks,
we argue similarly. Since we assumed the topology to be subcanonical, we need not apply L in the definition of
admissible pullbacks. By the pasting property of pullback squares, it clearly suffices to prove that pullback diagrams
of the form

U X

j(U ′) j(X ′)f

are preserved by j!O, where f ∶ U ′ → X ′ is admissible in T . Again, writing X as a colimit of representables, and
using universality of colimits in PShv(T ) and X , and that j!O preserves small colimits, we may assume that X is
itself representable, so that the claim follows from the assumption that O is a T -structure. Now the assertion that
j!O lies in the image of the functor

○L ∶ FunL(Shv(T ),X )Ð→ FunL(PShv(T ),X )
is equivalent to the assertion that the adjoint O∗ ∶ X → PShv(T ) factors through Shv(T ). Unwinding definitions,
this means that for any admissible covering {Ui →X} with associated morphism h ∶∐ j(Ui)→ j(X), the functor j!O
takes the canonical monomorphism

∣Č(h)●∣
gÐ→ j(X)

to an equivalence in X . We have just proven that j!O preserves finite products and pullbacks along admissible maps
in PShv(T ) which implies that the canonical map of simplicial objects j!O(Č(h)●) → Č(j!O(h))● is an equivalence,
so it follows that the composition

∐
i

j!O(j(Ui))Ð→ j!O(∣Č(h)●∣)
j!O(g)Ð→ j!O(j(X))

is the unique -up to contractible ambiguity- factorization of the map j!O(h) ∶ ∐i j!O(j(Ui)) → j!O(j(X)) into
an effective epimorphism followed by a monomorphism. But j!O(h) is already an effective epimorphism because
O is a local T -structure, so the map j!O(g) is indeed an equivalence. We have an equivalence of functors j!O ≃
j!O∣Shv(T ) ○ L, so we immediately conclude that j!O∣Shv(T ) preserves finite products. Since we assumed the topology
to be subcanonical, j!O∣Shv(T ) also preserves pullbacks along admissible maps in Shv(T ).

Definition 3.1.0.30. Let T be a pregeometry. Let ∐iXi → X be a morphism in Shv(T ), and denote for each
i = (i1, . . . , in) ∈ In the object Xi1 ×X . . .×X Xin by Xi, so that the n’th level of the Čech nerve is given by ∐i∈In Xi.
We say that a map f ∶X → Y in Shv(T ) is

(1) strongly étale if there is a small collection of admissible maps {Xi →X} that determines an effective epimorphism

∐i∈I Xi →X such that for each i ∈ In the maps Xi →X and Xi →X → Y are admissible.

(2) strongly submersive if there is a collection of admissible maps {Xi →X} that determines an effective epimorphism

∐i∈I Xi → X such that for each i ∈ In, the map Xi → X is admissible, and there exists an admissible map
Xi → Vi × Y for some object Vi ∈ Shv(T ) that fits into a commuting diagram

Xi X

Vi × Y Y

where the lower horizontal map is the projection.
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Remark 3.1.0.31. Since admissible maps in Shv(T ) are not stable under compositions, the notions of strongly étale
and submersive maps would not be well behaved if we only demanded that the maps Xi →X → Y were admissible.

Proposition 3.1.0.32. Let T be a pregeometry

(1) Strongly étale and strongly submersive maps are stable under pullbacks.

(2) For any ∞-topos X , if F ∈ Fun∗ad(Shv(T ),X ), then F preserves pullbacks along strongly étale maps.

(3) For any ∞-topos X , if F ∈ Fun∗ad(Shv(T ),X ), then F preserves pullbacks along strongly submersive maps.

Proof. (1) is immediate since admissible maps and effective epimorphisms are stable under pullbacks and colimits
are universal in Shv(T ). Strongly étale maps are strongly submersive, so it suffices to prove (3). Consider a pullback
diagram

X ′ Y ′

X Y
f

where f is strongly étale. Since f is strongly étale, there is an effective epimorphism h ∶ ∐i∈I Xi → X where each
map hi ∶ Xi → X is admissible. Because the map F preserves pullbacks along admissible maps, F preserves the
Čech nerve of the map h; that is, the map of simplicial objects F (Č(h)●) → Č(F (h))● is an equivalence. Because
colimits are universal in Shv(T ), we also have an effective epimorphism h′ ∶ ∐i∈I Xi ×Y Y ′ → X ′ and an equivalence
F (Č(h′))● → Č(F (h′))●. Because F preserves colimit diagrams, we obtain a diagram

∣Č(F (h′))●∣ F (X ′) F (Y ′)

∣Č(F (h))●∣ F (X) F (Y )

≃

≃

We will be done once we show that the outer rectangle is a pullback. Let i = (i1, . . . , in) ∈ In, and denote Xi =
Xi1 ×X . . . ×X Xin and X ′

i
= (Xi1 ×Y Y ′) ×X′ . . . ×X′ (Xin ×Y Y ′) ≃Xi ×X X ′. Because colimits are universal in X , it

suffices to show that for each n ≥ 1 and each i ∈ In, the diagram

F (X ′

i
) F (Y ′)

F (Xi) F (Y )

is a pullback. Considering the diagram

F (X ′

i
) F (Vi) × F (Y ′) F (Y ′)

F (Xi) F (Vi) × F (Y ) F (Y )

we note that the right square is a pullback because F preserves finite products, so it suffices to show that the left
square is a pullback. The ∆2 ×∆1-shaped diagram above is the image under F of the diagram

X ′

i
Vi × Y

′ Y ′

Xi Vi × Y Y

In this diagram, the outer rectangle and right square are pullbacks by construction, so the left square is also a
pullback. Since the left lower horizontal map is admissible by assumption, we conclude, since F preserves pullbacks
along admissible maps.

Remark 3.1.0.33. We refrain from calling the class of morphisms just defined étale since this phrase has already
been standardized (‘étale map of geometric stacks’), and we will use that terminology in the same sense in later
sections. In contrast, we will encounter strongly étale morphisms mainly when we deal with infinite dimensional
manifolds that have enough smooth bump functions. Viewed as higher stacks on the site of manifolds, infinite
dimensional manifolds (in derived differential geometry) are not geometric in the same sense that algebraic stacks (in
derived algebraic geometry) are geometric.
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3.1.1 Spectra and schemes

We have seen that for the geometry GZar(k) and a topological space X, there is an equivalence StrGZar(k)(Shv(X)) ≃
ShvCAlgk(X) and with a little more work, it can be shown that StrlocGZar(k)

(Shv(X)) may actually be identified with
the subcategory of ShvCAlgk(X) of sheaves for which the stalk at each point of X is a local (in the ordinary sense of
commutative algebra) k-algebra, and local morphisms between them. It follows that the ∞-category RTop(GZar(k))
contains the category RingSpacelock of locally k-ringed spaces as a full, discrete subcategory. Taking the Zariski
spectrum SpecA of a commutative k-algebra A yields a functor Spec ∶ CAlgopk → RingSpacelock right adjoint to the
global sections functor Γ ∶ RingSpacelock → CAlgopk . The goal of this subsection is to describe, for any geometry G, a
spectrum functor SpecG ∶ Pro(G) → RTop(G) right adjoint to the functor taking global sections ΓG , so that we have
a weak equivalence of Kan complexes

HomPro(G)(ΓG(X ,OX )),A) ≃ HomRTop(G)((X ,OX ),SpecG A)

Taking suitable geometries, we will see that this spectrum functor encompasses many classical constructions, such as
the prime spectrum of commutative k-algebras just discussed (for G = GZar(k)), but also the ‘real spectrum’ of a C∞-
ring as reviewed in [Joy12a] (for G the geometry defined in subsection 3.1.3). Armed with SpecG , we immediately
have a notion of affine G-schemes, which are just the G-structured spaces in the essential image of the spectrum
functor. Arbitrary G-schemes are then constructed as étale gluings of affine ones.
We start by defining global sections. For each pair (X ,X) ∈ LTop where X is an object of X , the global sections
Γ(X) ∈ S are given by HomX (1X ,X) where 1X is a final object of X . Because S is initial in LTop, we have a weak
equivalence HomLTop

((S,1S), (X ,X) ≃ HomX (1X ,X)). Accordingly, we take the global sections functor

Γ ∶ LTopÐ→ S

to be the functor corepresented by (S,1S). For a geometry G, we define ΓG as the composition

ΓG ∶ LTop(G)Ð→ Fun(G, LTop)Ð→ Fun(G,S).

Concretely, ΓG is given on objects by

(X ,OX )↦ (A↦ HomX (p∗1S ,OX (A))), A ∈ G,

so ΓG(X ,OX ) is a left exact functor, that is, ΓG factors through Ind(Gop).

Construction 3.1.1.1 (G-spectrum). Let G be a geometry. We say that a morphism f ∶ U → X in Pro(G) is
admissible if f fits into a pullback diagram

U j(U ′)

X j(X ′)

f j(f ′)

where f ′ ∶ U ′ → X ′ is an admissible morphism in G and j ∶ G → Pro(G) is the Yoneda embedding. Lemma 2.2.4 of
[Lur11b] tells us that

(1) Every equivalence in Pro(G) is admissible.

(2) The collection of admissible morphism is closed under taking pullbacks along any morphism in Pro(G).

(3) For a commutative diagram

A C

B
f

h

g

with g admissible, f is admissible if and only if h is admissible.

Let Pro(G)ad
/X be the full subcategory of Pro(G)/X spanned by admissible morphisms to X. This ∞-category is

essentially small, as all admissible maps are pullbacks of admissible maps in G. We make Pro(G)ad
/X into an ∞-site by

endowing it with the Grothendieck topology generated by the covering families of the form {j′(Vα)×j(U ′) U → U}α∈I
for U → j(U ′) some morphism and {Vα → U ′}α∈I an admissible covering of U ′ in G.
Let SpecX denote the ∞-topos Shv(Pro(G)ad

/X). We define a G-structure on SpecX, given by sending an object Y ∈ G
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to the sheafification of the presheaf sending an admissible map U →X to colim iHomG(Ui, Y ), where Ui is a filtered
diagram with colimit U in Gop. More formally, we have a functor

G ×Pro(G)ad
/X Ð→ G ×Pro(G) = G × Funlex(G,S) evÐ→ S

where the last functor is the evaluation pairing. By adjunction we get a functor ρ ∶ G → PShv(Pro(G)ad
/X); now we let

OSpecX be the composition

OSpecX ∶ G ρÐ→ PShv(Pro(G)ad
/X) LÐ→ Shv(Pro(G)ad

/X),
where L is a sheafification functor. Notice that OSpecX is indeed a local G-structure on SpecX: ρ is manifestly left
exact and L is a left exact localization, so OSpecX is also left exact. It’s easy to see that OSpecX is local, that is, for
an admissible covering {Vβ → Y }β∈J the map ∐βOSpecX(Vβ)→ OSpecX(Y ) is an effective epimorphism.

Proposition 3.1.1.2. Let G be a geometry. The global sections functor ΓG ∶ LTop(G) → Ind(Gop) has a left adjoint
SpecG which on objects coincides with the G-structured ∞-topoi of construction 3.1.1.1.

Proof. This is [Lur11b], theorem 2.2.12.

The spectrum functor for a pregeometry is defined similarly.

Construction 3.1.1.3 (T -spectrum). Let T be a pregeometry. For X ∈ T , let T ad
/X be the ∞-category of admissible

maps in T over X, endowed with its Grothendieck topology generated by admissible morphisms. The spectrum
SpecT X is the pair (Shv(T ad

/X ),OX , where OX denotes the composition T → PShv(T ad
/X )→ Shv(T ad

/X ), where the last
map is a sheafification functor. One easily verifies that OX is a T -structure.

Example 3.1.1.4. Consider the pregeometry TDiff . Clearly, (TDiff)ad
/M ≃ Open(M), so the ∞-topos SpecM is simply

Shv(M). The spectrum functor produces a local TDiff -structure on Shv(M) that coincides with the functor

TDiff → Shv(M), N ↦ (U ↦ HomTDiff (U,N)).

Notice that this functor lands in sheaves because the topology on TDiff is subcanonical.

Remark 3.1.1.5. The flexibility of the spectrum functor constructed here is not just philosophically satisfying.
Construction 3.1.1.1 will reappear in section 4 when we deal with geometries of modules.

Now that we have set up the necessary theory, we can give a first definition of derived manifolds.

Definition 3.1.1.6. A TDiff -structured ∞-topos (X ,OX ) is an affine derived manifold of finite presentation if
(X ,OX ) is a retract of a finite limit of TDiff -structured ∞-topoi of the form SpecTDiff M , for M a smooth man-
ifold. Since the functor RTop(TDiff) → Top preserves finite limits and 0-localic Hausdorff ∞-topoi are stable under
limits and retracts, we deduce that affine derived manifolds of finite presentation have 0-localic underlying ∞-topoi.
A 0-localic Hausdorff TDiff -structured ∞-topos (X ,OX ) is an derived manifold of finite presentation if there is a
countable collection of objects Uα of X and an effective epimorphism ∐αUα → 1 such that for each α, (X/Uα ,OX ∣Uα)
is an affine derived manifold of finite presentation.

Remark 3.1.1.7. The definition above is basically the one given by Spivak [Spi10] and Wallbrige [Wal17] (but
note that Spivak only takes pullbacks of manifolds, not arbitrary finite limits). While this definition is conceptually
appealing, it is far from practical. In the coming sections our main concern will be with finding more suitable
models for the ∞-category spanned by affine derived manifolds of finite presentation. In fact, we will give an explicit
description of a geometry Gder

Diff such that the affine Gder
Diff -schemes are precisely the affine derived manifolds of finite

presentation.

3.1.2 Geometric envelopes and truncations

Let T be a pregeometry. While sometimes T has all finite limits, it usually does not; the point of introducing
admissibility structures is to specify a collection of extant, well-behaved finite limits. When passing from ordinary
geometry (smooth, analytic, algebraic,...) to derived geometry, we start with the pregeometry T of ‘smooth affines’
which we complete with respect to finite limits, in such a way that the admissible pullbacks are preserved, that is, we
produce a canonical geometry G out of T . We will see that producing such a geometric envelope is always possible.
This canonical derived geometry is related to the classical theory of non-smooth affine spaces (C∞-schemes, analytic
spaces, schemes,...) by truncation: we can choose to form the finite limit-completion of T in the ∞-category of
n-categories for each n ≥ 1. The resulting n-truncated geometric envelopes G≤n are approximations to the derived
geometry G, and it can be shown that G≤n is obtained as the compact objects of τ≤nInd(G). In many cases, the 0-
truncated geometric envelope G≤0 actually coincides with the usual theory of T -schemes of finite type. For example,
for the pregeometry TZar(k) of example 3.1.0.13, there is a geometric envelope of derived affine k-schemes Gder

Zar(k)
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describing derived algebraic geometry for the Zariski topology, and the 0-truncated geometric envelope is the geometry
GZar(k) of affine k-schemes describing ordinary algebraic geometry.
We define the geometric envelope of a pregeometry by a universal property.

Definition 3.1.2.1. Let T be a pregeometry. A functor ϕ ∶ T → G exhibits G as geometric envelope of T if G is an
essentially small idempotent complete ∞-category that has finite limits, ϕ ∈ Funad(T ,G), and for each idempotent
complete ∞-category C that has finite limits, composition with ϕ yields an equivalence of ∞-categories

Funlex(G,C) ≃Ð→ Funad(T ,C).

If ϕ ∶ T → G exhibits G as geometric envelope of T , we endow G with the coarsest admissibility structure such that
ϕ is a transformation of pregeometries.

Remark 3.1.2.2. The uniqueness of the geometric envelope may be explained as follows: let Catlex,Idem
∞ denote the

subcategory of Cat∞ spanned by idempotent complete ∞-categories that admit finite limits, and left exact functors
between them. The assignment C ↦ Funad(T ,C) defines a functor Catlex,Idem

∞ → Cat∞ and thus a coCartesian fibration
T→ Catlex,Idem

∞ . Now a geometric envelope of T is precisely an initial object in T; in other words, a geometric envelope
G 2-represents the functor Funad(T , ), in the sense of [GHN15], for instance.

The existence of geometric envelopes is guaranteed by the procedure of adding (co)limits to ∞-categories as
exposed in [Lur17b], section 5.3.6.4: we consider the collection K of simplicial sets indexing finite colimits and
idempotents. First, we consider the ∞-category S−1PShv(T op) obtained by localizing PShv(T op) at the set S of
maps X → j(Y ), where X is a colimit of an admissible pushout diagram in PShv(T op) and j(Y ) is the image of the
Yoneda embedding of a colimit of the same pushout diagram taken in T op itself. Then we let Gop be the smallest
full subcategory of S−1PShv(T op) containing the essential image of T op → PShv(T op)→ S−1PShv(T op) that is stable
under colimits of diagrams indexed by simplicial sets in the collection K. The ∞-category G so obtained satisfies the
desired properties by [Lur17b], prop. 5.3.6.2.
Passing to the geometric envelope G of a pregeometry T yields the same theory of structured spaces:

Proposition 3.1.2.3. Let T be a pregeometry and let f ∶ T → G exhibit G as a geometric envelope of T . Then
composition with f induces equivalences StrG(X ) ≃ StrT (X ) and StrlocG (X ) ≃ StrlocT (X ) for any ∞-topos X . Moreover,
the functors SpecT and SpecG ○ j ○ f are canonically equivalent, where j ∶ G → Pro(G) is the Yoneda embedding.

Proof. This is [Lur11b], prop. 3.4.7 and prop. 3.5.7.

Remark 3.1.2.4. Let f ∶ T ↪ G exhibit G as a geometric envelope of T . Composing f with the functor L ○ j ∶ G →
Shv(G) induces a functor f ′ ∶ T → Shv(G) which is a local T -structure because f is a transformation of pregeometries.
Suppose that the topology on T is subcanonical, then by proposition 3.1.0.29, f ′ comes from a functor

F ∶ Shv(T )Ð→ Shv(G)

which preserves small colimits, finite products and admissible pullbacks. We claim that F is a left adjoint to the
functor f∗ ∶ Shv(G)→ Shv(T ) given by restriction of sheaves. In particular, F can be identified with the functor

Shv(T )Ð→ PShv(T ) f!Ð→ PShv(G) LÐ→ Shv(G).

To see this, note that F is the restriction to sheaves of a left Kan extension j!f
′ of f ′ along the Yoneda embedding

into presheaves. Now both j!f
′ and L ○ f! are colimit preserving functors on PShv(T ), so they are equivalent if and

only if their restrictions to T are equivalent, which is obviously the case.

If OX is a local T -structure on X , it might not be the case that the truncation

τ≤nOX ∶= τ≤n ○OX ∶ T → X τ≤n→ X

is a local T -structure. Being able to take truncations of the structure sheaves of objects in RTop(T ) is a highly
desirable feature for a pregeometry T to have, as it allows for arguments by induction up the Postnikov tower, which
can be handled by obstruction theory in specific cases. If T satisfies the following definition, then truncated local
T -structures are still local T -structures.

Definition 3.1.2.5. A pregeometry T is compatible with n-truncations if for each ∞-topos X , each T -structure O
on X and each admissible map U →X, the diagram

O(U) τ≤nO(U)

O(X) τ≤nO(X)

is a pullback.
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Remark 3.1.2.6. All the pregeometries we have seen so far are discrete. Proposition 3.3.5 of [Lur11b] tells us that
such pregeometries are compatible with n-truncations for n ≥ −1.

For each truncation n ≥ −1, we can make sense of n-truncated geometric envelopes, which should be thought of
as interpolating between the ‘classical’ enveloping geometry and the ‘fully derived’ geometry.

Definition 3.1.2.7. Let T be a pregeometry. A functor ϕ ∶ T → G exhibits G as an n-truncated geometric envelope
of T if G is an essentially small n-category that has finite limits1, ϕ ∈ Funad(T ,G), and for each idempotent complete
∞-category C that has finite limits, composition with ϕ yields an equivalence of ∞-categories

Funlex(G,C) ≃Ð→ Funad(T ,C).

If ϕ ∶ T → G exhibits G as an n-truncated geometric envelope of T , we endow G with the coarsest admissibility
structure such that ϕ is a transformation of pregeometries.

Remark 3.1.2.8. Given the existence of geometric envelopes, the existence of n-truncated geometric envelopes can
be established as follows: take a functor f ∶ T → G exhibiting G as a geometric envelope of T , then the canonical
functor T → G → G′n, where G′n is the opposite category of the n-category of compact objects in τ≤nInd(Gop), exhibits
G′n as an n-truncated geometric envelope of T .

Here we give some examples of geometric envelopes for pregeometries mentioned.

Example 3.1.2.9 (Geometric envelopes of TZar(k)). For k a commutative ring, we may consider the ∞-category of
simplicial commutative k-algebras, denoted sCAlgk, which is defined as the ∞-category of algebras for the finite limit
theory whose objects are all the affine k-spaces Ank and whose morphisms are polynomial maps (see section 4.1 for
finite limit theories or section 4 of [Lur11b] where this example is discussed in great detail). When char(k) = 0, sCAlgk
can be shown to be equivalent to the ∞-category of E∞Algcnk of connective E∞-algebra objects in the ∞-category
of k-modules, via the Barr-Beck theorem. The ∞-category Gder

Zar(k) is defined as the opposite of the ∞-category
of finitely presented objects in the presentable ∞-category sCAlgk. We have an equivalence τ≤0sCAlgk ≃ N(CAlgk)
which remains an equivalence after restricting to finitely presented objects. Again, we may define for each simplicial
k-algebra B and each b ∈ τ≤0B, a localization B → B[1/b] defined up to equivalence. We endow Gder

Zar(k) with the
following admissibility structure:

(1) A morphism SpecA → SpecB is admissible if and only if there exists some element b ∈ τ≤0B such that the map
B → A induces an isomorphism B[1/b] ≅ A.

(2) A collection of admissible morphism {SpecBi[1/bi]→ SpecB}i is an admissible covering if and only if the elements
{bi} generate the unit ideal in B.

There is an obvious functor TZar(k) ↪ Gder
Zar(k) which, according to [Lur11b], prop. 4.2.3, exhibits Gder

Zar(k) as a
geometric envelope of TZar(k). It follows that for each 0 ≤ n <∞, the map Gder,≤n

Zar (k) defined as the opposite of the
full subcategory of τ≤nsCAlgk spanned by finitely presented objects, is an n-truncated geometric envelope of TZar(k).
In particular, the geometry GZar(k) ≃ τ≤0sCAlgk of example 3.1.0.15 is a 0-truncated geometric envelope of TZar(k).

The construction of the geometric envelopes of the étale pregeometry follows along similar lines, but we do not
give the details here since we do not yet have the means to talk about étale maps of simplicial commutative rings.
One may wonder what the geometric envelopes of TDiff look like. A partial answer is given in the following subsection.

3.1.3 The geometry of finitely presented C∞-rings

In this section, we take some time to study C∞-rings and C∞-schemes within the framework of geometries and
structured spaces. While not strictly necessary, some familiarity with ordinary C∞-rings and synthetic differential
geometry, as exposed, for instance, in the textbook [MR91] or the more recent [Joy12a], will be advantageous to the
reader.

Definition 3.1.3.1. Let CartSp ⊂ TDiff be the full subcategory spanned by objects of the form Rn for n ≥ 0. A
C∞-ring is an algebra for the Lawvere theory CartSp, i.e., a finite product preserving functor CartSp → Set. The
full subcategory of Fun(CartSp,Set) spanned by C∞-rings is denoted C∞ring. This is a strongly reflective, and thus
presentable, subcategory of Fun(CartSp,Set).

We will discuss Lawvere theories and their ∞-categories of space-valued algebras in more detail in section 4.1.1.
Unwinding the definition, a C∞-ring A consists of a set A(R) equipped with a functional calculus for all smooth
functions; that is, we have functorial operations

f∗ ∶ A(R)n Ð→ A(R)m

1Idempotent completeness is automatic for n-categories that have finite limits
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for each smooth map f ∶ Rn → Rm. We will often abuse notation and write ‘an element a ∈ A’ for a ∈ A(R). Let
T discR be the category that has the same objects as CartSp, but only polynomial maps; this is a Lawvere theory, and
its algebras are precisely commutative R-algebras. The transformation of Lawvere theories T discR → CartSp induces
an ‘underlying commutative R-algebra’ functor ( )alg ∶ C∞ring → CAlgR. Many C∞-rings of interest are subsumed by
the following examples.

(1) The forgetful functor ( )alg ∶ C∞ring → CAlgR preserves limits and sifted colimits, and thus admits a left adjoint,
the free C∞-ring functor F , which takes the polynomial algebra R[x1, . . . , xn] to C∞(Rn).

(2) Let A be a C∞-ring and let I ⊂ A be an ideal of the underlying R-algebra. Then A/I is a C∞-ring and the map
A→ A/I is regular epimorphism, i.e. it is the coequalizer in C∞ring of the equivalence relation determined by I.

(3) For a subset X ⊂ Rn, the algebra of smooth functions

C∞(X) ∶= {f ∶X → R; ∀x ∈X there exists x ∈ U ⊂ Rn open and f̃ ∈ C∞(U) such that f̃ ∣X∩U = f ∣U}

is a C∞-ring by composition. If X is a closed subset, then an application of the Tietze extension theorem shows
that the natural map C∞(Rn) → C∞(X) induces an isomorphism C∞(Rn)/m0

X → C∞(X), where m0
X is the

ideal of functions that vanish on X. In particular (by the Whitney embedding theorem), the algebra of smooth
functions on a manifold M is a C∞-ring of the form C∞(Rn)/m0

M .

(4) For x ∈ Rn, the local algebra of germs of smooth functions at x is a C∞-ring, given by C∞(Rn)x ∶= C∞(Rn)/mx
with mgx the ideal of smooth functions vanishing in some neighbourhood of x.

(5) Every local Artin R-algebra W = R ⊕ m is a C∞-ring, whose C∞-ring structure is uniquely determined by the
underlying algebra. Such C∞-rings are also called Weil algebras.

(6) Let m be the maximal ideal of the C∞-ring of germs C∞(Rn)0. The C∞-ring Jkn ∶= C∞(Rn)0/mk of k’th order
jets at 0 is a Weil algebra.

(7) LetR be a complete local Noetherian R-algebra with residue class field R, thenR is of the formR ≅ R[[x1, . . . , xn]]/I
for some ideal I, by Cohen’s structure theorem. By Borel’s lemma on formal power series, there is an equivalence
C∞(Rn)/m∞

0 ≅ R[[x1, . . . , xn]], where m∞
0 is the ideal of functions that are flat at 0 (all partial derivatives vanish

at 0). Thus, R can be written as a quotient by m∞
0 of C∞(Rn)/Ĩ, where Ĩ is a finitely generated (because

R[[x1, . . . , xn]] is Noetherian) ideal lifting I, so we conclude that R is a C∞-ring. It’s easy to see that all algebra
morphism between complete local Noetherian R-algebras are morphisms of C∞-rings, so the C∞-ring structure
of R is also uniquely determined by the underlying algebra, as in the case of Weil algebras (which this example
subsumes).

Remark 3.1.3.2. The essential image of the free C∞-ring functor F ∶ CAlgR → C∞ring already contains many
interesting objects. For instance, F (CAlgR) contains all C∞-rings of smooth functions on compact manifolds. This
is an immediate consequence of the Nash-Tognoli theorem [Nas52; Tog73], which extends an older result of Whitney
that all compact submanifolds of Euclidean space are diffeomorphic to zero loci of systems of real analytic equations.

Remark 3.1.3.3. Clearly, functions on manifolds that have less regularity also form C∞-rings: let M be a manifold,
then there are C∞-rings Ck(M) of k-times differentiable functions and Lipk(M) of k-times differentiable functions
with locally Lipschitz derivatives. Let M be an n-dimensional manifold and let k ∈ Q≥0 and p ∈ Z>0 such that
kp > n, then the space W k,p

loc (M) of Sobolev functions of class (k, p) is also a C∞-ring by an extension of the
Sobolev multiplication theorems, which can be deduced from the Gagliardo-Nirenberg interpolation estimates (see,
for instance, [Melb]).

Notation 3.1.3.4. The functor ( )alg does not preserve pushouts nor coproducts in general. We reserve the symbol
⊗∞ for the pushout of C∞-rings.

Definition 3.1.3.5. A C∞-ring A is finitely generated if A ≃ C∞(Rn)/I for some n < ∞. A is finitely presented if
A ≃ C∞(Rn)/I for some n <∞ and I a finitely generated ideal.

Remark 3.1.3.6. A C∞-ring A is finitely presented if and only if the functor corepresented by A (on the category
of C∞-rings) preserves filtered colimits. A is finitely generated if and only if the functor corepresented by A preserves
filtered colimits of diagrams consisting only of monomorphisms. See [AR94], chapter 3 for proofs of these facts. As
the category of C∞-rings is presentable, we see that the full subcategories spanned by finitely generated and finitely
presented C∞-rings have finite colimits.
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Remark 3.1.3.7. Let f ∶ N →M and g ∶ P →M be smooth maps of manifolds. We say that the pullback N ×M P is
transverse if for each x1 ∈ N , x2 ∈ P such that f(x1) = x = p(x2), the induced map Tx1f ⊕Tx2g ∶ Tx1N ⊕Tx2P → TxM
is a surjection. An elementary but crucial result in synthetic differential geometry is the following: the functor
C∞ ∶ TDiff → C∞ringop is fully faithful, takes values in finitely presented objects, and preserves finite products and
transverse pullbacks. For a proof, see [MR91], chapter 1, theorem 2.8. The next chapter shall be concerned with
proving a derived version of this result.

Remark 3.1.3.8. For f ∶M → Rn a function on a manifold, we call the set Carr(f) ∶= f−1(Rn ∖ {0}) the carrier of

f , and we call the set Supp(f) ∶= Carr(f) the support of f . We will use frequently that any open set U → M in a
manifold has a characteristic function χU ∶M → R, a function on M such that Carr(χU) = U . We will also use that
any function f ∈ C∞(U) defined on an open set U ⊂M of a manifold M is divisible by some function g∣U where g is
defined on all of M and nonzero on U .

For any n > 0, the C∞-rings C∞(Rn) do not satisfy the the conclusion of the Nullstellensatz for arbitrary ideals;
instead, we single out three classes of ideals for which the weak version of the Nullstellensatz does hold. Let M be a
smooth manifold of dimension n > 0 and let I be an ideal of the commutative algebra C∞(M). For x ∈M , we have
the ideals

(1) m0
x of functions that vanish at x, and the quotient map C∞(M)→ C∞(M)/m0

x ≅ R is the map evx evaluating at
x.

(2) m∞
x of functions that are flat at x, and choosing coordinates centered at x, the quotient map C∞(M) →

C∞(M)/m∞
x ≅ R[[x1, . . . , xn]] is the map j∞x taking the infinite jet at x.

(3) mgx of functions that vanish in a neighbourhood of x, and choosing coordinates centered at x, the quotient map
C∞(M)→ C∞(M)/mgx ≅ C∞(Rn)0 is the map taking the germ at x.

Since surjections of ring maps carry ideals to ideals, it makes sense to ask whether a function f ∈ C∞(M) is pointwise,
formally, or locally contained in an ideal I.

Definition 3.1.3.9. Let M be a smooth manifold of dimension n > 0, and let I ⊂ C∞(M) be an ideal. Write Z(I)
for the common zero locus of the functions in I.

(1) I is point determined iff for all f ∈ C∞(Rn), f ∈ I iff f(x) = 0 for all x ∈ Z(I).

(2) I is jet determined or closed iff for all f ∈ C∞(Rn), f ∈ I iff j∞x (f) ∈ j∞x (I) for all x ∈ Z(I), where j∞x ∶ C∞(Rn)→
R[[x1, . . . , xn]] carries a function to its formal power series at x.

(3) I is locally determined or germ determined iff for all f ∈ C∞(Rn), f ∈ I iff fx ∈ Ix for all x ∈ Z(I), where fx and
Ix are the germ of f at x and the ideal of C∞(M)x of germs at x of functions in I.

Remark 3.1.3.10. Here are some properties of the classes of ideals just defined.

(1) Point determined implies jet determined implies germ determined. None of these implications can be reversed in
general. For instance, the ideal I ⊂ C∞(R) of functions whose jet at 0 vanishes is jet determined but not point
determined. An ideal of C∞(R) generated by a compactly supported function is germ determined but not jet
determined. Finally, for an ideal that satisfies none of the conditions above -and for which the Nullstellensatz
fails completely- consider the ideal of compactly supported functions in C∞(R).

(2) A collection of functions {f1, . . . , fm} on M generates a point determined ideal if the functions {f1, . . . , fm} are
independent, that is, the zero locus of (f1, . . . , fm) ∶M → Rm consists of regular points.

(3) Recall that given a collection of functions {fα} ⊂ C∞(M) such that their carriers furnish a locally finite collection
of opens on M , the pointwise sum ∑α fα exists in C∞(M) and is called a locally finite sum. An ideal I ⊂ C∞(M)
is germ determined if and only if I is closed under taking locally finite sums. It follows easily that finitely
generated ideals are germ determined.

(4) Let I ⊂ R[[x1, . . . , xn]] be an ideal, then in order to conclude that h ∈ I, it suffices to show that for all k ∈ Z>0,
h ∈ I +mk, where m = (x1, . . . , xn), the unique maximal ideal. Indeed, it suffices to show that I = ∩k≥1(I +mk).
The inclusion I ⊂ ∩k≥1(I +mk) is obvious. For the other inclusion, it suffices to show that p(∩k≥1(I +mk)) = 0,
where p ∶ R[[x1, . . . , xn]]→ R[[x1, . . . , xn]]/I is the projection, but we clearly have

p(⋂
k>1

(I +mk)) ⊂ ⋂
k≥1

p(I +mk) = ⋂
k≥1

p(m)k.

Since p is a local morphism, p(m) is the maximal ideal of R[[x1, . . . , xn]]/I so Krull’s intersection theorem yields
∩k≥1p(m)k = 0 as R[[x1, . . . , xn]]/I is local and Noetherian.
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(5) We say that a finitely generated C∞-ring A = C∞(Rn)/I is point determined (closed, germ determined) if I is
a point determined (closed, germ determined) ideal. This does not depend on the presentation of A. Thus, if
C∞(Rn)/I ≅ C∞(Rm)/J and I is point determined (closed, germ determined), then J is point determined (closed,
germ determined) as well. As an application, let M be a manifold and note that as M lies in some Rn as a closed
submanifold, C∞(M) is a point determined C∞-ring. As C∞(M) is finitely presented, this shows that we have
a presentation C∞(M) ≅ C∞(Rn)/I where I is a finitely generated and point determined ideal.

Remark 3.1.3.11. Let X ⊂ Rn be a subset. We define the following ideals of C∞(Rn) associated to X:

m0
X ∶ = {f ∈ C∞(Rn)∣ f(p) = 0∀p ∈X},

m
∞
X ∶ = {f ∈ C∞(Rn); Dαf(p) = 0∀p ∈X},

m
g
X ∶ = {f ∈ C∞(Rn); ∃U ⊃X open, f ∣U = 0}.

In the second line, Dα denotes the differential operator ∂α1
x1
. . . ∂αnxn for α a multi-index (α1, . . . , αn) ∈ (Z≥0)n. m0

X is

point determined, m∞
X is closed and mgX is germ determined. If X ⊂X○, then m0

X = m∞
X .

As we have seen, the Tietze extension theorem shows that for X ⊂ Rn closed subset, we have C∞(Rn)/m0
X ≅

C∞(X). There is a similar characterization of C∞-rings of the form C∞(Rn)/m∞
X that uses Whitney’s extension

theorem.

Definition 3.1.3.12. Let X ⊂ U be a closed subset of an open subset in Rn, and let F = (fk)k∈Zn≥0 be a collection of
continuous functions for each multi-index k. F is a Whitney function if for each m ≥ 0, we have for x,y ∈X

fk(x) = ∑
∣l∣=m−∣k∣

f l+k(y)
l!

(x − y)l +Rk(x,y),

where Rk(x,y) is a term that goes to 0 as ∣x − y∣→ 0 faster than ∣x − y∣m−∣k∣.

The following easy lemma shows that if X ⊂ Rn is a closed quadrant, then the Whitney functions on X coincide
with the functions that have infinitely many derivatives up to the boundary.

Lemma 3.1.3.13. Let X ⊂ Rn be a closed convex subset with nonempty interior. Then restriction to X○ induces an
equivalence between C∞(X;Rn) and the space

{f ∈ C∞(X○); Dαf is bounded on X○}.

Proposition 3.1.3.14 (Whitney Extension Theorem [Whi34]). Let X ⊂ U be a closed subset of an open subset in
Rn, then taking the infinite jet prolongation and restricting to X yields an isomorphism C∞(U)/m∞

X ≅ C∞(X;U).

A proof can be found in [Mal66]. We record the following pleasant property of flat ideals, i.e. ideals of the form
m∞
X for X ⊂ Rn closed.

Theorem 3.1.3.15 (Reyes-van Quê [QR82]). Let X ⊂ Rn and Y ⊂ Rm be closed, then as ideals of C∞(Rn+m) we
have the equality (m∞

X ,m
∞
Y ) = m∞

X×Y .

Corollary 3.1.3.16. Let X ⊂ Rn and Y ⊂ Rm be closed subsets, then the canonical map

C∞(X;Rn)⊗∞ C∞(Y ;Rm)Ð→ C∞(X × Y ;Rn+m)

is an equivalence.

Remark 3.1.3.17. We will also prove a derived version of the result above, which shows in particular that the local
models for manifolds with corners behave well under the derived tensor product of C∞-rings, which is the starting
point for derived C∞-geometry with corners.

We now define the admissible maps for a geometry with underlying category C∞ringopfp . These maps will correspond
to open inclusions of C∞-schemes.

Definition 3.1.3.18. Let A be a C∞-ring and let a ∈ A. A map f ∶ A→ B such that f(a) is invertible exhibits B as
a localization of A if for each C∞-ring C, composition with f induces a bijection

HomC∞ring(B,C) ≃Ð→ Hom0
C∞ring(A,C)

where Hom0
C∞ring(A,C) is the subset of maps that send a to an invertible element.
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Remark 3.1.3.19. A localization of an element a ∈ A is clearly unique up to unique isomorphism, and we denote it
A→ A[a−1]. The localization always exists and can be constructed as the pushout C∞(R∞∖{0})⊗∞C∞(R)A where the
map C∞(R)→ A corresponds by the Yoneda bijection Homring(C∞(R),A) ≃ A(R) to a. To see this, we write A as a
filtered colimit of its finitely generated subalgebras that contain a, reducing to the case A = C∞(Rn)/I. It is easy to
see that the localization of A is the pushout of C∞(Rn)[ã−1]⊗∞C∞(Rn) A, where ã is some lift of a to C∞(Rn), so we
reduce to the case of free C∞-rings (for a more detailed version of this argument, see the proof of proposition 4.1.3.13).
For this case, the localization of ã ∈ C∞(Rn) coincides with C∞(Rn+1)/(y ⋅ ã− 1) where y is the (n+ 1)’st coordinate,
for algebraic reasons. Since the ideal (y ⋅ ã − 1) is point determined, it is also the ideal of functions vanishing on the
zero locus of y ⋅ ã − 1, which is diffeomorphic to ã−1(R ∖ {0}), whose C∞-ring of smooth functions is in turn given by
C∞(Rn)⊗∞C∞(R) C

∞(R ∖ {0}).

Remark 3.1.3.20. The analysis of the previous remark shows that in many cases, the C∞-ring localization is very
different from the R-algebraic localization. Indeed, inverting the identity in C∞(R) yields only those smooth functions
f(x) on R ∖ {0} that approach infinity at most polynomially fast as x→ 0.

Notation 3.1.3.21. We will denote GDiff for the opposite category of the category of finitely presented C∞-rings. To
notationally distinguish a finitely presented C∞-ring A from A as an object of GDiff , we use the notation SpecA in the
latter case. We also say that an ideal J of a finitely presented object C∞(Rn)/I is germ determined if the pullback
of J along the quotient map C∞(Rn)→ C∞(Rn)/I is germ determined (equivalently, the C∞-ring (C∞(Rn)/I)/J is
germ determined).

We endow GDiff with the structure of a geometry according to the following prescription:

(1) A map f ∶ SpecA→ SpecB in GDiff is admissible if and only if there exists an element b ∈ B such that the image
of b under f is invertible in A and the induced map B[1/b]→ A is an equivalence.

(2) A collection {SpecB[1/bα] → SpecB}α∈J generates a covering sieve if and only if the germ determined ideal
generated by the elements bα in B contains the unit.

Remark 3.1.3.22. To see that this is a geometry, we only have to check that the admissible maps are stable under
retracts and that, if g is admissible and h another map with codomain being the domain of g, then h is admissible
if and only if g ○ h is admissible. The stability under pullbacks follows at once from remark 3.1.3.19. For stability
under retracts, consider a localization f ∶ A→ A[1/a] and a retraction diagram

A′ A A′

B A[1/a] B

h

f

Now B is the localization A′[1/h(a)]. To see this, note that for a map A′ → C that inverts h(a), we get a unique
map q ∶ A[1/a]→ C as in the commuting diagram

A′ A A′

B A[1/a] B C

h

f

g

q

so we have map B → C as q ○g. Note that this map is unique: suppose we have p and p′ as in the commuting diagram

A′ A A′

B A[1/a] B C

h

f

g k
p

p′

then by uniqueness k equalizes p and p′, and because the diagram is a retraction we have p = p ○ k ○ g = p′ ○ k ○ g = p′.
We have the claims about compositions of admissibles left to check. It is clear that the localization A[1/a][1/ba] is
equivalent to A[1/dab] for some dab ∈ A as this is obvious for localizations of C∞(Rn), and all localizations of finitely

presented objects are pushouts of these. It is also easy to verify that for a diagram A
f→ A[1/a] → A[1/b] where f

and the composition are localizations, we have A[1/b] ≃ A[1/a][1/f(b)].

Remark 3.1.3.23. The relation between the pregeometry TDiff and the geometry GDiff is as follows: by corollary
4.1.4.7, GDiff is a 0-truncated geometric envelope of TDiff .
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Remark 3.1.3.24. We observe that by remark 3.1.3.19, every admissible map into A = SpecC∞(Rn)/I ∈ GDiff is
pulled back from an admissible map into SpecC∞(Rn). Given an admissible covering {SpecA[1/aα] → SpecA}α∈J ,
we may invoke the axiom of choice and find ãα ∈ C∞(Rn) such that A[1/aα] is a pushout of C∞(Rn)[ãα] along
C∞(Rn) → A. I is finitely generated, so I = (g1, . . . , gn) for some smooth functions g1, . . . , gn; because the germ
determined ideal generated by the collection {aα}α∈J contains the unit in A, the germ determined ideal collection
{aα}α∈J ⋃{gi}1≤i≤n contains the unit in C∞(Rn), so we have an admissible covering

{SpecC∞(Rn)[1/aα]→ C∞(Rn)}α∈J ∪ {SpecC∞(Rn)[1/gi]→ C∞(Rn)}1≤i≤n.

By remark 3.1.3.19, each map in this covering corresponds to an open inclusion into Rn. Clearly, if the germ
determined ideal of a collection {fα} of functions in C∞(Rn) generates the unit ideal, then for each maximal ideal I
with residue field R in C∞(Rn), there is some fα not contained in I, so the open collection {f−1

α (R∖{0})} covers Rn.
Conversely, given an open cover {Uα} of Rn, the germ determined ideal generated by the collection of characteristic
functions {χUα} contains a partition of unity subordinate to a locally finite refinement of the cover {Uα}, by point 3 of
remark 3.1.3.10. This shows that the condition on a collection of admissibles to be a covering of C∞(Rn) corresponds
precisely to the condition that the corresponding collection of open inclusions is a covering of Rn in the usual sense.
As a result, the Grothendieck topology on GDiff is generated by the open cover topology on CartSp, in the sense that
every covering family in GDiff is pulled back from a covering family in CartSp.

Let O ∶ GDiff → S be a GDiff -structure in spaces, which can be identified with a C∞-ring by the equivalences
StrGDiff (S) ≃ Ind(GopDiff) ≃ C∞ring; the corresponding C∞-ring AO is up to unique isomorphism determined by
HomC∞ring(B,AO) = O(B) for B a finitely presented C∞-ring. We’d like to give a characterization of what it means
to be local as a GDiff -structure on S in terms of the corresponding C∞-ring. We need the following lemma, due to
Bunge, Dubuc and Joyal [BD87].

Lemma 3.1.3.25. Any open covering on Rn is generated under pullbacks, composition and refinement by coverings
on R.

Proof. Fix an open covering {Uα → Rn}a∈J . This covering is a composition of the coverings WI = ∐i∈I Uαi for the
finite subsets I ⊂ J . To see that such finite coverings are pulled back from coverings on R, we first reduce any finite
covering to a covering U1∐U2 = W by induction. Choosing characteristic functions χU1 and χU2 , we may replace

them by
χ2
U1

χ2
U1

+χ2
U1

and
χ2
U2

χ2
U1

+χ2
U1

, so that χU1 + χU2 = 1. Now U1 = χ1(R ∖ {0}) and U2 = χ1(R ∖ {1}).
Now we show that the covering {WI → Rn}I⊂J,∣I∣≤∞ is refined by a covering pulled back from R. Choose some covering
{Yk → R} by bounded open sets, and a proper smooth function ϕ ∶ Rn → R (for instance, the square length function
(x1, . . . , xn)→ x2

1 + . . . + x2
n). The opens ϕ−1(Yk) cover Rn and are bounded, so each such open is covered by a finite

collection Uαj1 , . . . , Uαjn and thus ϕ−1(Yk) ⊂WS for some finite index set S. Consequently, there is a refinement map

∐k ϕ
−1(Yk)→∐I⊂J,∣I∣<∞WI .

Proposition 3.1.3.26. O is a local GDiff-structure on S if and only if AO is local as a commutative ring and the
residue field is isomorphic to R.

Proof. We should check that AO is a local ring with residue field R if and only if for each finitely presented C∞-ring
B and each admissible covering {B → B[1/bα]}α∈J , the map

∐
α

HomC∞ring(B[1/bα],AO)Ð→ HomC∞ring(B,AO)

is an epimorphism. By remark 3.1.3.24, any admissible covering on B is pulled back from a covering on a free
C∞-ring, so, because epimorphisms are stable under pullbacks in Set, we note that it is enough to prove the claim
for the collection of free C∞-rings. By the existence of characteristic functions and remark 3.1.3.19, an admissible
covering of SpecC∞(Rn) is the same thing as an open covering of Rn. Thus, we should check that AO is local with
residue field R if only if for each open cover {Uα → Rn}α∈J , the map ∐αO(Uα)→ O(Rn) is an epimorphism. Because
epimorphisms are stable under pullback, composition and refinement in Set, we reduce further to having to check the
statement only for covering families of R. In one direction, consider the open covering R ∖ {0} ∩ R ∖ {1} → R, and
note that we have transverse pullback diagrams

R ∖ {0} R2

∗ R

(a,b)↦ab

1

R ∖ {1} R2

∗ R

(a,b)↦(a−1)b

1

showing that O(R ∖ {0}) = A2
O ×AO {1} is the set A∗

O of invertible elements of AO, and similarly O(R ∖ {1}) is the
set 1−A∗

O of elements a ∈ AO such that 1−a is invertible. Clearly, A∗
O∐(1−A∗

O)→ A is an epimorphism if and only
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if AO is local as a commutative ring. Now we show that there is a map p ∶ AO → R of C∞-rings which is nonzero if
AO is nonzero: O gives a functor

Open(R)Ð→ Sub(AO(R)), U ↦ O(U),

(note that since O preserves all pullbacks in Open(R), O(U) is a subobject of AO(R)), which is a map of locales as
it is left exact and sends coverings to epimorphism. Since the underlying topological spaces of these locales are sober,
we get a map p ∶ AO(R)→ R of sets. To see that this map is in fact a morphism of C∞-rings, it suffices to show that
for a smooth map f ∶ Rn → Rm, the diagram of locales

Open(Rm) Sub(AO(R)m)

Open(Rn) Sub(AO(R)n)
f−1

O

f∗

O

commutes, where the right vertical map f∗ sends a subobject X of AO(R)m to the pullback X ×AO(R)m AO(R)n
along the map f∗ ∶ AO(R)n → AO(R)m. Concretely, for any smooth map f ∶ Rn → Rm and any open in U , we ask
that O(f−1(U)) ≃ O(U) ×O(Rm) O(Rn). This is clearly the case since O preserves pullbacks along open inclusions.
The kernel of the map p ∶ AO → R just constructed is a maximal ideal, so by locality of AO, p must be the projection
onto the residue field.
For the converse, suppose that AO is local with residue field R. We want to show that for any open covering

∐αUα → R, the induced map ∐αO(Uα)→ AO(R) is an epimorphism. Points in AO corresponds by Yoneda to maps
q ∶ C∞(R) → AO, so it suffices to show that each such map factors as C∞(R) → C∞(Uα) → AO for some index α.
The Yoneda embedding CartSpop → C∞ring is fully faithful, so the composition

C∞(R)Ð→ AO Ð→ R

is given by evaluation evx at some x ∈ Uα ⊂ R for some index α; let χUα be a characteristic function for Uα, then
evx(χUα) ≠ 0, implying that the image of χUα under q is not in the maximal ideal ker(q) of AO, so q(χUα) is invertible
in AO by locality. Now q factors through the localization C∞(R)→ C∞(Uα) of χUα so we are done.

Proposition 3.1.3.27. Let α ∶ O → O′ be morphism of local GDiff-structure on S. Then α is a local morphism if and
only if the corresponding morphism fα ∶ AO → AO′ is local as a map of commutative rings.

Proof. The map fα is local as a map of commutative rings if and only if fα reflects invertibility, which is true
if and only if A∗

O ≃ AO ×A∗O′ A
∗
O′ . If α is local, this obviously holds. In the other direction, we want to show

that for each localization B → B[1/b] of finitely presented C∞-rings, the naturality square induced by α gives an
equivalence O(B[1/b]) ≃ O(B) ×O′(B) O′(B[1/b]). Because B is finitely presented, we have a pushout B[1/b] ≃
C∞(R ∖ {0})⊗∞C∞(R) B so we get a commuting cube

A∗
O A∗

O′

O(B[1/b]) O′(B[1/b])

AO AO′

O(B) O′(B)

Because the side faces are pullbacks and the back face is a pullback by assumption, the front face is a pullback as
well.

Corollary 3.1.3.28. Let α ∶ O → O′ be a morphism of local GDiff-structures. Then α is a local morphism.

Proof. As the residue field of both AO and AO′ is R, any morphism of rings between them is local.

In summary, the correct notion of a local C∞-ring (with respect to the geometry GDiff), is that of a local
Archimedean C∞-ring, i.e. a C∞-ring A such that the underlying commutative R-algebra of A is a local ring,
and the residue field of A is R. Whenever we talk about local C∞-rings in the sequel, we mean this notion.
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Remark 3.1.3.29. Let (X ,OX ) be a GDiff -structured ∞-topos that has enough points. Then OX is local if and only
if for each stalk p∗ ∶ X → S the induced C∞-ring is local, and every morphism α ∶ OX → O′

X of local GDiff -structures
is local.

Remark 3.1.3.30. Local C∞-rings are strictly Henselian (in fact, they are separably real closed). The admissibility
structure on GDiff is the C∞-analog of the Zariski admissibility structure; however, in the étale geometry of example
3.1.0.16 describing algebraic geometry over a commutative ring k, the local objects are precisely the strictly Henselian
local rings, so the fact that local C∞-rings are strictly Henselian local rings is explained by the fact that the Zariski
and étale topologies coincide on C∞ring.

Recall that a 0-localic ∞-topos X such that the underlying locale has enough points arises as the ∞-category of
sheaves on a sober topological space; in fact, taking ∞-categories of sheaves yields an equivalence of ∞-categories
between N(Topsob), the ∞-category of sober topological spaces and continuous maps, and RTop′, the full subcategory
of RTop spanned by 0-localic ∞-topoi for which the underlying locales have enough points2. Taking these facts together
with propositions 3.1.3.26, 3.1.3.27 and remark 3.1.3.29, we have the following proposition (see [Lur11b], proposition
2.5.15 for the algebro-geometric situation3)

Proposition 3.1.3.31. Let RingSpaceC∞ be the category of sober topological spaces equipped with sheaves of C∞-rings,
and let RTop′(C∞) be the ∞-category of pairs (X ,OX ) where X is a 0-localic ∞-topos for which the underlying locale
has enough points and OX is a (possibly non-local) GDiff-structure. There is a canonical equivalence of ∞-categories

ζ ∶ N(RingSpaceC∞) ≃Ð→ RTop′(C∞).

Moreover, if we let RingSpacelocC∞ be the category of sober topological spaces equipped with sheaves of local C∞-rings,
then ζ restricts to an equivalence

ζ ∶ N(RingSpacelocC∞) ≃Ð→ RTop′(GDiff),

where RTop′(GDiff) is the ∞-category of 0-localic GDiff-structured ∞-topoi for which the underlying locales have enough
points.

Now we’d like to describe the GDiff -spectrum in terms of a more classical differential geometry construction.

Definition 3.1.3.32. Let A be a C∞-ring. The real spectrum SpecRA of A is the topological space constructed as
follows. For the underlying set, we take HomC∞ring(A,R). The topology is generated by the basis open sets

{Ua}a∈A, Ua ∶= ev−1
a (R ∖ {0})

where

eva ∶ HomC∞ring(A,R)→ R, eva(f) = f(a).

The real spectrum of A has a canonical sheaf OSpecRA of C∞-rings whose stalks are local C∞-rings, given by the
sheafification of the presheaf sending Ua to A[a−1]. We will usually abuse notation and write SpecRA for the local
C∞-ringed space (SpecRA,OSpecRA).
A local C∞-ringed space (X,OX) is a C∞-scheme if there is a covering {Ui →X} such that (U,OX ∣Ui) is equivalent
to the real spectrum of some C∞-ring. We denote the full subcategory spanned by C∞-schemes by SchC∞ .

Remark 3.1.3.33. Affine C∞-schemes are regular topological spaces. If A is finitely generated, say A ≅ C∞(Rn)/J ,

then Spec RA ≅ Z(J) ι↪ Rn, topologized as a subspace. It’s straightforward to check that the sheaf OSpecRA is
obtained as ι∗(ORn/J ) with J the sheaf of ideals obtained by sheafifying the presheaf Ua ↦ J⊗C∞(Rn)C

∞(Rn)[a−1].
In particular, when J is finitely generated, there is a closed immersion SpecRA → Rn. A closed subspace of a
space of covering dimension ≤ n also has covering dimension ≤ n, so because Spec RA is paracompact, the ∞-topos
Shv(Spec RA) is locally of homotopy dimension ≤ n. It follows that Shv(Spec RA) is hypercomplete and has enough
points. Moreover, Postnikov towers converge in Shv(Spec RA).

Proposition 3.1.3.34. The equivalence ζ of proposition 3.1.3.31 restricts to a fully faithful functor

N(SchC∞)→ Sch(GDiff).

The essential image of this functor consists of those GDiff-schemes (X ,OX ) such that X is 0-localic.

2Beware: not every 0-localic ∞-topos X for which the underlying locale has enough points has itself enough points as an ∞-
topos. Indeed, this would imply that the ∞-category of sheaves on a sober topological space is always hypercomplete. However,
there are coherent (thus sober) topological spaces whose ∞-categories of (space-valued) sheaves are not hypercomplete (see [Lur17b],
counterexamples 6.5.4.2, 6.5.4.5)

3But note that in that proposition, ‘0-localic ∞-topos with enough points’ is written where ‘0-localic ∞-topos such that the underlying
locale has enough points’ is meant
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Lemma 3.1.3.35. Let A be a C∞-ring. The category (C∞ringop)ad
/A is equivalent to the poset of subsets of HomC∞ring(A,R)

of the form ev−1
a (R ∖ {0}), where eva ∶ HomC∞ring(A,R)→ R is the evaluation map for some element a ∈ A.

Proof. It is obvious from the description of localizations of C∞-rings as pushouts along C∞(R)→ C∞(R ∖ {0}) that
a map f ∶ A → B in C∞ring is admissible as a morphism of Pro(GDiff)op if and only if f exhibits B as a localization
of A. Now the assignment (A→ A[a−1])↦ ev−1

a (R ∖ {0}) yields the desired equivalence.

Proof of proposition 3.1.3.34. Fully faithfulness of ζ is contained in proposition 3.1.3.31. We check that ζ sends C∞-
schemes to GDiff -schemes. It suffices to check this for affine objects. For A a C∞-ring, the ∞-topos Shv(Pro(GDiff)ad

/A)
is the ∞-topos Shv(B), where B is a lattice of basis open sets of SpecRA, so restriction induces an equivalence
Shv(Pro(GDiff)ad

/A) ≃ Shv(SpecRA). We are left to show that the structure sheaves coincide as well. This follows
because in both cases, the structure sheaf is the sheafification of the presheaf defined by

Bop → C∞ring, (A→ A[a−1])↦ A[a−1].

If (X ,OX ) is a 0-localic GDiff -scheme, X is locally the ∞-category of sheaves on a Hausdorff space, so by [Lur11b],
lemma 2.5.21, X ≃ Shv(X) for some topological space X. Since (Shv(X),OX ) is locally an affine GDiff -scheme, it is
also locally a C∞-scheme, as we have just identified affine C∞-schemes with affine GDiff -schemes under ζ.

Remark 3.1.3.36. Every admissible map U → X in Pro(GDiff) = C∞ringop corresponds to an open embedding of
affine C∞-schemes, but the converse is not true. A counterexample is example 4.31 of [Joy12a]: for I an infinite
set, consider C∞(RI) = colim S⊂I,∣S∣<∞C

∞(R∣S∣), the free C∞-ring generated by I. The inclusion RI ∖ {0} → RI is an

open embedding of affine C∞-schemes, but the corresponding map C∞(RI) → C∞(RI ∖ {0}) is not a localization,
since every element of C∞(RI) is a function on only finitely many variables, and for a function a to exhibit V as
the locus where it is nonzero would require a to depend on infinitely many variables. If X is finitely generated, then
every open embedding does arise as an admissible map: this follows from the existence of characteristic functions for
finitely generated C∞-rings.

Remark 3.1.3.37. If A is finitely generated, then SpecRA admits a closed immersion into Rn and is therefore
metrizable, so it follows that all open sets of SpecRA are Fσ-subsets. As SpecRA has finite covering dimension and
the sheaf OSpecA is fine, proposition 2.2.5.37 implies that each sheaf of Oalg

SpecA-modules F has the property that the

openwise presheaf of n’th homotopy groups π̃n(F) is already a sheaf.

The following is the content of [Joy12a], chapter 5.

Definition-Proposition 3.1.3.38. Let A be a C∞-ring, and consider the category ModAalg of modules over the un-
derlying commutative R-algebra. Consider also the category Mod

O
alg
SpecRA

of sheaves of Oalg
SpecRA

-modules on SpecRA.

There is a module spectrum functor MSpecA ∶ ModAalg →Mod
O

alg
SpecRA

which sends a module M to the sheafification

of the presheaf defined by
Ua ↦M ⊗A A[a−1].

This spectrum functor is left adjoint to the obvious global sections functor.

Remark 3.1.3.39. Just as the real spectrum of a C∞-ring is obtained as the GDiff -spectrum, so does the adjunction
mentioned in the previous proposition come from construction 3.1.1.1 for a certain geometry. This geometry has as
underlying ∞-category the opposite of the 1-category Perf of pairs (A,M) with A a C∞-ring of finite presentation
and M a perfect Aalg-module. The admissibility structure is given as follows: consider the Cartesian fibration
q ∶ Perfop → C∞ringopfp ≃ GDiff , then a morphism f ∈ Perfop is admissible if and only if it is q-Cartesian and q(f) is
admissible in GDiff , and a collection {fα ∶ (SpecAα,Mα) → (SpecB,N)} of admissibles generates a covering sieve if
and only if {fα ∶ SpecAα → SpecB} generates a covering sieve in GDiff . We will come back to this point of view when
we deal with modules of simplicial C∞-rings.

Here are several properties of the spectrum-global sections adjunction for C∞-schemes and modules that we will
have need of in the sequel.

Proposition 3.1.3.40. (1) If A is of the form C∞(Rn)/I with I with I germ determined, then the global sections
of the sheafification of the presheaf

Ua ↦ A[a−1]
coincides with A. Consequently, the counit of the adjunction Γ ○ SpecGDiffA→ A is an equivalence.

(2) If A is of the form C∞(Rn)/I with I germ determined and M is a finitely presented Aalg-module (in the 1-category
ModAalg), then the presheaf

Ua ↦M ⊗C∞(Rn) C
∞(Rn)[a−1]

is already a sheaf.
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(3) The unit id→ SpecGDiff ○ Γ of the adjunction is an equivalence on the essential image of SpecGDiff .

(4) For A a C∞-ring, the counit MSpecA ○Γ→ id of the adjunction, a natural transformation between endofunctors
on Mod

O
alg
SpecRA

, is an equivalence.

Proof. (1) is originally due to Dubuc, and can be found in [Joy12a] as theorem 4.22. It is instructive to take a C∞-ring
C∞(Rn)/J , carry out the sheafification of the ideal sheaf explicitly and observe that by taking global sections of the
étalé space projection, one obtains precisely the smallest germ determined ideal containing J . The same argument
applies to (2); it can be found in [Joy12a], example 5.28. (3) and (4) are propositions 4.34 and 5.20 respectively in
[Joy12a].

Remark 3.1.3.41. In algebraic geometry, the Zariski spectrum furnishes a fully faithful embedding of the category
of k-algebras into the category of k-locally ringed spaces. Since the global sections functor is a left adjoint, the
category of affine k-schemes is a reflective subcategory of RingSpacelock , with localization functor SpecGDiff ○ Γ. For
the geometry of C∞-rings, this is not true; instead, the functor SpecGDiff ○ Γ is an autoequivalence on the essential
image of SpecGDiff . Using this fact, it is easy to see that the functor Lcplt ∶ Γ ○ SpecGDiff is a localization functor on
C∞ring with fully faithful right adjoint, so the situation is somewhat reversed with respect to algebraic geometry. The
reflective full subcategory Lcplt(C∞ring) contains the objects that are usually called complete C∞-rings. Proposition
3.1.3.40 shows that finitely generated and germ determined C∞-rings are complete. We will call such C∞-rings fair,
following Joyce [Joy12a].
Similarly, (4) of proposition 3.1.3.40 shows that the functor RMcomp ∶ Γ ○MSpecA is a reflective localization, and the
objects of RMcomp(ModAalg) are called complete modules.

For later use, we record the following useful fact about complete modules.

Proposition 3.1.3.42. Let f ∶ A→ B be a surjective map of finitely generated C∞-rings, and let M be a B-module.
If M is complete as an A-module (via f), then M is complete as a B-module.

Proof. Considering M as an A-module, MSpecAM is the sheaf FM associated to the presheaf

Ua ↦M ⊗A A[a−1] ≅M ⊗B B[f(a)−1].

Meanwhile, MSpecBM is the sheaf F ′
M associated to the presheaf

Ub ↦M ⊗B B[b−1].

Using that f is surjective, it follows easily that for each R-point of SpecB, that is, for each φ ∶ B → R, the map of
filtered posets

{a ∈ A; φ(f(a)) ≠ 0}Ð→ {b ∈ A; φ(b) ≠ 0}

is left cofinal. Using this fact, it follows by checking on stalks that FM is simply the direct image sheaf of F ′
M along

the map SpecGDiff f ∶ SpecRB → SpecRA, so the global sections of FM and F ′
M coincide. Thus, if M is complete as

an A-module, then M is complete as a B-module.

Warning 3.1.3.43. We say that a property P on modules of C∞-rings is local if the following holds for every pair
(A,M) where A is a C∞-ring and M is an A-module.

(1) If A→ B is admissible, then M ⊗A B has the property P .

(2) Suppose there exists an admissible covering {A→ A[1/ai]}i∈I such that for each i ∈ I, the module M⊗AA[1/ai] ∈
ModA[1/ai] has the property P , then M has the property P .

In algebraic geometry, many natural properties, such as being a finitely presented, finitely generated, or being a
finite rank vector bundle, are local (for the Zarsiki/étale/fppf topology). In contrast, these same properties are not
local in C∞-geometry. For instance, let U ∶=∐∞

i=0Bi ⊂ Rn be a countable disjoint union of open balls in Bi ⊂ Rn, then
it is easy to construct C∞(U)-modules that are locally finitely generated, but not globally, such as a vector bundle
whose rank is i on each open ball Bi. Similarly, it easy to construct fair C∞-rings which are locally finitely presented,
but not globally.
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3.2 Geometric Contexts: the Language of Higher Stacks

Until now, we have investigated categories with admissibility structures, a notion that allows one to investigate the
behaviour and existence of certain limits compatible with a given Grothendieck topology. The theory of pregeometries
and geometric envelopes is designed to handle adding finite limits to a category in a controlled way, taking objects
which function as affine spaces for some notion of geometry, and producing ‘derived’ affine spaces. Treating these
notions of affine spaces on the same footing, we may then ask how to add finite colimits in the form of higher groupoid
quotients. This is achieved by Simpson’s device of higher geometric stacks [Sim96], which generalizes algebraic Artin
and Deligne-Mumford stacks, as well as orbifolds and (higher) Lie groupoids in differential geometry to ∞-sites that
come equipped with a collection of maps that are well-behaved in the sense that they enjoy the same formal properties
as smooth maps in algebraic geometry.
Our approach is similar to that of Toën-Vezzosi [TV06], except for a crucial difference: for the applications we
have in mind, we may not assume that our Grothendieck topology is quasi-compact, that is, for any covering family
{Ui →X}i∈I , there exists a finite I0 ⊂ I such that {Ui →X}i∈I0 is still a covering family. This complicates our theory
of higher stacks slightly, since it is technically inconvenient to introduce finiteness or countability restrictions already
in the definition of higher geometric stacks (these conditions will generally be satisfied only by virtue of specific
features of the moduli spaces under consideration, e.g. Gromov compactness [Gro85]). Since we cannot assume that
coverings are finite, and the ∞-category of affine derived manifolds does not admit arbitrary small coproducts, we are
forced to consider a rather larger class of objects that we should consider as (-1)-geometric, i.e. the class of objects at
which the inductive definition of higher geometric stacks begins. Since we will have multiple geometries and various
subcategories of structured spaces around, we wish to encompass a class of examples as large as possible, so we start
only with the following data: a pair (G,L) of a geometry and a full subcategory L ⊂ RTop(G) consisting of objects
whose underlying ∞-topos is n-localic, such that a saturation condition with respect to open inclusions is satisfied.

3.2.1 Localic scheme theories

The notion of a geometry equipped with a scheme theory we develop below is based on sections 2.3 and 2.4 of [Lur11b],
and extends the theory developed there for geometries whose spectrum functors take values in locales; most of the
proofs here adapted from this reference and the detailed work Carchedi [Car16]. A less terse treatment (with less
unimaginative terminology) of some of the material that follows can be found in this latter reference.

Definition 3.2.1.1. Let G be a geometry. We will also say that a morphism f ∶ (X ,OX )→ (X ,OY) of G-structured
∞-topoi is (n − 1)-étale if there exists an (n − 1)-truncated object V ∈ (X ,OY) such that f is equivalent to the
canonical morphism (Y/V ,OY ∣V )→ (X ,OY).

The following definition may appear somewhat baroque, but turns out to be very versatile and useful.

Definition 3.2.1.2. Let G be a geometry. We say that a full subcategory L ⊂ RTop(G) is an n-localic G-scheme
theory if the following conditions are satisfied.

L1. For every G-structured ∞-topos (X ,OX ) ∈ L, the underlying ∞-topos is n-localic.

L2. Let (X ,OX ) ∈ L let U ∈ X be an (n − 1)-truncated object, and consider the inclusion

L(n−1)−ét

/(X ,OX )
↪Ð→ RTop(n−1)−ét

/(X ,OX )
.

Then we can identify L(n−1)−ét

/(X ,OX )
with the full subcategory of τ≤(n−1)X spanned by those (n− 1)-truncated objects

U such that the object (X/U ,OX ∣U) ∈ L (note that X/U is n-localic by proposition 2.2.3.2). We demand that

L(n−1)−ét

/(X ,OX )
contains a full subcategory CX such that the following conditions are satisfied.

(1) CX is essentially small.

(2) CX admits finite limits and the fully faithful functor CX ↪ τ≤(n−1)X is left exact.

(3) There exists a regular cardinal κ such that the essential image CX ↪ X consists of κ-compact objects and
generates X under κ-filtered colimits.

L3. L is stable under pullbacks by (n − 1)-étale morphisms. That is, given a pullback diagram

(Z,OZ) (Y,OY)

(X/U ,OX ∣U) (X ,OX )

f
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among G-structured ∞-topoi, where (X/U ,OX ∣U), (X ,OX ) and (X ,OY) lie in L and U is (n − 1)-truncated,
the G-structured space (Z,OZ), which may be identified with (Y/f∗(U),OY ∣f∗(U)) where f∗ is the algebraic
morphism underlying f , lies in L.

L4. L is locally small.

For n =∞, condition (1) is vacuous and we say that the subcategory L ⊂ RTop(G) that merely satisfies (2), (3) and
(4) is a G-scheme theory.
We say that an n-localic G-scheme theory is saturated if instead of L2 and L3, the following condition is satisfied:

L2′ For each (X ,OX ) ∈ L and each (n − 1)-truncated object U ∈ X , the object (X/U ,OX ∣U) lies in L. In other

words, the inclusion L ⊂ RTop(G) induces an isomorphism

L(n−1)−ét

/(X ,OX )
≅ RTop(n−1)−ét

/(X ,OX )
↪Ð→ RTop/(X ,OX ).

This clearly implies L3. L2′ also implies L2: we have an equivalence L(n−1)−ét

/(X ,OX )
≃ τ≤(n−1)X , so when X is n-localic,

we may choose, according to (the proof of) [Lur17b], prop. 6.4.3.6, an essentially small ∞-category CX ⊂ τ≤(n−1) that
generates X under κ-filtered colimits for some sufficiently large regular cardinal κ. If n = ∞, the same conclusion
holds by the accessibility of X and [Lur17b], prop. 5.4.7.4.

Notation 3.2.1.3. In what follows, we take n ∈ Z≥0 ∪ {∞}, and an ∞-localic ∞-topos is simply an ∞-topos.

Remark 3.2.1.4. Let L be an n-localic G-scheme theory for some geometry G, then there is a smallest n-localic
G-scheme theory that contains L, the saturation of L, denoted L. It contains those (X ,OY) of the form (X/U ,OX ∣U)
for U any (n − 1)-truncated object in X .

Remark 3.2.1.5. The basic datum for constructing a scheme theory is a geometry. Evidently we may also start
from a pregeometry T , but this does not constitute a generalization since we may always choose a geometric envelope
T ↪ G resulting in the same structured spaces.

Definition 3.2.1.6. If G is a geometry and L is a n-localic G-scheme theory, we call the G-structured spaces in L
affine L-schemes. Let Sch(G;L) ⊂ RTop(G) denote the full subcategory of spanned by object (X ,OX ) such that the
following condition is satisfied.

(∗) There exists an effective epimorphism ∐αUα → 1X such that for each α, the object (X/Uα ,OX ∣Uα) is equivalent
to an object in L.

The objects of this ∞-category will be called L-schemes. Denote by jSch the composition

Sch(G,L) ↪Ð→ RTop(G) jÐ→ P̂Shv (RTop(G))Ð→P̂Shv(L)

of the full subcategory inclusion with the restricted Yoneda functor.

Remark 3.2.1.7. We can endow L with a Grothendieck pretopology as follows: a collection of morphisms {(Xi,OXi)→
(Y,OY)} is a covering family if each (Xi,OXi) is of the form (Y/Ui ,OY ∣Ui) for U a (n− 1)-truncated object of Y and
the objects Ui define an effective epimorphism ∐iUi → 1Y . Using property L2, it is easy to see that these covering
families define a pretopology. We call the associated Grothendieck topology the (n − 1)-étale topology.

Our first order of business is to establish some closure and generation properties of the full subcategory of G-
schemes of type L.

Lemma 3.2.1.8. Let G be a geometry and let L be an n-localic G-scheme theory.

(1) If (X ,OX ) is an L-scheme, then for any U ∈ X , the object (X/U ,OX ∣U) is an L-scheme.

(2) If (X ,OX ) is an L-scheme and ∐iUi → 1X is an effective epimorphism such that for each i, (X/Ui ,OX ∣Ui) is an
L-scheme, then (X ,OX ) is an L-scheme.

(3) Let Sch(G;L)ét be the subcategory of Sch(G;L) on the étale morphisms. Then Sch(G;L)ét is stable under colimits
in RTop(G).

(4) The ∞-category Sch(G;L)ét is generated under small colimits by the full subcategory Lét ⊂ Sch(G;L)ét spanned
by affine L-schemes.
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Proof. This is proven as lemmas 2.3.10 and 2.3.11 of [Lur11b]. Point (2) is obvious. To prove (1), we take an
L-scheme (X ,OX ) and some object U ∈ X . Choose an effective epimorphism ∐i Vi → 1X such that (X/Vi ,OX ∣Vi) ∈ L.
We have an effective epimorphism ∐i Vi ×U → U , so by (2), it suffices to show that (XVi×U ,OX ∣Vi×U) ∈ L. Thus, we
may replace (X ,OX ) with (XVi ,OX ∣Vi) and assume that (X ,OX ) ∈ L. By L2, there exists a small diagram θ ∶K → CX
in the subcategory CX ⊂ L(n−1)−ét

/(X ,OX )
↪ τ≤(n−1)X ↪ X with colimit U . It follows that the map ∐k∈K θ(k) → U is an

effective epimorphism in X , and therefore also in X/U . By definition, we have (X/θ(k),OX ∣θ(k)) ∈ L, so we conclude
that (X/U ,OX ∣U) is an L-scheme.

For (3), we note that a small diagram K → Sch(G;L)ét ⊂ RTop(G)ét with colimit (X ,OX ) determines a diagram
ξ ∶ K → RTop(G)ét

/(X ,OX ) ≃ X an effective epimorphism ∐k∈K ξ(k) → 1X such that (X/ξ(k),OX ∣ξ(k)) is an L-scheme,
so by (2), (X ,OX ) is an L-scheme as well.
We prove (4). Using again general yoga of ∞-topoi, it suffices to show that for any (X ,OX ) ∈ L and any U ∈ X , the
L-scheme (X/U ,OX ∣U) (which is indeed an L-scheme by (1)) is generated under small colimits by affine L-schemes.
But we may choose a small diagram K → CX ↪ τ≤(n−1)X with colimit U . This diagram determines a diagram

K → CX ⊂ L(n−1)−ét

/(X ,OX )
→ Lét with colimit (X/U ,OX ∣U).

Lemma 3.2.1.9. Let G be a geometry and let L be an n-localic G-scheme theory. Then the ∞-category Sch(G;L) is
locally small.

Proof. This is proven as in proposition 2.3.13 of [Lur11b]. Let (X ,OX ) and (X ,OY) be L-schemes. If both (X ,OX )
and (X ,OY) lie in L, then the hom-space HomRTop((X ,OX ), (X ,OY)) is essentially small by L4, so we aim to reduce
the problem to this case. Consider the functor

ζ ∶ X op ×Y ≃ (RTop(G)ét
/X )

op
× RTop(G)ét

/Y Ð→ RTopop × RTopÐ→ Ŝ

given on objects by the formula

(U,V )z→ HomRTop((X/U ,OX ∣U), (Y/V ,OY ∣V )).

Since RTopét ⊂ RTop is stable under small colimits, the functor ζ preserves small limits in its first variable, and the
functor

ζ∨ ∶ Y Ð→ Fun(X op, Ŝ)

obtained from ζ by adjunction therefore factors through the full subcategory ShvŜ(X ) (recall that for an ∞-category
C admitting small limits, ShvC(X ) is the full subcategory of functors X op → C that preserve small limits). It suffices
to show that ζ∨(1Y) is equivalent to an object in the full subcategory X ≃ ShvS(X ) ⊂ ShvŜ(X ), that is, ζ∨(1Y) takes
essentially small values. First, we show that for V ∈ Y such that (X/V ,OX ) ∈ L, the sheaf ζ∨(V ) has essentially small
values. Indeed, for each U ∈ X , the L-scheme (X/U ,OX ∣U) is generated under small colimits objects in L étale over
(X/U ,OX ∣U), so the space

ζ∨(V )(U) = HomRTop(G)((X/U ,OX ∣U), (Y/V ,OY ∣V ))

is small limit in Ŝ over hom spaces in L, which are small by L4. Since S ⊂ Ŝ preserves small limits by [Lur17b],
lem. 5.4.7.6, this limit is essentially small. Since 1Y is obtained as a small colimit of objects V such that ζ∨(V )
takes essentially small values and the inclusion ShvS(X ) ⊂ ShvŜ(X ) is stable under small colimits by [Lur17b], rmk.
6.3.5.17, it suffices to show that the functor ζ∨ preserves colimits. This is proven as in lemma 2.3.11 of [Lur11b].

Since we obviously have L ⊂ Sch(G;L), we have the following corollary.

Corollary 3.2.1.10. Let G be a geometry and let L be an n-localic G-scheme theory, then the associated saturated
n-localic G-scheme theory L is locally small.

Corollary 3.2.1.11. Let G be a geometry and let L be an n-localic G-scheme theory. For n ≤m ≤∞, let Schm(G;L) ⊂
Sch(G;L) be the full subcategory spanned by m-localic L-schemes. Then Schm(G;L) is a saturated m-localic G-scheme
theory. Moreover, if n ≤m ≤ k ≤∞, then Schk(G; Schm(G;L)) = Schk(G;L).

Proof. L1 is clear, the saturation condition follows immediately from (1) of lemma 3.2.1.8 and proposition 2.2.3.2,
and L4 is the content of lemma 3.2.1.9. The last statement is obvious.

Here are some examples of scheme theories; we’ll give a few more later on.

Example 3.2.1.12. Let G be a geometry, then the ∞-category of affine G-schemes is a G-scheme theory. The ∞-
category of affine G-schemes of finite presentation is also a scheme theory. These scheme theories are not in general
saturated.
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Example 3.2.1.13. Choose a geometric envelope Gder
AnC for the complex analytic pregeometry TAnC , then the ∞-

category of derived complex analytic spaces of [Lur11a] is a 0-localic Gder
AnC -scheme theory. In fact, it is saturated.

Example 3.2.1.14. We can also describe derived algebraic and spectral geometry in the étale topology. For the
algebraic étale topology, we should take for L the subcategory of affine schematic Deligne-Mumford stacks, which are
1-localic.

Lemma 3.2.1.15. Let G be a geometry and let L be an n-localic G-scheme theory. Denote the fully faithful functor
L(n−1)−ét

/(X ,OX )
↪ τ≤(n−1)X by i. Then the restricted Yoneda functor

jX(n−1) ∶ X
jÐ→ PShv(X ) i∗Ð→ PShv (L(n−1)−ét

/(X ,OX )
)

is fully faithful and admits a left exact left adjoint.

Proof. By L2, we may choose a small category CX that admits finite limits and a fully faithful and finite limit
preserving functor h ∶ CX ↪ L(n−1)−ét

/(X ,OX )
↪ X . By the proof of [Lur17b], 6.1.5.3, we see that the induced functor

L ∶ PShv(C) → X is a left exact accessible localization such that h = L ○ j. Denote by f ∶ CX ⊂ L(n−1)−ét

/(X ,OX )
the

inclusion, then composing with f yields a limit and colimit preserving functor f∗ ∶ PShv (L(n−1)−ét

/(X ,OX )
)→ PShv(CX ). Set

LX(n−1) ∶= L ○ f∗. This functor is clearly left exact, and we should show it is a left adjoint. Recall that we have chosen
a regular cardinal κ such that the essential image of f consists of κ-compact objects that generate X under small
κ-filtered colimits. Under these assumptions, the composition

X
jX(n−1)Ð→ PShv (L(n−1)−ét

/(X ,OX )
) f∗Ð→ PShv(CX )

is a κ-accessible functor. Because CX is small, the functor f∗ admits a left adjoint f! given by left Kan extension
along f , and the unit of the adjunction (f! ⊣ f∗) is the identity. This implies that the composition

CX
h
↪Ð→ X

jX(n−1)Ð→ PShv (L(n−1)−ét

/(X ,OX )
) f∗Ð→ PShv(CX )

is equivalent to the Yoneda embedding. Now both the canonical inclusion X ⊂ PShv(CX ) and f∗○jX(n−1) are κ-accessible

functors that restrict to the Yoneda embedding on CX , so we have an equivalence idX ≃ L○f∗ ○jX(n−1) = LX(n−1) ○jX(n−1).
Note that the functor f∗ also has a right adjoint f∗ given by right Kan extension, and the counit of the adjunction
(f∗, f∗) is the identity. Let g ∶ X ⊂ PShv(CX ) denote the canonical inclusion, then we have a composition of adjunctions
(f∗ ○L, g ○ f∗), the counit of which is the identity. We now have equivalences of functors

jX(n−1) ≃ f∗ ○ g ○L ○ f∗ ○ jX(n−1) ≃ f∗ ○ g.

This functor has the left adjoint L ○ f∗.

Definition 3.2.1.16. Let G be a geometry and let L be an n-localic G-scheme theory.

(1) Let (X ,OX ) ∈ L then the ∞-category L(n−1)−ét

/(X ,OX )
can be identified with a full subcategory of τ≤(n−1)X . We say

that a presheaf F on L(n−1)−ét

/(X ,OX )
⊂ τ≤(n−1)X is a sheaf if F lies in the essential image of the restricted Yoneda

functor jX(n−1).

(2) For each (X ,OX ), denote by φ(X ,OX ) the functor L(n−1)−ét

/(X ,OX )
→ L, which induces a pullback functor

ϕ(X ,OX )∗ ∶ PShv (L)Ð→ PShv (L(n−1)−ét

/(X ,OX )
) .

Then a presheaf on F is a sheaf if for all (X ,OX ) ∈ L, the presheaf φ∗(X ,OX )(F ) is a sheaf on τ≤(n−1)X .

Remark 3.2.1.17. Let L be a saturated scheme theory, then a presheaf F ∈ PShv(L) is sheaf if and only if for each
(X ,OX ) ∈ L, the presheaf φ∗(X ,OX )(F ) preserves limits, that is, if and only if it is representable.

The definition of sheaves on an n-scheme theory above admits a more familiar intepretation if n is finite.

Definition 3.2.1.18. Let n < ∞ and let (G,L) be a geometry equipped with an n-localic G-scheme theory. Let S
be the class of morphisms in PShv(L) obtained as follows: consider the class of morphisms

h ∶∐
i

j(X /Ui ,OX ∣Ui)Ð→ j(X ,OX )

where {Ui} is a small collection of (n − 1)-truncated objects in X , the the induced maps ∣Č(h)●∣ → j(X ,OX ) make
up S. A presheaf F ∶ L→ S is a sheaf if F is S-local. In other words, if F is a sheaf for the (n− 1)-étale topology on
L.
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We have double-booked the terminology for sheaves on L. We now resolve this point of tension.

Lemma 3.2.1.19. Let n <∞ and let (G,L) be a geometry equipped with a saturated n-localic G-scheme theory. Then
F is a sheaf in the sense of definition 3.2.1.18 if and only if for each (X ,OX ) ∈ L, the presheaf φ∗(X ,OX )(F ) is a sheaf

on L(n−1)−ét

/(X ,OX )
≃ τ≤(n−1)X in the sense of definition 3.2.1.16.

Proof. Consider for each (X ,OX ) ∈ L the following collection of covering families on the n-topos τ≤(n−1)X : a small
collection of morphisms {Ui → X} generates a covering sieve if the map ∐iUi → X is an effective epimorphism in
X . This collection of covering sieves determines a Grothendieck pretopology on τ≤(n−1)X , whose associated topology
is called the canonical topology, that we denote by τ (see for instance [Lur17b], section 6.2.4). We note that the
statement of the lemma may be reformulated as follows.

(∗) A presheaf F on L is a sheaf in the sense of definition 3.2.1.16 if and only if for each (X ,OX ) ∈ L, the presheaf
φ∗(X ,OX )(F ) is a sheaf for the canonical topology.

To prove this, we will show that a presheaf F on τ≤(n−1)X lies in the essential image of the restricted Yoneda functor

jX(n−1) if and only if F is a sheaf for the canonical topology. Because X is n-localic, we may identify X with Shv(CX ),
where we endow CX with the canonical topology relative to the inclusion CX ⊂ τ(n−1)X ≃ Shv(n−1)(CX ). This inclusion
is thus tautologically covering-preserving, so we have an induced map Shvτ(Shv(n−1)(CX )) → Shv(CX ) ≃ X . By the
constructions in the proof of lemma 3.2.1.15, the composition Shvτ(Shv(n−1)(CX )) ⊂ PShv(Shv(n−1)(CX ))→ Shv(CX )
coincides with the functor LX(n−1)∣Shvτ (Shv(n−1)(CX )). It follows that if we can show that the functor jX(n−1) takes values

in sheaves (for the canonical topology), then the adjunction

PShv(Shv(n−1)(CX )) Shv(CX )
LX(n−1)

jX(n−1)

restricts to an adjunction

Shvτ(Shv(n−1)(CX )) Shv(CX ).
LX(n−1)

jX(n−1)

To see this, we endow X also with its canonical topology, then the subcategory inclusion τ≤(n−1)X ⊂ X is covering-
preserving and the induced functor PShv(X ) → PShv(τ≤(n−1)X ) carries sheaves to sheaves (for the canonical topolo-
gies). As the Yoneda embedding j ∶ X ↪ PShv(X ) clearly takes values in sheaves, we conclude that the adjunction
(LX(n−1) ⊣ jX(n−1)) indeed restricts. We already know that the counit map is an equivalence. To see that the unit is an

equivalence as well, we note that the proof of lemma 3.2.1.15 guarantees that jX(n−1) may be identified with a right Kan
extension along the Yoneda embedding CX ↪ Shv(n−1)(CX ). We deduce that given a sheaf F ∈ Shvτ(Shv(n−1)(CX )),
the unit map F → jX(n−1)L

X
(n−1)F is an equivalence when restricted to the essential image of the fully faithful em-

bedding CX ↪ Shv(n−1)(CX ). We finish the proof by showing that the unit map is an equivalence on any object
Z ∈ Shv(n−1)(CX ). Choose an uncountable regular cardinal κ such that CX is κ-small, Z is κ-compact and the full
subcategory of PShv(CX ) spanned by κ-compact objects is stable under finite limits, then using an Artin-Mazur ar-
gument as in the proof of proposition 2.2.4.3, we can construct an (n+1)-truncated hypercover C● of Z in PShv(CX )
such that each level Cn is a κ-small coproduct of representables. We may repeat the construction of this sim-
plicial object in the ∞-category PShv(Shv(n−1)(CX )) to produce an (n + 1)-truncated simplicial object C̃● of Z,

where now each level of C̃● is a κ-small coproduct of objects in the essential image of the ‘double Yoneda embed-
ding’ CX ↪ Shv(n−1)(X ) ↪ PShv(Shv(n−1)(CX )). By construction, C̃● is a semi-representable hypercover of Z for

the canonical topology. As both F and jX(n−1)L
X
(n−1)F are sheaves, they satisfy descent with respect to truncated

semi-representable hypercovers, so we deduce that F (Z)→ jX(n−1)L
X
(n−1)F (Z) is an equivalence.

Remark 3.2.1.20. From the arguments in the proof above we can extract the following result: if X is an n-topos
for n finite, then the associated (n+ 1)-localic ∞-topos is the ∞-category of sheaves on X for the canonical topology.
The argument also applies if X is a hypercomplete ∞-topos and we consider hypersheaves for the canonical topology.

Suppose that L is a saturated n-localic G-scheme theory that is also essentially small as an ∞-category (notice
that this forces n to be 0 since there are no essentially small presentable ∞-categories containing an object which
is not (−1)-truncated). Then using the class S in definition 3.2.1.18, we see that Shv(L) is a left exact (accessible)
localization of PShv(L), so that Shv(L) is an ∞-topos. Even if the ∞-category L is not essentially small, we would
still like to construct a sheafification functor. Unless we are willing to consider presheaves and sheaves valued in
large spaces, this sheafification cannot be an accessible localization, but this is not an insurmountable issue. To
overcome the problem, we will realize the ∞-category PShv(L) as an ∞-category consisting of a compatible collection

of pairs ((X ,OX ), F(X ,OX )), where (X ,OX ) ∈ L and F(X ,OX ) is a presheaf on L(n−1)−ét

/(X ,OX )
, the full subcategory of affine
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L-schemes on (X ,OX ) which are induced by a (n − 1)-truncated object in X . Using lemma 3.2.1.15, we can find
a sheafification functor, and assembling these sheafifications yields the desired localization. This strategy has the
added benefit that it allows for a convenient description of colimits in the ∞-category Shv(L). The precise state of
affairs is summarized in the following proposition.

Proposition 3.2.1.21. Let (G,L) be a geometry equipped with an n-localic G-scheme theory.

(1) The full subcategory inclusion Shv(L) ⊂ PShv(L) admits a left exact left adjoint L.

(2) The ∞-category Shv(L) admits small limits and colimits.

(3) Let K be a (small) simplicial set. A diagram K⊳ → Shv(L) is a colimit diagram if and only if for each (X ,OX ),
the composition

K⊳ Ð→ Shv(L)Ð→ Shv (L(n−1)−ét

/(X ,OX )
) ≃ X

is a colimit diagram.

(4) Let P̂Shv(L) respectively Ŝhv(L))denote the very large ∞-topos of presheaves respectively sheaves on L, and denote
by L̂ ∶ P̂Shv(L)→ Ŝhv(L) a sheafification functor. Then the diagram

PShv(L) P̂Shv(L)

Shv(L) Ŝhv(L)

L L̂

commutes up to homotopy, where the left vertical map is the left adjoint L of point (1).

(5) The inclusion Shv(L) ⊂ Ŝhv(L) preserves small limits and colimits.

(6) If L is small, then the localization Shv(L) ⊂ PShv(L) is accessible and Shv(L) is an ∞-topos.

Proof. As proposition 2.4.4 of [Lur11b] or proposition 5.2.10 of [Car16].

Remark 3.2.1.22. Parsing the proof in the references above gives an explicit sheafification procedure: let α ∶ F → F ′

be a morphism of presheaves on L. Then α exhibits F ′ as a sheafification of F if and only if for each (Y,OY) ∈ L,
the map φ∗(Y,OY)(α) exhibits a sheafification in PShv(τ≤n−1Y).

Since the inclusion Shv(L)↪ Ŝhv(L) preserves small limits and colimits, we have

Corollary 3.2.1.23. Let (G,L) be a geometry equipped with a G-scheme theory, then the following hold in Shv(L).

(1) Groupoids are effective.

(2) Small colimits are universal.

(3) Small coproducts are disjoint.

Now that we have good control over the ∞-category of sheaves on a scheme theory, we continue our study of the
restricted Yoneda functor jSch.

Proposition 3.2.1.24. The functor

jSch ∶ RTop(G) jÐ→ P̂Shv (RTop(G))Ð→ P̂Shv(L)

takes values in the full subcategory of sheaves.

Proof. This is just a consequence of the fact that the topology on RTop(G) is subcanonical. Indeed, we are asked to
show that for any (n-1)-étale covering h ∶∐i(X/Ui ,O∣Ui)→ (X ,OX ) in L, we have an equivalence

HomRTop(G)((X ,OX ), (Y,OY)) ≃ lim
N(∆)

HomRTop(G)(Č(h)●, (Y,OY)).

By proposition 3.1.0.25, we have an equivalence colim N(∆)op Č(h)● ≃ (X ,OX ) in RTop(G), so we get weak equivalences

lim
N(∆)

HomRTop(G)(Č(h)●, (Y,OY)) ≃ HomRTop(G)(colim N(∆)op Č(h)●, (Y,OY))

≃ HomRTop(G)((X ,OX ), (Y,OY)),

and we are done.
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Remark 3.2.1.25. Evidently, the proof above also shows that the (n − 1)-étale topology on L is subcanonical.

Proposition 3.2.1.26. The functor

Sch(G,L) ⊂ RTop(G)ét
jÐ→ P̂Shv (RTop(G))Ð→Ŝhv(L)

preserves small colimits.

Proof. As proposition 5.2.11 of [Car16].

Theorem 3.2.1.27. Let (G,L) be a geometry equipped with an n-localic G-scheme theory. Then the restricted Yoneda
functor jSch is fully faithful, and takes values in Shv(L).

Proof. It follows from corollary ?? that jSch takes values in small presheaves, and it follows from proposition 3.2.1.24
that jSch takes values in Shv(L).
We should check that for any pair (X ,OX ), (Y,OY) of L-schemes, the map

φ ∶ HomSch(G;L)((X ,OX ), (Y,OY))Ð→ HomPSh(L)(jSch(X ,OX ), jSch(Y,OY))

is a homotopy equivalence of Kan complexes. Since jSch preserves small colimits and Sch(G;L) is generated under
small colimits by L, it suffices to check that φ is fully faithful when (X ,OX ) is an affine L-scheme, but this is
obvious.

Given a scheme theory L for a geometry G, we may also consider sheaves on the ∞-category Sch(G;L), but the
following result shows that taking sheaves on arbitrary L-schemes does not constitute an enlargement.

Proposition 3.2.1.28. Let (G,L) be a geometry equipped with a G-scheme theory, then the functor

i∗ ∶ PShv(Sch(G;L))Ð→ PShv(L)

induces an equivalence Shv(Sch(G;L)) ≃ Shv(L), and the functor

i∗ ∶ PShv(Sch(G;L)ét)Ð→ PShv(Lét)

induces an equivalence Shv(Sch(G;L)ét) ≃ Shv(Lét).

Proof. Since i is covering-preserving, the functor i∗ takes sheaves to sheaves. We prove that the left adjoint i! to
i∗ is fully faithful. For this, it suffices to show that if a morphism α ∶ F → F ′ in PShv(Sch(G;L)) exhibits F as a
sheafification of F ′, then i∗(α) also exhibits a sheafification. Let S respectively S′ denote the classes of covering sieves

in L and Sch(G;L) respectively, and let S respectively S
′

be their strong saturations. Since i∗ preserves sheaves, it

suffices to show that i∗(S′) ⊂ S, or equivalently S
′ ⊂ (i∗)−1S. Since (i∗)−1S is strongly saturated, it suffices to show

that S′ ⊂ (i∗)−1S. Let (X ,OX ) be a G-scheme of type L, let ∐Ui → 1X be an effective epimorphism and consider
the Čech nerve of the map

h ∶∐
i

j(X/Ui ,OX ∣Ui)Ð→ j(X ,OX ),

then we should show that the augmented simplicial diagram i∗(Č(h)●) becomes a colimit diagram after applying the
sheafification functor L. Each level of Li∗(Č(h)●) is given by an object of the form

∐
i1,...,in

LjSch(X/Ui1×...×Uin
,OX ∣Ui1×...×Uin ) ≃ ∐

i1,...,in

jSch(X/Ui1×...×Uin
,OX ∣Ui1×...×Uin )

where the equivalence is due to the fact that the essential image of jSch consists of sheaves. Since jSch commutes with
coproducts it follows that the augmented simplicial object Li∗(Č(h)●) is equivalent to jSch(Č(h′)), where h′ is the
map ∐i(X/Ui ,OX ∣Ui) → (X ,OX ). Because the diagram Č(h′)● is a colimit diagram in Sch(G;L) and jSch preserves
colimits, we conclude.
We prove that i! is essentially surjective. Let C ⊂ Shv(Sch(G;L)) be the smallest full subcategory stable under
colimits containing the essential image of i!. It suffices to show that j(Sch(G;L)) is contained in C. This follows
because Sch(G;L) is generated under small colimits of diagrams in Lét and the Yoneda embedding j ∶ Sch(G;L) →
Shv(Sch(G;L)) preserves small colimits of diagrams in Sch(G;L)ét.

The ideas introduced in this chapter become particularly useful when we compare different scheme theories.
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Proposition 3.2.1.29. Fix a geometry G and let L ⊂ L′ be two saturated G-scheme theories. Denote by i ∶ L ⊂ L′
the inclusion and by i∗ ∶ PShv(L′) → PShv(L) the induced functor on presheaves, then i∗ preserves colimits and the
left adjoint

i! ∶ Shv(L)Ð→ Shv(L′)
to i∗ is fully faithful. Thus, if L′ is (essentially) small, then i∗ exhibits Shv(L′) as a local Shv(L)-topos.

Proof. Using proposition 2.2.2.13, it suffices to show that if α ∶ F → F ′ exhibits a sheafification, then i∗(α) exhibits a
sheafification. Using remark 3.2.1.22, we see that ϕ∗(X ,OX )(α) is a sheafification for each (X ,OX ) ∈ L′. If (X ,OX ) ∈ L,

then we have an isomorphism of ∞-categories L(n−1)−ét

/(X ,OX )
≅ L

′
(n−1)−ét

/(X ,OX )
and a commuting diagram

L(n−1)−ét

/(X ,OX )
L′

L

ϕ(X ,OX )

φ(X ,OX )
i

so we have a commuting diagram

PShv(L′) PShv(L)

PShv (L(n−1)−ét

/(X ,OX )
)

i∗

ϕ∗(X ,OX ) φ∗(X ,OX )

so that ϕ∗(X ,OX )(i∗(α)) is a sheafification for each (X ,OX ) ∈ L. Using remark 3.2.1.22 again, we conclude that i∗(α)
exhibits a sheafification.

We conclude this subsection with some observations that transfer the properties of the ∞-topoi that make up a
scheme theory to Shv(L):

Proposition 3.2.1.30. Let (G,L) be a geometry equipped with a small G-scheme theory. Then Shv(L) is hypercom-
plete if and only if for every (Y,OY) ∈ L, the ∞-topos Y is hypercomplete.

Proof. For the ‘if’ direction, we note that the collection of functors {φ∗(Y,OY)}(Y,OY)∈L is jointly conservative, so it

suffices to prove that for each (Y,OY) ∈ L, the functor φ∗(Y,OY) preserves k-connective morphisms for all k ≥ 0. This

follows from the fact that the functor φ∗(Y,OY) preserves limits and colimits. For the converse, we note that Y is a
local subtopos of the slice topos Shv(L)/(Y,OY).

The following result is based on a mathoverflow answer of Marc Hoyois.

Proposition 3.2.1.31. Let (G,L) be a geometry equipped with a small G-scheme theory. Then Postnikov towers
converge in Shv(L) if and only if for every (Y,OY) ∈ L, Postnikov towers converge in the ∞-topos Y.

Proof. We prove the ‘if’ direction. Let F● ∶ N(Z⊳)op → Shv(L) be a tower, then we need to check that F● is a
Postnikov tower if and only if F●∣N(Z)op is a Postnikov pretower and F● is a limit diagram. For every (X ,OX ) ∈ L,
denote by (F●)(X ,OX ) the composition

(F●)(X ,OX ) ∶ N(Z⊳)op Ð→ Shv(L)
ev(X ,OX )Ð→ S.

Note that for every (n − 1)-étale map (X ,OX )→ (Y,OY), the tower (F●)(X ,OX ) factors as

(F●)(X ,OX ) ∶ N(Z⊳)op Ð→ Shv(L)
φ∗(Y,OY )
Ð→ Shv (L(n−1)−ét

/(Y,OY)
)

ev(X ,OX )Ð→ S,

where φ∗(Y,OY) is the pullback of presheaves, which preserves sheaves by lemma 3.2.1.19. We claim that the proposition
follows from the following assertion:

(∗) F● is a Postnikov (pre)tower if and only if φ∗(Y,OY) ○ F● is a Postnikov (pre)tower for all (Y,OY) ∈ L.

Indeed, given a tower F● ∶ N(Z⊳
≥0)op → Shv(L) the following are equivalent.

(a) F● is a Postnikov tower.

(b) For all (Y,OY) ∈ L, the tower φ∗(Y,OY) ○ F● is a Postnikov tower.
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(c) For all (Y,OY) ∈ L, φ∗(Y,OY) ○ F●∣N(Z≥)op is a Postnikov pretower and φ∗(Y,OY) ○ F● is a limit diagram.

(d) F●∣N(Z≤)op is a Postnikov pretower and for all (X ,OX ) ∈ L, the diagram (F●)(X ,OX ) is a limit diagram.

(e) F●∣N(Z≤)op is a Postnikov pretower and F● is a limit diagram.

We note that (a)⇔ (b) follows from (∗), (b)⇔ (c) is the case by assumption, (c)⇔ (d) follows from (∗) and the
fact that limits are computed objectwise, as does (d)⇔ (e).
To prove (∗), we need to show that a map α ∶ X → Y of sheaves on L exhibits Y as an n-truncation of X if and

only if for all (Y,OY) ∈ L, the map φ∗(Y,OY)(α) exhibits an n-truncation in Shv (L(n−1)−ét

/(Y,OY)
). Since truncation in an

∞-category of sheaves on a small site is given by objectwise truncation of presheaves followed by sheafification, it
suffices to verify that a map γ ∶ X ′ → Y ′ of presheaves on L exhibits Y ′ as a sheafification of X ′ if and only if for

all (Y,OY) ∈ L, the map φ∗(Y,OY)(γ) exhibits a sheafification in PShv (L(n−1)−ét

/(Y,OY)
). This is the case by construction of

the sheafification functor L ∶ PShv(L) → Shv(L) in proposition 3.2.1.21. For the converse, we note that Y is a local
subtopos of the slice topos Shv(L)/(Y,OY).

Proposition 3.2.1.32. Let (G,L) be a geometry equipped with a small G-scheme theory. Then the ∞-topos Shv(L)
has enough points if and only if for every (Y,OY) ∈ L, the ∞-topos Y has enough points.

Proof. The if direction follows immediately from the fact that the collection of functors {φ∗(Y,OY)}(Y,OY)∈L is jointly
conservative. For the converse, we note that Y is a local subtopos of the slice topos Shv(L)/(Y,OY).

Example 3.2.1.33. Choose a geometric envelope TDiff ↪ Gder
Diff , then the functor SpecTDiff ∶ TDiff → RTop(Gder

Diff)
is fully faithful, and the pair SpecTDiff (TDiff)) is a good Gder

Diff -scheme theory. Using that all (finite dimensional)
manifolds have finite covering dimension, we see that Shv(M) has enough points for every manifold M . We note
that the topology on TDiff induced from RTop(Gder

Diff) is the étale topology, so we conclude that Shv(TDiff) = SmSt has
enough points. In particular, SmSt is hypercomplete and Postnikov towers converge.

Example 3.2.1.34. Consider the good GAnC -scheme theory given by derived analytic spaces. All analytic spaces
have finite covering dimension, so using the same argument as in the previous remark, we find that the ∞-topos of
derived analytic stacks has enough points.

3.2.2 Geometric contexts

Let G be a geometry and let L be an n-localic G-scheme theory.

Definition 3.2.2.1. Let P be a property of morphisms in L, then P is local on the source for the (n − 1)-étale
topology if the following conditions are satisfied.

(1) If in a composition

XÐ→ YÐ→ Z,
the first map is (n − 1)-étale and the second has the property P , then the composition has the property P .

(2) Suppose ∐iXi → X is an (n−1)-étale covering and let f ∶ X→ Y be a map, then f has the property P if for each
i, the composition Xi → X→ Y has the property P .

Definition 3.2.2.2. Let P be a property of morphisms in L, then P is local on the target for the (n−1)-étale topology
if the following conditions are satisfied.

(1) A pullback of a morphism in P along an (n − 1)-étale map is in P .

(2) Let f ∶ X → Y is a map in L and suppose that there is an (n − 1)-étale cover ∐Yi → Y such that for each i, the
induced map Yi ×Y X→ Yi lies in P , then f lies in P .

The following notion is adapted from the HAG contexts of [TV06] and that of [PY17]

Definition 3.2.2.3. A geometric context consists of a triple (G,L,P) of a geometry together with an n-localic scheme
theory, and a property P of morphisms that satisfies the following conditions.

G1. Morphisms in P are closed under taking pullbacks with any morphism in L.

G2. For every (n − 1)-étale covering {fi ∶ Ui →X}, fi is in P.

G3. The property P is local on the source with respect to the (n − 1)-étale topology.
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Given a geometric context, one defines m-geometric stacks for m ≥ −1 by induction, as follows. In what follows,
we will restrict to 0-localic scheme theories, for simplicity.

Definition 3.2.2.4. Let (G,L,P) be a geometric context where L is n-localic. We call a sheaf on L a stack.

(1) A (−1)-geometric stack is a stack representable by a 0-localic L-scheme.

(2) A morphism of stacks X → Y is (-1)-representable if for any morphism Z → Y of stacks where Z lies in L, the
base change X ×Y Z is a (−1)-geometric stack.

(3) A morphism of stacks X → Y is an (−1)-P morphism if it is (-1)-representable and if for any morphism of stacks
Z → Y where Z is a representable stack, the morphism X ×Y Z → is in P.

For n ≥ 0, we say that

(1) A stack X has an n-P atlas if there is a collection {Ui}i∈I of representable stacks together with (n − 1)-P
morphisms Ui →X such that the induced map ∐i∈I Ui →X is an effective epimorphism.

(2) A stack X is n-P-geometric if X has an n-P atlas and the diagonal map X →X ×X is (n − 1)-representable.

(3) A morphism of stacks X → Y is n-representable if for any morphism of stacks Z → Y where Z is representable,
the base change X ×Y Z is n-P-geometric.

(4) A morphism of stacks X → Y is an n-P morphism if it is n-representable and if for any morphism Z → Y of
stacks where Z is representable, there exists an n-P atlas {Ui → X ×Y Z} such that for each i, the composite
morphism Ui → Z is in P.

The following proposition sums up the basic properties of n-P-geometric stacks.

Proposition 3.2.2.5. Let (G,L,P) be a geometric context.

(1) Any (n − 1)-representable morphism is n-representable.

(2) Any (n − 1)-P morphism is n-P.

(3) n-representable morphisms are stable by equivalences, compositions and pullbacks along any morphism of stacks.

(4) n-P morphisms are stable by equivalences, compositions and pullbacks along any morphism of stacks.

Proof. See [TV06], prop 1.3.3.3.

Proposition 3.2.2.6. Let f ∶X → Y be an n-representable morphism of stacks. If f is an m-P morphism for m > n,
then f is n-P.

Proof. See [TV06], prop. 1.3.3.6

Proposition 3.2.2.7. Let (G,L,P) be a geometric context and let f ∶ X → Y be a morphism of stacks where Y is
n-P-geometric. Suppose that Y admits an n-P atlas {Ui → Y }i∈I such that X ×Y Ui is n-P-geometric for all i ∈ I.
Then X is n-P-geometric. Moreover, if for each i ∈ I, the map X ×Y Ui → Ui is n-P, then so is f .

Proof. See [TV06], prop 1.3.3.4.

Definition 3.2.2.8. Let (G,L,P) be a geometric context. A groupoid object X● ∈ Gpd(Shv(C)) is an n-P groupoid
if X0 and X1 are small coproducts of n-P-geometric stacks, and the degeneracy maps d0

0, d
0
1 ∶X1 →X0 are in n-P.

Proposition 3.2.2.9. Let (G,L,P) be a geometric context, and let X ∈ Shv(L) be a stack. The following are
equivalent:

(1) X is an n-P-geometric stack.

(2) X has an n-P atlas.

(3) There exists an (n − 1)-P groupoid X● such that X ≃ colim N(∆)opX●.

Proof. See [TV06], proposition 1.3.4.2.

The following corollary is useful for establishing geometricity in situations where one is given an ‘atlas’ of a stack
which is not affine.
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Corollary 3.2.2.10. Let X be an (n − 1)-P geometric stack and let f ∶ X → Y be an effective epimorphism that is
(n − 1)-representable and in P. Then Y is n-P geometric.

Proof. The assumptions easily imply that the Čech nerve of f is an (n−1)-P groupoid whose realization is equivalent
to Y .
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Chapter 4

Derived C∞-geometry: foundational aspects

In this chapter, we perform an in-depth study of the algebraic theory of simplicial C∞-rings, the projectively generated
presentable ∞-category sC∞ring associated to the category CartSp, which are to the C∞-rings of the previous chapter
as connective E∞-algebras over a field k of characteristic 0 are to ordinary commutative k-algebras. The relevance
of this theory to the derived C∞-geometry we are in the business of developing is provided by the following result,
which has appeared before in joint work with David Carchedi [CS19].

Theorem. Let C∞( ) ∶ TDiff → sC∞ringop be the obvious functor carrying a manifold to its simplicial C∞-ring of
smooth functions. Then C∞( ) factors through the full subcategory sC∞ringfp ⊂ sC∞ring spanned by compact objects,

and the resulting functor lies in Funad(TDiff , sC
∞ringopfp ) and there is a natural structure of a geometry on sC∞ringopfp

such that C∞( ) exhibits a geometric envelope, i.e. the ∞-category sC∞ringopfp 2-represents the functor Funad(TDiff , ).

As a corollary, a (local) TDiff -structure on an ∞-topos X is just a sheaf of (local) simplicial C∞-rings on X . Note
that, remarkably, we need not impose any condition on the C∞-rings corresponding to the criterion for TDiff -structures
that pullbacks along admissible maps should be preserved. The fact that derived C∞-geometry is controlled by an
algebraic theory has many convenient consequences; for instance, there is a homological algebraic model for derived
C∞-rings due to Carchedi and Roytenberg [CR12b; CR12a]: there is a model category C∞dga which simply consists
of commutative dg algebras over R such that the degree 0 elements admit the structure of a C∞-ring. Let C∞Alg
denote the localization of C∞dga at the weak equivalences, then there is a canonical equivalence

sC∞ring Ð→ C∞Alg,

the C∞-Dold-Kan correspondence. Since dg algebras tend to be easier to manipulate from the point-set point of view
than simplicial algebras, the model structure of Carchedi-Roytenberg imports powerful computational machinery into
the theory. Nevertheless, we will mostly stick with a simplicial and intrinsically ∞-categorical formulation because it
allows for easy comparison with other contexts of derived geometry where differential graded models are unavailable.
For instance, the obvious transformation of pregeometries

TDiff ↪Ð→ TDiffc

of manifolds into manifolds with corners and interior b-maps, determines for each ∞-topos a functor pX ∶ Strloc
TDiffc

(X )→
Strloc

TDiff
(X ). By the theorem above, we can identify a (local) TDiff -structure (X ,OX ) with a sheaf of (local) simplicial

C∞-rings on X . As it turns out, it is possible to completely characterize the fibres of pX in a more or less algebraic
manner.

Theorem. The functor pX is a presentable fibration and the fibre p−1
X (OX ) may be described as follows: applying

the assignment HomsC∞ring(C∞(R≥0), ) objectwise on X determines an object (OX )≥0, the positive elements of OX .
This object lifts canonically to a sheaf of simplicial commutative monoids on X , and the fibre p−1

X (OX ) is identified
with the ∞-category of sheaves of logarithmic structures on (OX )≥0.

The logarithmic structures in this theorem are (derived versions of) those of Fontaine-Illusie and Kato [Kat89;
Ogu18]. This theorem follows from a characterization of the geometric envelope of TDiffc.

Theorem. Let sC∞Log be the ∞-category of simplicial C∞-rings equipped with logarithmic structures on their positive
elements, then the ∞-category sC∞Logopfp is a geometric envelope of a pregeometry Morita equivalent to TDiffc.

The first sections of this chapter are devoted to the results described above. With this structure theory in hand,
we can apply the results from the previous chapter and obtain a variety of affine derived objects associated to the
geometries we mentioned above, and obtain without further effort theories of (geometric) derived stacks, of which we
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will give a number of examples relevant to future work related to moduli problems in C∞-geometry.
The last part of this chapter is devoted to sheaves of modules over sheaves of simplicial C∞-rings. With the cotangent
complex and deformation theory of derived manifolds, the subject of the next chapter, in mind, we compare to
definitions: one intrinsic to sC∞ring, the fibrewise stabilization of Fun(∆1, sC∞ring) → sC∞ring, and one algebraic,
via the forgetful functor sC∞ring → E∞Algcn

R . As sC∞ring is monadic over E∞Algcn
R , this comparison is quite a bit

easier than the analogous one in derived analytic geometry [PY17].

108



4.1 C∞-Rings and Derived Differential Geometry

In this section, our main goal is to verify that C∞-rings in spaces provide models for the geometric envelope of TDiff ,
and derive some elementary consequences.

4.1.1 Lawvere theories

This subsection may be regarded as an elaboration on section 5.5.8 of [Lur17b].

Definition 4.1.1.1. A Lawvere theory is a small ∞-category T with finite products. A transformation of Lawvere
theories is a functor f ∶ T → T′ that preserves finite products. We let LawThy ⊂ Cat∞ denote the subcategory whose
objects are Lawvere theories and whose morphisms are transformations of Lawvere theories.
Let T be a Lawvere theory. A set of sorts for T is a (small) set S together with an injective function i ∶ S ↪ ObhT,
such that every object of T is equivalent to a product of objects in the image of i. A Lawvere theory with a specified
set of sorts S is an S-sorted Lawvere theory. If the set S is the subset {1, . . . , n} ⊂ N, we call an S-sorted Lawvere
theory an n-sorted Lawvere theory.

Definition 4.1.1.2. Let X be an ∞-topos and let T be Lawvere theory. A T-algebra in X is a product preserving
functor F ∶ T → X . The full subcategory of Fun(T,X ) spanned by T-algebras in X is denoted TAlg(X ). T-algebras
in the ∞-topos of spaces are called simplicial T-algebras and the ∞-category thereof is denoted sTAlg.

Obviously, the ∞-category TAlg(X ) has all limits and sifted colimits (which are computed objectwise in X ).
[Lur17b], prop. 5.5.8.10 shows that TAlg(X ) a compactly generated presentable ∞-category; there exists an accessible
localization L ∶ Fun(T,X ) → TAlg(X ) that carries compact objects to compact objects. For any X , we have a
canonical equivalence

TAlg(X ) ≃ ShvsTAlg(X ) ≃ sTAlg ⊗X .
For X = S, [Lur17b], lem. 5.5.8.14 shows that sTAlg is projectively generated by the essential image of the Yoneda
embedding Top ↪ sTAlg. Clearly, a transformation of Lawvere theories f ∶ T → T′ induces for each ∞-topos X
a functor f∗ ∶ T′Alg(X ) → TAlg(X ) preserving small limits and small sifted colimits. For X = S, the relationship
between Lawvere theories and projectively generated presentable ∞-categories can be made very precise. For the
following proposition, we note that a left adjoint f ∶ sTAlg → sT′Alg admits a right adjoint g that preserves sifted
colimits if and only if f carries compact projective objects to compact projective objects. The only ‘if direction’ is
an immediate check and for the other direction, it suffices to show that for each t ∈ T the composition

sT′Alg Ð→ sTAlg ⊂ PShv(Top) evtÐ→ S

preserves sifted colimits, but this functor is corepresented by f(t) which is compact projective by assumption.

Proposition 4.1.1.3. Let PrL
Proj ⊂ PrL be the subcategory whose objects are projectively generated presentable ∞-

categories and whose morphisms are functors admitting a right adjoint that preserves sifted colimits. Let LawThyIdem ⊂
LawThy denote the full subcategory spanned by idempotent complete Lawvere theories.

(1) The construction
Tz→ sTAlg

extends to an equivalence of ∞-categories LawThyIdem ≃ PrL
Proj.

(2) The ∞-category PrL
Proj is presentable.

(3) The ∞-category PrL
Proj is semiadditive.

(4) The subcategory inclusion PrL
Proj ⊂ PrL preserves colimits.

Proof. We first construct the functor LawThyIdem → PrL. For K a class of small simplicial sets, let Cat∞(K) (Ĉat∞(K))
denote the (very) large ∞-category of small (large) ∞-categories that admit colimits indexed by simplicial sets in K
and functors that preserve colimits indexed by elements in K. Let P be the collection of finite discrete simplicial sets
together with the ∞-category Idem and let P ′ be the collection of all small simplicial sets. It follows from [Lur17b],
prop. 5.3.6.2 that the inclusion i ∶ Ĉat∞(P ′) ⊂ Ĉat∞(P) admits a left adjoint L. If C is a small ∞-category that
admits finite coproducts, then [Lur17b], prop. 5.5.8.15 asserts that the Yoneda embedding

C ↪Ð→ Funπ(Cop,S) = sCopAlg

exhibits a unit transformation for the adjunction (L ⊣ i) so we conclude that the restriction of L to the full subcategory
LawThyIdem ≅ Cat∞(P) ⊂ Ĉat∞(P) takes values in the full subcategory of PrL ⊂ Ĉat∞(P ′) spanned by projectively
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generated presentable ∞-categories. To see that a transformation of Lawvere theories is carried to a morphism in
PrL

Proj, we note that for a coproduct preserving functor f ∶ C → D between the opposite categories of two Lawvere
theories, we have a commuting diagram

C D

sCopAlg sDopAlg

jC

f

jD

L(f)

of coproduct preserving functor where moreover L(f) preserves all colimits. The right adjoint to L(f) preserves
sifted colimits if and only if L(f) carries compact projective objects to compact projective objects, so since [Lur17b],
prop. 5.5.8.25 implies every compact projective object in sCopAlg is a retract of one in the image of jC we conclude
using the diagram above and the stability of compact projectives under retracts. This concludes the construction of
the desired functor.
Now (2), (3) and (4) follow from (1) and the following assertions.

(2′) The ∞-category Cat∞(P) is presentable.

(3′) The ∞-category Cat∞(P) is semiadditive.

(4′) The functor L∣Cat∞(P) ∶ Cat∞(P)→ Ĉat∞(P ′) preserves small colimits.

Assertion (2′) follows from [Lur17a], lem. 4.8.4.2. To prove the semiadditivity of Cat∞(P), we note that the
assignments C ↦ (C,∅D) and D ↦ (∅C ,D) where ∅C and ∅D are initial objects C and D determine fully faithful
inclusions C ↪ C×D and D ↪ C×D left adjoint to the projections. Let A be an ∞-category admitting finite coproducts
and suppose that we are given coproduct preserving functors f ∶ C → A and g ∶ D → A. Since the inclusion C ⊂ C ×D
is a left adjoint, the ∞-category C/(s,t) admits a final object (s, (s,∅) → (s, t)) for any (s, t) ∈ C ×D, so the functor
f admits a left Kan extension F ∶ C ×D → A. Similarly, g admits a left Kan extension G ∶ C ×D → A. Composing
the inclusions C ↪ C × D and D ↪ C × D with F ∐G yields the functors f and g, and given any other functor
H ∶ C ×D → A compatible with f and g, we have a natural transformation F ∐G → H. This natural transformation
is an equivalence whenever H preserves binary coproducts since C and D generate C ×D under binary coproducts.
We conclude that C ×D is a coproduct of C and D in the homotopy category hCat∞(P). For (4′), we only have to
show that the inclusion Cat∞(P) ⊂ Ĉat∞(P) preserves small colimits since L preserves colimits, but this is obvious.
We are left to prove (1). For any projectively generated presentably ∞-category C, the full subcategory C0 spanned
by compact projective objects is idempotent complete and admits finite coproducts, and [Lur17b], prop. 5.5.8.25
asserts that C ≃ sCop0 Alg, so the functor L∣Cat∞(P) is essentially surjective. Now let C and D be idempotent complete
∞-categories admitting finite coproducts. Let Fun′(C,D) denote the full subcategory spanned by finite coproduct
preserving functors, Fun′(sCopAlg, sDopAlg) the full subcategory spanned by colimit preserving functors whose right
adjoint preserves sifted colimits, and Fun′(C, sDopAlg) the full subcategory spanned by functors preserving finite
coproducts and taking values in compact projective objects. We have a commuting diagram

Fun′(C,D) Fun′(sCopAlg, sDopAlg)

Fun′(C, sDopAlg)

θ

θ′

θ′′

where the diagonal functors are induced by the Yoneda embeddings for C and D. It suffices to show that the
diagonal functors are equivalences. [Lur17b], prop. 5.5.8.15 implies that θ′′ is an equivalence and since [Lur17b],
prop. 5.5.8.25 asserts that the Yoneda embedding D ↪ sCopAlg is an equivalence on the full subcategory spanned by
compact projective objects in virtue of the assumption that D is idempotent complete, we deduce that the functor
θ′ is also an equivalence.

We will refer to the functor T↦ sTAlg as the sifted colimit completion.

Remark 4.1.1.4. It follows from proposition 4.1.1.3 that the sifted colimit completion carries a product T ×T′ to
the coproduct sTAlg∐ sTAlg in PrL, which is the product in (PrL)op ≃ PrR. Since PrR ⊂ Ĉat∞ preserves limits, the
functor T↦ sTAlg carries the product T×T′ to the product sTAlg×sT′Alg so that sTAlg×sT′Alg is generated under
sifted colimits by the coproduct preserving functor

Top ×T
′op j×jÐ→ sTAlg × sT′Alg.

Note that this may fail for other limits in LawThyIdem; for instance, the fibre product sT′Alg ×sTAlg sT
′′Alg in PrL

Proj

is the sifted colimit completion of the Lawvere theory T′ ×T T
′′

(the fibre product in Cat∞), which need not coincide
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with the fibre product in Ĉat∞.
In general, proposition 4.1.1.3 shows that a limit of K → LawThyIdem is obtained by taking the limit of the composition
K → LawThyIdem ⊂ Cat∞, while the colimit is obtained by taking the limit of the diagram Kop → (PrL

Proj)op ⊂ PrR ⊂
Ĉat∞ and extracting the compact projective objects in the resulting ∞-category.

Remark 4.1.1.5. The sifted colimit completion may also be obtained by using the self-enrichment of Ĉat∞: the
functor Funπ( ,S) determines a functor LawThyIdem → (PrR)op which coincides with the sifted colimit completion after
passage to adjoints. We will not prove this rigorously, but give a few hints on how to proceed. First, one can repeat the
proof of proposition 4.1.1.3 (minus the semiadditivity result) to obtain an equivalence between the ∞-category CatIdem

∞

of small idempotent complete ∞-categories and the ∞-category PrL
cc whose objects are presentable ∞-categories

admitting a small set of completely compact objects and whose morphisms are left adjoints that admit a right adjoint
that admits a further left adjoint. This equivalence is implemented by the (small) colimit completion functor L which
carries C to PShv(C). The construction Fun(( )op,S) determines another colimit preserving functor from Cat∞ to
PrL

cc. Composing Fun(( )op,S) with the inverse of L, we obtain a colimit preserving functor Cat∞ → CatIdem
∞ . It is not

hard to see that this functor carries the full subcategory N(∆) to itself, which implies that L and Fun(( )op,S) are
in fact equivalent (both are the functor C ↦ Idem(C)). Restricting L (or Fun(( )op,S)) to Cat∞(P) yields a functor
Cat∞(P) → Ĉat∞. Let Q → Cat∞(P) be a coCartesian fibration associated to this functor, then one readily verifies
that the sifted colimit completion and the functor Funπ(( )op,S) determine the same full subcategory of Q.

Remark 4.1.1.6. It is observed in [Lur17b], rmk. 5.5.8.26 that the n’th truncation τ≤nsTAlg is precisely the full
subcategory of functors T → S taking values in n-truncated objects. Since we have an equivalence Fun(T, τ≤0S) ≃
N(Fun(hT,Set)) and the functor T → hT preserves and reflects finite products, the 1-category τ≤0sTAlg can be
identified with N(hTAlg), the nerve of the category of hT-algebras and we have a fully faithful inclusion N(hTAlg)↪
sTAlg. In turn, this inclusion determines a morphism shTAlg → sTAlg in PrL

Proj. Quite often, this functor is not an
equivalence, as the following example shows.

The Lawvere theories below are the basic ones we deal with in this work.

Example 4.1.1.7. Let C⊗ be a symmetric monoidal projectively generated presentable ∞-category such that the
tensor product commutes with colimits separately in each variable, then the ∞-category of E∞Alg(C) is projectively
generated. To see this, we note that forgetful functor E∞Alg(C)→ C preserves limits and sifted colimits by [Lur17a],
cor. 3.2.2.3 and 3.2.3.2 and admits a left adjoint, the free commutative algebra functor Sym●. Let C0 ⊂ C be a
full subcategory spanned by a collection of compact projective generators stable under coproducts, and let F (C0) ⊂
E∞Alg(C) be the essential image of C0 under Sym●, then it follows from [Lur17a], prop. 7.1.4.12 that the inclusion
F (C0) ⊂ E∞Alg(C) induces an equivalence sF (C0)opAlg ≃ E∞Alg(C) (all this actually holds for algebras for an arbitrary
∞-operad in the symmetric monoidal ∞-category C⊗). Now suppose that

(1) The full subcategory τ≤0C is stable under the tensor product,

then τ≤0C ⊂ C is symmetric monoidal, and the fully faithful inclusion E∞Alg(τ≤0C) ⊂ E∞Alg(C) can be identified
with the nerve of the category hF (C0)Alg as the full subcategory spanned by 0-truncated objects, since the forgetful
functor E∞Alg(C) → C preserves and detects truncations, which follows from remark 4.1.1.6. We have a (strictly)
commuting diagram

E∞Alg(C) C

E∞Alg(τ≤0C) τ≤0C

of right adjoints. If we also suppose that

(2) For each X ∈ τ≤0, the Σn-coinvariants of X⊗n are 0-truncated,

then this diagram is horizontally left adjointable. If we moreover assume that

(3) The ∞-category C0 lies in the full subcategory τ≤0C ⊂ C,

then E∞Alg(C) is generated under sifted colimits by the image of the functor

C0
Sym●
Ð→ E∞Alg(τ≤0C) ↪Ð→ E∞Alg(C).

If k is a field of containing Q, then (1), (2) and (3) hold for C = Modcn
k , the ∞-category of connective k-modules,

so E∞Algk can be identified with sTAlg, where T is the opposite of the category of discrete k-algebras of the form
k[x1, . . . , xn]. We may also view T as the discrete pregeometry T disc

k whose objects are affine k-spaces Ank and whose
morphisms are polynomial maps among them.
When C⊗ = S×, only (1) and (3) hold. S is projectively generated by its full subcategory N(Fin) of finite discrete
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spaces, and we can characterize its essential image under Sym● as a certain (2,1)-category F ⊂ E∞Alg(S) = MonE∞
whose objects are parametrized by Z≥0, and whose morphisms are disjoint unions of classifying spaces of symmetric
groups. For instance, we have HomF(0,0) ≃ ∐nBΣn. Then sFopAlg ≃ MonE∞ , and using remark 4.1.1.6 and the
diagram above, we deduce that the homotopy category of F must coincide with the Lawvere theory FCMon of free
commutative monoids. We will let sCMon denote the ∞-category of simplicial commutative monoids, the algebras
for the 1-sorted Lawvere theory N(FCMon). The transformation of Lawvere theories F → N(FCMon) induces a
functor sCMon → MonE∞ . This functor is not an equivalence, but it is conservative; in fact, it is both monadic and
comonadic.

Example 4.1.1.8. The category CartSp whose set of objects is {Rk; k ∈ Z≥0} and whose morphisms are smooth maps
is a Lawvere theory, generated under finite products by R. A CartSp-algebra in an ∞-topos X is called a C∞-ring in
X .

Example 4.1.1.9. The category CartSpc whose set of objects is {Rk × Rm≥0; k,m ∈ Z≥0} and whose morphisms are
interior b-maps is a 2-sorted Lawvere theory, generated under finite products by R and R≥0. A CartSpc-algebra in an
∞-topos X is called a C∞-ring with pre-corners in X .

The obvious functors T disc
R ↪ CartSp↪ CartSpc show that every C∞-ring with pre-corners in X has an underlying

C∞-ring, and every C∞-ring has an underlying commutative R-algebra.
Anticipating the results in the next subsection, we develop here the theory of simplicial T-algebras a bit. The ∞-
category sTAlg is far from being an ∞-topos (colimits are not universal), but it does have a few redeeming features:
as limits and sifted colimits are computed in the ∞-topos PShv(Top) and geometric realizations are sifted colimits,
we see that the ∞-category sTAlg inherits the following properties from PShv(Top).

Proposition 4.1.1.10. Let T be a Lawvere theory.

(1) Sifted colimits are universal in sTAlg.

(2) Every groupoid object in sTAlg is effective.

(3) sTAlg has an epi-mono factorization system: there exists a factorization system (SL, SR) on sTAlg such that SL
consists of effective epimorphisms and SR consists of monomorphisms.

(4) For each small sifted simplicial set K and each natural transformation α ∶ p → q between functors p, q ∶ K⊳ →
sTAlg the following holds: if q is a colimit diagram and α∣K is a Cartesian transformation, then p is a colimit
diagram if and only if α is a Cartesian transformation.

Remark 4.1.1.11. The previous proposition shows that for every Lawvere theory T, the ∞-category sTAlg is
differentiable in the sense of [Lur17a], defn. 6.1.1.6. This observation will be important when we deal with mod-
ules of simplicial T-algebras. Using [Lur17b], prop 1.2.13.8, it’s easy to show that the ∞-category sTAlg/A is also
differentiable for any A ∈ sTAlg.

Remark 4.1.1.12. Let T be an S-sorted Lawvere theory, then we may associate to any simplicial T-algebra A
a collection of homotopy sets as follows: for each object s of T in the image of i ∶ S → ObT , there is a functor
θs ∶ sTAlg → S given by evaluating at s. It is customary to identify a simplicial T -algebra with the S-tuple of spaces
(θs(A))s∈i(S): we will usually denote the C∞-ring of smooth functions on a manifold M (possibly with corners) as
C∞(M) and the C∞-ring with pre-corners as (C∞(M),C∞

b (M)). For each n ≥ 0 and s ∈ S, we denote by πn(A)s the
n’th homotopy set of θs(A) which is an abelian group for n ≥ 1. By the previous remark, the homotopy sets π0(A)s
can be identified with τ≤0A(s) and if T is a 1-category, the S-tuple π0(A) ∶= (π0(A)s)s∈i(S) carries the structure of
an ordinary T-algebra; we will use both notations in the sequel.

Remark 4.1.1.13. From the generating properties of the objects s ∈ i(S) we deduce immediately that the functor

θ ∶ sTAlg
∏s∈i(S) θsÐ→ ∏

s∈i(S)

S

is conservative. Combining this observation with the fact that each θs preserves geometric realizations and [Lur17b],
corollary 7.1.2.15, we see that a morphism A → B of simplicial T-algebras is an effective epimorphism if and only if
the induced map π0(A)→ π0(B) (with the notation from the previous remark) on sets is surjective.

Remark 4.1.1.14. By Yoneda, the space HomsTAlg(j(s),A) coincides with θs(A), where j ∶ Top → sTAlg is the
Yoneda embedding; it follows that there is a bijection of sets HomhsTAlg(j(s),A) ≃ π0(A)s.

Definition 4.1.1.15. Let T be a Lawvere theory. A simplicial T-algebra A is
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(1) finitely generated if the functor HomsTAlg(A, ) ∶ sTAlg → S corepresented by A preserves colimits of small filtered
diagrams consisting only of monomorphisms.

(2) finitely presented or compact if the functor HomsTAlg(A, ) ∶ sTAlg → S corepresented by A preserves small filtered
colimits, that is, if A is a compact object.

(3) finitely presented and projective or compact projective if the functor HomsTAlg(A, ) ∶ sTAlg → S corepresented by
A preserves small sifted colimits.

(4) almost finitely presented if for all n ≥ 0, τ≤nA is finitely presented in τ≤nsTAlg.

Remark 4.1.1.16. Let C be a compactly generated presentable ∞-category and let J ∶ K → C be a small filtered
diagram consisting only of monomorphisms. Then the map J (k) → colim k∈K′J (k′) is a monomorphism for each
k ∈ K. To see this, we write C as an accessible localization of an ∞-category PShv(C0) with the property that the
inclusion C ⊂ PShv(C0) preserves filtered colimits. As monomorphisms are detected in PShv(C0), we may replace C
with PShv(C0); then we see that we may actually assume that C = S, in which case it is obvious. It follows that the
map colim k∈KHomC(C,J (k)) → HomC(C, colim k∈KJ (k)) of spaces is also a monomorphism for any C ∈ C. This
latter map is thus an equivalence if and only if each map C → colim k∈KJ (k) factors through some J (k′). Thus, C
is finitely generated if and only if this latter condition is satisfied for all small filtered diagrams in C consisting only
of monomorphisms.

Remark 4.1.1.17. As is standard in the theory of higher algebraic structures, there is a family of conditions of
increasing strength indexed by the natural numbers between the condition of finite generation and that of finite
presentation: let n ∈ Z≥−1, then we say that a simplicial T-algebra A is finitely n-presented if the functor sTAlg → S
corepresented by A preserves colimits of small filtered diagrams that factor through the subcategory spanned by
n-truncated morphisms.

In ordinary commutative algebra, an algebra A is finitely generated if there is some free algebra F on finitely many
generators and a quotient map F → A. The following proposition shows that the same principle can be applied to
finitely generated T-algebras, with the caveat that an effective equivalence relation must be replaced by an effective
groupoid.

Proposition 4.1.1.18. Let T be an S-sorted Lawvere theory, and let A be a simplicial T-algebra. The following are
equivalent.

(1) A is finitely generated.

(2) There exists an object t of T and an effective epimorphism q ∶ j(t) → A, where j ∶ Top → sTAlg is the Yoneda
embedding.

Proof. We start by proving that (1)⇒ (2). Let A be finitely generated, and let Sub(A) be the (small) filtered poset
of equivalence classes of subobjects of A. Let Sub′(A) be the subposet of Sub(A) spanned by subobjects of A that
satisfy condition (2), which is nonempty (because every map j(t) → A factors as an effective epimorphism followed
by a monomorphism) and is easily seen to be filtered. We claim that A is the colimit of the diagram

J ∶ Sub′(A) ⊂ Sub(A) ≃ τ≤−1sTAlg/A Ð→ sTAlg.

By proposition 4.1.1.24, the ∞-category sTAlg/A is compactly generated so the ∞-categories τ≤ksTAlg/A are stable
under filtered colimits for k ≥ −2, so the map colimAi∈Sub′(A)Ai → A is a monomorphism, meaning that for each s ∈ S
(the minimal set of sorts), the map of spaces θs ∶ colimAi∈Sub′(A)Ai(s)→ A(s) is an inclusion of connected components
(here we use that the evaluation functors preserve filtered colimits). The evaluation functor θ ∶ sTAlg → ∏S S of
remark 4.1.1.13 is conservative, so it suffices to show that for all s ∈ S, the morphism colimAi∈Sub′(A)Ai(s)→ A(s) is
an equivalence. To see this, we only have to check that this morphism induces a surjection on connected components,
meaning that every morphism j(s) → A factors through some B ∈ Sub′(A). This is the case as j(s) → A factors as
an effective epimorphism followed by a monomorphism. Because A is finitely generated, we have HomsTAlg(A,A) ≃
colimAi∈Sub′(A)HomsTAlg(A,Ai), so the identity map A→ A factors as A

f→ Ai → A for some Ai ∈ Sub′(A). The map
Ai → A is thus a monomorphism and an effective epimorphism, and therefore an equivalence.
Now we show that (2)⇒ (1). Let Y = colim i∈IYi be a colimit of a filtered diagram consisting only of monomorphisms.
A map A → Y induces a map j(t) → Y which must factor through one of the Yi’s as j(t) is a compact projective
object in sTAlg. Because Yi → Y is a monomorphism and the class of effective epimorphisms is left orthogonal to the
class of monomorphisms, we can find the dotted arrow that makes the diagram

j(t) Yi

A Y
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commute, which proves that A is finitely generated, after remark 4.1.1.16.

Remark 4.1.1.19. Let A be a simplicial T-algebra. A surjective map j(t) → π0(A) in hT determines an element
in π0(A)(t) ≃ HomhsTAlg(j(t),A), so we get an effective epimorphism j(t) → A by remark 4.1.1.13, defined up to
homotopy. It follows from the previous lemma that A is finitely generated if and only if π0(A) is finitely generated
as an ordinary hT-algebra.

The following results give alternative characterizations of the full subcategory of finitely presented T-algebras.

Lemma 4.1.1.20. Let T be a Lawvere theory. The full subcategory of finitely presented T-algebras is the smallest
full subcategory of sTAlg that contains the essential image of the embedding Top ↪ sTAlg and is stable under finite
colimits and retracts.

Proof. Let C be the smallest full subcategory of sTAlg that contains the essential image of the fully faithful embedding
j ∶ Top ↪ sTAlg and is stable under finite colimits and retracts. Since sTAlgfp is stable under finite colimits and
retracts and contains the objects of Top as a set of compact projective generators of sTAlg, we have C ⊂ sTAlgfp.
To establish the other inclusion, we show that every finitely presented simplicial T-algebra is a retract of a finite
colimit of objects in j(Top). Any simplicial T-algebra is a small colimit of free T-algebras, the objects in j(Top). By
decomposing the index simplicial set K of a small colimit into the partially ordered set of finite simplicial subsets of
K, we may write the colimit of K as a filtered colimit of finite colimits ([Lur17b], cor. 4.2.3.11). Applying this to a
finitely presented simplicial T-algebra A, we have a filtered colimit A = colim i∈JAi, where each Ai is a finite colimit
of free simplicial T-algebras. Because A is finitely presented, the identity map A → A factors trough some Ai → A
which shows that the desired retraction exists.

Remark 4.1.1.21. For the example T = CartSp that will receive our attention in the coming sections, the finite
colimits in the theorem above can be chosen to be of special type: every simplicial C∞-ring A admits a presentation
as a cell object, that is, a directed colimit of pushouts along maps of the form ΣmC∞(V ) → R for V a (possibly
infinite-dimensional) vector space.

Proposition 4.1.1.22. Let T be a Lawvere theory. For each idempotent complete ∞-category C that admits finite
limits, the restriction map

θ ∶ Funlex((sTAlgfp)
op,C)Ð→ Funπ(T,C)

induced by the fully faithful embedding j ∶ T→ (sTAlgfp)op is an equivalence.

Proof. The Yoneda embedding C ↪ PShv(C) induces a commuting diagram

Fun′(sTAlgop,C) Funlex(sTAlgopfp ,C) Funπ(T,C)

Fun′(sTAlgop,PShv(C)) Funlex(sTAlgopfp ,PShv(C)) Funπ(T,PShv(C))j∗

where Fun′(sTAlgop,C) and Fun′(sTAlgop,PShv(C)) denote full subcategories of functors preserving small limits.
As PShv(C) admits small limits and the ∞-category sTAlg is compactly generated, left Kan extension induces an
equivalence

Funω−cont(sTAlg,PShv(C)op)Ð→Fun(sTAlgfp,PShv(C)op).

We first show that this functor restricts to an equivalence between functors F ∶ sTAlg → PShv(C)op preserving all
colimits and right exact functors f ∶ sTAlgfp → PShv(C)op. It is clear that if F preserves colimits, then the restriction
F ∣sTAlgfp

is right exact. Now suppose that f ∶ sTAlgfp → PShv(C)op is right exact and let F ∶ sTAlg → PShv(C)op be
a left Kan extension of f obtained by applying the inverse of the equivalence above. Let

F ′ ∶ PShv(sTAlgfp)Ð→ PShv(C)op

be a left Kan extension of f along the Yoneda embedding j ∶ sTAlgfp ↪ PShv(sTAlgfp). We may identify sTAlg
with the full subcategory Ind(sTAlgfp) ⊂ PShv(sTAlgfp) of right exact functors ([Lur17b], cor. 5.3.5.4), so that
F ′∣Ind(sTAlgfp) is identified with F . It follows from [Lur17b], prop. 5.5.2.9 and remark 5.5.2.10 that F ′ admits a right

adjoint G. It suffices to prove that G factors through Ind(sTAlgfp), then G is also a right adjoint to F ′∣Ind(sTAlgfp)

which implies that F preserves colimits. But the value of G on some X ∈ PShv(C)op is the presheaf

sTAlgopfp
fopÐ→ PShv(C) Hom(X, )Ð→ S,
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which is left exact as fop is left exact. It follows that the lower horizontal functor

Fun′(sTAlgop,PShv(C))Ð→ Funlex(sTAlgopfp ,PShv(C))

is an equivalence, and the lower horizontal composition Fun′(sTAlgop,PShv(C))→ Funπ(T,PShv(C)) is an equivalence
by [Lur17b], prop. 5.5.8.13. To prove that the functor θ is an equivalence, it now suffices to show that for any left exact
functors f ∶ sTAlgop → PShv(C) such that f ∣j(T) takes values in the image C′ of the Yoneda embedding j ∶ C → PShv(C),
then f also takes values in C′. This follows because lemma 4.1.1.20 shows that every A ∈ sTAlgopfp is a retract of a

finite limit of objects in j(T) and C′ is stable under finite limits and retracts in PShv(C) by assumption.

Remark 4.1.1.23. The argument in the proof above can be used to show the following: let C be a κ-compactly
generated ∞-category and let Cκ be the full subcategory spanned by κ-compact objects. Let D be a (not necessarily
presentable) ∞-category that admits all small colimits. Then a functor F ∶ C → D preserves colimits if and only if it
admits a right adjoint, and restriction along the inclusion Cκ ⊂ C induces an equivalence

FunL(C,D)Ð→ Funκ−rex(Cκ,D)

where Funκ−rex(Cκ,D) denotes the full subcategory spanned by functors preserving κ-small colimits.

We discuss slicing of ∞-categories of T-algebras.

Proposition 4.1.1.24. Let sTAlg be the ∞-category of algebras for a Lawvere theory T, and let A ∈ sTAlg. Then
the overcategory sTAlg/A is equivalent to ∞-category of algebras for the Lawvere theory (Top

/A
)op ∶= Top ×sTAlgop

(sTAlg/A)op.

Remark 4.1.1.25. It is easy to see (using [Lur17b], lem. 5.4.5.5 for instance) that (Top
/A

)op admits finite products

and both the functors (Top
/A

)op → T and (Top
/A

)op → sTAlgop preserve finite products. Also note that because T is

small and sTAlg is locally small, the ∞-category (Top
/A

)op is essentially small.

Proof. In view of [Lur17b], prop. 5.5.8.22, it is sufficient to show that the fully faithful functor Top
/A
↪ sTAlg/A takes

values in compact projective objects of sTAlg/A and that the essential image generates sTAlg/A under sifted colimits.
LetB → A a morphism in sTAlg, then according to [Lur17b], lem. 5.5.8.13, we may choose a sifted diagramK → Top →
sTAlg with colimit B, determining a colimit diagram K⊳ → sTAlg. Since the inclusion K ⋆∆0∐∆0 ∆1 ↪ K ⋆∆1 is
inner anodyne, the map K⊳ → sTAlg lifts along the projection p ∶ sTAlg/A → sTAlg as a diagram K⊳ → Top

/A
→ sTAlg/A

which is also a colimit diagram, as the right fibration p preserves and reflects colimits. It remains to be shown that
each object of the form j(t) → A is compact projective. Let J ∶ K → sTAlg/A be a sifted diagram, then we have a
fibre sequence

HomsTAlg/A(j(t), colimJ ) HomsTAlg(j(t), colimJ )

∗ HomsTAlg(j(t),A)

where the fibre is taken at j(t)→ A, using that the functor p preserves and reflects colimits. We conclude using that
j(t) is compact projective in sTAlg and the fact that colimits are universal in S.

Remark 4.1.1.26. Using that sifted colimits are universal in ∞-categories of algebras for Lawvere theories, it
can be shown along the lines of the proof of Rezk descent for ∞-topoi ([Lur17b], section 6.1.3) that the functor
sTAlgop → PrL ⊂ Ĉat∞ associated to the Cartesian fibration Fun(∆1, sTAlg) → sTAlg preserves (co)sifted limits. As
the ∞-category Top

/A
is sifted for each simplicial T algebra A, it follows that the functor

(Top
/A)

op
Ð→ Ĉat∞, (j(t)→ A)z→ sTt/Alg

has limit sTAlg/A.

Remark 4.1.1.27. Note that for any ∞-category C that admits binary coproducts, the projection p ∶ CA/ → C admits
a left adjoint given by taking the coproduct with A, for any object A of C. If T is a Lawvere theory and A ∈ sTAlg
an object, consider the full subcategory of sTAlgA/ spanned by objects of the form A∐ j(t) for t ∈ Top, denoted TopA .
As taking the coproduct with A preserves colimits, TopA has finite coproducts so TA is a Lawvere theory. The next
proposition shows that the inclusion TopA ↪ sTAlgA/ induces an equivalence sTAAlg → sTAlgA/, so we can think of
morphisms f ∶ A→ B as simplicial algebras for the Lawvere theory TA. In particular, the terminology and results of
this section hold for maps of simplicial T-algebras. For instance, a map f ∶ A → B of simplicial T-algebras is finitely
presented if f is compact in sTAlgA/, and this is the case if and only if f is a retract of a finite colimit of morphisms
of the form A→ A∐ j(t), by lemma 4.1.1.20.
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Proposition 4.1.1.28. Let T be a Lawvere theory, then the inclusion TopA ↪ sTAlgA/ of the previous remark induces
an equivalence sTAAlg ≃ sTAlgA/.

We need the following lemma.

Lemma 4.1.1.29. Let K be a weakly contractible simplicial set and let C be an ∞-category that admits K-indexed
colimits. For each A ∈ C, the ∞-category CA/ admits K-indexed colimits and the projection p ∶ CA/ → C preserves and
reflects K-indexed colimits.

Proof. As categorical equivalences are left cofinal, we may suppose without loss that K is an ∞-category. Let
τ ∶ K → CA/ be a diagram, then an object Z ∈ (CA/)K/ is a colimit of τ if the projection ((CA/)K/)Z/ → (CA/)K/ is
a trivial Kan fibration. The diagram τ is equivalent to a diagram τ ∶ K⊲ → C sending the cone vertex to A, and we
have an isomorphism of simplicial sets (CA/)K/ ≅ CK⊲/, so Z is a colimit of τ in CA/ if and only if Z is a colimit of τ
in C. We will be done once we show that Z is a colimit of τ if and only if Z is a colimit of p ○ τ . For this, it suffices
to check that the inclusion K ↪K⊲ is left cofinal. We need to show that K ×K⊲ K⊲

v/ is weakly contractible for every
vertex v ∈ K⊲. If v ∈ K, then K ×K⊲ K⊲

v/ ≅ Kv/ which admits an initial object and is thus weakly contractible. If
v =∞, the cone vertex in K⊲, then K ×K⊲ K⊲

v/ ≅K which is weakly contractible by assumption.

Proof of Proposition 4.1.1.28. In view of [Lur17b], prop 5.5.8.22, we need only check that for all t ∈ Top the functor
out of sTAlgA/ corepresented by A∐ j(t) preserves sifted colimits and that the collection of objects {A∐ j(t)}t∈Top
generates sTAlgA/ under sifted colimits. For the first assertion, we take a sifted diagram τ ∶ K → sTAlgA/ and we
observe that by adjunction HomsTAlgA/(A∐ j(t), colim τ) ≃ HomsTAlg(j(t), p(colim τ)), where p ∶ sTAlgA/ → sTAlg
is the projection. Since K is sifted and thus weakly contractible, p(colim τ) ≃ colim p ○ τ by lemma 4.1.1.29. Now
the conclusion follows because the functor HomsTAlg(j(t), ) preserves sifted colimits.
Now we check that sTAlgA/ is generated under sifted colimits by TA. Note that the projection p ∶ sTAlgA/ → sTAlg
is conservative, preserves limits and sifted colimits by lemma 4.1.1.29 and is therefore monadic by Lurie’s Barr-Beck
theorem. The corresponding monad MA is simply taking the coproduct with A, and it follows that every object
A → B ∈ sTAlgA/ is the colimit of its Bar resolution BarMA(MA,B)●. Each term in the resolution is of the form
A∐X for some X ∈ sTAlg, so if we write X ≃ colim J for some sifted diagram J ∶ K → Top, then A∐X is the

colimit of the diagram K
JÐ→ Top

A∐Ð→ TopA ↪ sTAlgA/.

Remark 4.1.1.30. For f ∶ A→ B a map of simplicial T-algebras, we have an adjunction

(f! ⊣ f∗) ∶ sTAlgA/ sTAlgB/

where the left adjoint f! is base change along f and the right adjoint f∗ is the functor composing with f . The functor
f! restricts to a coproduct preserving functor f!∣Top

A
∶ TopA → TopB , and the adjunction above is obtained from the

transformation of Lawvere theories (f!∣Top
A

)op ∶ TA → TB , in the sense that the functor f∗ is given by composition

with (f!∣Top
A

)op when we think of simplicial TA-algebras as product preserving presheaves on TopA .

4.1.2 Resolutions of diagrams and unramified transformations

When comparing two Lawvere theories T and T’, or more generally two pregeometries T and T ′, a basic question
that arises is the following:

• when does a transformation f ∶ T→ T′ preserve pushouts in sT′Alg?

For pregeometries, the answer to this question depends on whether or not T and T ′ admit a well behaved theory of
closed immersions. For Lawvere theories, the situation is simpler, as all Lawvere theories have well behaved effective
epimorphisms. A transformation f then preserves certain pushout diagrams if the following condition is satisfied.

Definition 4.1.2.1. Let T and T′ be Lawvere theories. A morphism in T′ is a graph inclusion if it is equivalent to
a morphism of the form idX × f ∶X →X × Y for some f ∶X → Y . A transformation of Lawvere theories f ∶ T→ T′ is
unramified if for each graph inclusion g ∶X →X × Y in T′ and each Z ∈ T′, the diagram

f∗j(X × Y ) f∗j(X × Y ×Z)

f∗j(X) f∗j(X ×Z)

is a pushout in sTAlg, where the upper horizontal map is induced by the projection X × Y ×Z →X × Y .

The significance of this definition is explained by the following theorem.
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Theorem 4.1.2.2. Let f ∶ T → T′ be an unramified transformation of Lawvere theories. Then f∗ ∶ sT′Alg → sTAlg
preserves pushouts along effective epimorphisms.

The proof of this theorem requires some preparation: we need to resolve an arbitrary effective epimorphism by
maps of the type appearing in definition 4.1.2.1. Such a resolution is constructed for an arbitrary pregeometry T in
[Lur11a], sections 2 and 3, but we have no need of that generality, so we only treat the case of Lawvere theories, using
somewhat different methods1. These resolutions turn out to be a remarkably powerful technical device in itself, for
which we will find many uses. We formalize it in the following proposition.

Proposition 4.1.2.3 (Free resolutions of effective epimorphisms). Let T be a Lawvere theory. Let C be an ∞-category
that admits sifted colimits and let C0 ⊂ C be a full subcategory stable under sifted colimits. Suppose we are given a
functor F ∶ Fun(∆1, sTAlg)→ C such that

(1) F preserves sifted colimits.

(2) For every graph inclusion g ∶X →X × Y of free simplicial T-algebras, the object F (j(g)) lies in C0.

Then F carries every effective epimorphism of sTAlg into C0.

Now we consider the slightly more specialized situation of pushouts along effective epimorphisms.

Definition 4.1.2.4. A diagram τ ∶ Λ2
0 → sTAlg in the ∞-category of simplicial T algebras is elementary if it is

equivalent to a diagram of the form

j(X × Y ) j(X × Y ×Z)

j(X)

for some morphism graph inclusion X →X × Y in T and some Z ∈ T.

Proposition 4.1.2.5. Let T be a Lawvere theory. Let C be an ∞-category that admits sifted colimits. Suppose we
are given a functor F ∶ Fun(∆1, sTAlg)→ C such that

(1) F preserves sifted colimits.

(2) F preserves the colimit of each elementary diagram of simplicial T-algebras.

Then F preserves pushouts along effective epimorphisms.

Proof of proposition 4.1.2.3. Let T be a Lawvere theory, and I a small index set together with a functor t ∶ I → T
whose image minimally generates T under products. The functor

evI ∶ sTAlg Ð→ Fun(I,S)

adjoint to the functor

sTAlg × I =∐
i∈I

sTAlg
∐i∈I evtiÐ→ S

is conservative and preserves limits and sifted colimits and is thus monadic. Let FreeT ∶ Fun(I,S) → sTAlg be a left
adjoint to evI , determined up to equivalence by FreeT(∗i) = j(ti) for i ∈ I, where ∗i ∶ I → S carries i to the final space
∗ and all other indices to the initial empty space. Let K be a simplicial set, then the induced adjunction

Fun(K,sTAlg) Fun(K × I,S)
1The construction in section 3 of [Lur11a] is a generalization of the one below if we view Lawvere theories as discrete pregeometries.

The reason we offer an alternative proof is that the construction in loc. cit. does not appear to be completely correct: in construction
3.7 and remark 3.8, from the data of an ∞-topos X and a map α ∶ O → O

′ of local T -structures on X , a certain Cartesian fibration

p ∶ E → X over an ∞-topos is constructed, which resolves the map α in a suitable sense. Informally, the ∞-category p−1
(U) is given by

pairs (OF , S) of a ‘free’ T -structure on U and a finite set S, a map OF → O′
∣U of local T -structures on X/U and a commuting diagram

∐SO
F

O
F

O∣U O
′
∣U

α∣U

where the upper horizontal morphism is the fold map. It is claimed that this fibre admits coproducts and is thus sifted. However, this

does not appear to hold in general, since the only reasonable choice for a coproduct of a pair of data (OF , S) and (OF
′
, S′) as above in

this ∞-category is the pair (OF ∐O
F ′ , S∐S

′
), but there is no reason for the existence of a unique map ∐S∐S′ O

F
∐O

F ′
→ O∣U that

makes the requisite diagram commute, since we are not in general given maps ∐S′ O
F
→ O∣U and ∐SO

F ′
→ O∣U . For the argument to

go through, it seems one needs to consider the ∞-category of finite tuples {(OF1 , S1), (O
F
2 , S2), . . .} equipped with data as above, but

we will not attempt a formal construction at this point
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is again monadic; letting K = ∆1, we deduce that for each map α ∶ A → B of simplicial T-algebras, there exists an
(evI -split) augmented simplicial object α● ∶ N(∆op

+ ) × ∆1 → sTAlg, the Bar resolution BarevI○FreeT(evI ○ FreeT, α),
such that α−1 = f , α● ∶ N(∆op

+ )→ Fun(∆1, sTAlg) is a colimit diagram and each αn is the image of evI(αn−1) under
FreeT. Recall that we are given a sifted colimit preserving functor

F ∶ Fun(∆1, sTAlg)Ð→ C

and a full subcategory C0 ⊂ C stable under sifted colimits such that F (j(g)) lies in C0 for every graph inclusion. We
now show that the proposition follows from the following two claims.

(∗) If α is an effective epimorphism, the map FreeT(evI(α)) is also an effective epimorphism.

(∗∗) If α is an effective epimorphism, then the object F (FreeT(evI(α))) lies in C0.

Indeed, if α is an effective epimorphism, then (∗) and the construction of α● guarantee that for every n ≥ 0, the map
αn is an effective epimorphism. It follows from (∗∗) that F (αn) lies in C0 for each n ≥ 0. Since F preserves sifted
colimits and C0 is stable under sifted colimits, we conclude.
We prove (∗). We have a strictly commuting diagram of right adjoints

sTAlg SI

τ≤0sTAlg N(Set)I

evI

evI

hence a commuting diagram of left adjoints

sTAlg SI

τ≤0sTAlg N(Set)I .

π0
π0

FreeT

Free0
T

The fact that the truncation functor τ≤0 ∶ sTAlg → τ≤0sTAlg is given by composing product preserving functors with
π0 ∶ S → N(Set) means precisely that the diagram of left adjoints above is horizontally right adjointable. Given a
map α ∶ A → B, it follows that the map π0(FreeT(evI(α))) is given by applying the free functor Free0

T to the map
π0(evI(α)). By assumption, this latter map is a surjection, so it suffices to observe that Free0

T carries surjections of
I-indexed sets to (effective) epimorphisms of discrete simplicial T-algebras, as Free0

T can be identified with the free
functor for discrete algebras for the Lawvere theory hT.
We prove (∗∗). The ∞-category Fun(I,S) is isomorphic to the nerve of the Kan-enriched category Fun(I,Kan) =
∏i∈I Kan. Let α ∶ A→ B be a map in sTAlg, then after applying a factorization as a trivial cofibration followed by a
fibration, we may assume that the morphism evI(α) in Fun(I,S) is an I-indexed collection {evti(A)→ evti(B)}i∈I of
Kan fibrations between Kan complexes. If α is an effective epimorphism, then for each i, the map evti(A)→ evti(B)
is a surjection on connected components and thus a surjection in each simplicial degree since it is a Kan fibration.
We may view evti(A) and evti(B) as constant bisimplicial objects, so that we can think of the collection {evti(A)→
evti(B)}i∈I as a morphism in the category Fun(∆op,SetI∆). Applying the diagonal functor

Fun(∆op,SetI∆)Ð→ SetI∆

returns the morphism evI(α) so we deduce from corollary 2.2.4.13 that evI(α) is a colimit of the diagram

{evti(A)→ evti(B)}i∈I ∶ N(∆op) ×∆1 Ð→N(Set)I Ð→N(Set∆)I Ð→ SI ,

where the last morphism implements localization at the weak equivalences. The functor N(Set)→N(Set∆)→ S can
be identified with the inclusion of 0-truncated spaces, so we conclude that the diagram above is in each simplicial
degree n and for each i ∈ I given by a surjective map

∐
evti (A)n

∗Ð→ ∐
evti (B)n

∗

of discrete spaces. Since FreeT preserves colimits, the map FreeT(evI(α)) is arises as the geometric realization of a
simplicial diagram that is in each simplicial degree n given by

∐
i

∐
evti (A)n

j(ti)Ð→∐
i

∐
evti (B)n

j(ti). (4.1)
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Using that F preserves sifted colimits and that C0 ⊂ C is stable under sifted colimits again, we are reduced to proving
that F carries every morphism of the form (4.1) into C0. Writing I as a filtered colimit of its finite subsets, we may
assume that I is finite (using that F preserves, and C0 ⊂ C is stable under, filtered colimits). Writing for each i ∈ I,
the set evti(B)n as a filtered colimit of its finite subsets, we may assume that evti(B)n is finite. Writing for each
x ∈ evti(B)n the set evti(α)−1

n (x) ⊂ evti(A)n as a filtered colimit of its finite subsets, we may assume that evti(A)n
is finite. Now we observe that with all sets indexing the coproducts finite, the map (4.1) is a graph inclusion.

Proof of proposition 4.1.2.5. Using the same notations as in the proof of proposition 4.1.2.3, we consider a diagram
σ ∶ Λ2

0 → sTAlg

A C

B

β

α

where α is an effective epimorphism. Applying the functorial Bar construction of the monad evI ○FreeT, we obtain a
(evI -split) augmented simplicial object σ● ∶ N(∆op

+ ) → Fun(Λ2
0, sTAlg) that is a colimit diagram with colimit σ and

each σn is the image of evI(σn−1) under FreeT. We see that it suffices to show that for each n ≥ 0, the functor F
preserves the colimit of the diagram σn; using assertion (∗) of the proof of proposition 4.1.2.3, it suffices to prove
that F preserves the colimit of σ0 = FreeT(evI(σ)). We may assume that for each i ∈ I, the vertical morphism in the
diagram

evi(A) evi(C)

evi(B)

is a Kan fibration, and thus a surjection in each simplicial degree, and the horizontal morphism a cofibration, that
is, an injection in each simplicial degree. Using corollary 2.2.4.13, we see that the map FreeT(evI(σ)) is given by a
geometric realization of a simplicial diagram that is in each simplicial degree n given by

∐i∐evti (A)n
j(ti) ∐i∐evti (C)n

j(ti)

∐i∐evti (B)n
j(ti).

As in the proof of proposition 4.1.2.3, we may assume that all sets indexing the coproducts are finite, in which case
the diagram above is elementary.

Proof of theorem 4.1.2.2. Apply proposition 4.1.2.5 to the sifted colimit preserving functor f∗ ∶ sT′Alg → sTAlg
induced by the unramified transformation of Lawvere theories.

4.1.3 The geometry of finitely presented simplicial C∞-rings

Here we specialize to the Lawvere theory CartSp and define the structure of a geometry on the full subcategory of
finitely presented objects, following the outline of the previous chapter. The spectrum-global sections adjunction
provided by proposition 3.1.1.2 turns out to be an equivalence on a full subcategory of sC∞ring, the one that contains
the C∞-rings which we call fair, following Joyce [Joy12a]. We then go on and define a variety of derived affines
corresponding to certain full subcategories of sC∞ring, the central example being the ∞-category dC∞Afffp of affine
derived manifolds of finite presentation, defined to be the essential image of sC∞ringfp under the spectrum functor.
In the next subsection, we use the technology developed here to show on of the main results: the ∞-category of
finitely presented simplicial C∞-rings is a geometric envelope of TDiff , the more elaborate version of derived manifolds
with corners following in a later subsection.
Using the results of the last subsection, we will show that the theory of simplicial C∞-rings is controlled in large part
by the underlying algebraic model; in this case given by the transformation of Lawvere theories T discR →N(CartSp).
We write ( )alg for the functor induced by this transformation; it takes values in sCringR, the ∞-category of simplicial
commutative R-algebras, and is clearly conservative.

Notation 4.1.3.1. We reserve the symbol ⊗∞ for the pushout of simplicial C∞-rings to distinguish it from the
pushout of simplicial commutative R-algebras.

We will occasionally abuse notation by identifying Aalg with a connective E∞-algebra over R using the equivalence
sCringR ≃ E∞Algcn

R . Also, for M a manifold, we will usually avoid writing C∞(M)alg, to avoid cluttering up notation;
it will be clear from the context when we think of C∞(M) as an R-algebra.
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Remark 4.1.3.2. Recall that for a pushout diagram

A B

C D

of simplicial commutative algebras (over any ring), there is a convergent spectral sequence

Ep,q2 = Torπ∗(A)
p (π∗B,π∗C)q ⇒ πp+q(D). (4.2)

See for instance, [Lur17a], prop. 7.2.1.19 and [Lur11b], corollary 4.1.14.

Remark 4.1.3.3. Recall the basic lemma of Hadamard: for any smooth function f ∶ Rn → R and any p = (p1, . . . , pn) ∈
Rn, there exists a collection of n smooth function {gi} on Rn such that f(x) − f(p) = ∑ni=1 gi(x)(xi − pi).

Our comparison of simplicial C∞-rings with TDiff -structures will require a number of preliminary results. The
next lemma is a derived analogue of the fact that ideals of independent functions are point determined (see remark
3.1.3.10).

Lemma 4.1.3.4. Let M be an m-dimensional manifold and let {f1, . . . , fn}, n ≤ m, be independent functions on
M . Then the Koszul algebra C∞(M)[y1, . . . , yn] with ∣yi∣ = 1 for 1 ≤ i ≤ n and ∂yi = fi, is a projective resolution of
C∞(Z(f1, . . . , fn)) in the category of differentially graded C∞(M)-modules.

Proof. Clearly, the Koszul complex is a complex of projective C∞(M)-modules, so we should show that the complex
is a resolution. Let C∞

M denote the sheaf of C∞ functions on M . Consider the sheaf of bounded differential graded
C∞
M -modules on M given by

F ∶ U ↦ C∞(U)[y1, . . . , yn], ∂yi = fi∣U , 1 ≤ i ≤ n,

whose complex of global sections is the Koszul algebra C∞(M)[y1, . . . , yn]. Proposition 2.2.5.37 implies that the
homology presheaves are already sheaves, so in order to show that the higher homology of the Koszul complex
vanishes, it suffices to give for each point x ∈M a neighbourhood basis {Vβ} of x in M such that C∞(Vβ)[y1, . . . , yn]
has vanishing homology in degrees > 0. The function (f1, . . . , fn) ∶M → Rn has full rank at Z(f1, . . . , fn), so it has full
rank in some open neighbourhood Z(f1, . . . , fn) ⊂ V . By the constant rank theorem, there is an open cover {Uα} of
V such that Uα ≅ Rm and in these coordinates, the function (f1, . . . , fn) is the projection (x1, . . . , xn) ∶ Rm → Rn onto
the first n coordinates. We have a cover {Uα}∐{M ∖Z(f1, . . . , fn)} of M so each point in M has a neighbourhood
basis on which F evaluates as either a complex of the form C∞(V )[y1, . . . , yn], V ⊂ M ∖ Z(f1, . . . , fn), which is
acyclic because all fi∣M∖Z(f1,...,fn) are invertible, or we have C∞(U)[y1, . . . , yn], where U ⊂ Rm is an open subset
and ∂yi = xi, the projection onto the i’th coordinate. Applying Hadamard’s lemma repeatedly, one finds that
C∞(U)/(x1, . . . , xi) ≅ C∞(U ∩ ({0} × Rm−i)) for 1 ≤ i ≤ n. In particular, the zero locus of the function xi+1 has
measure zero, so xi+1 is a nonzerodivisor of C∞(U)/(x1, . . . , xi). Thus, the sequence (x1, . . . , xn) is a regular sequence
on C∞(U) showing that the homology of the complex C∞(U)[y1, . . . , yn] is C∞(U ∩ ({0} ×Rm−n)) concentrated in
degree 0. We are left to show that the zero’th homology of the Koszul complex is C∞(Z(f1, . . . , fn)). This follows
from the previous computation: as proposition 2.2.5.37 shows that the presheaf of zero’th homology is already a
sheaf, the global sections are clearly given by C∞(Z(f1, . . . , fn)).

Lemma 4.1.3.5 ([Spi10] lemma 8.1, [Lur11a] lemma 11.10). The transformation of Lawvere theories T discR →
N(CartSp) is unramified.

Proof. We should prove that for any smooth map f ∶ Rn → Rm and any k ≥ 0, the diagram

C∞(Rn+m) C∞(Rn+m+k)

C∞(Rn) C∞(Rn+k)

is a pushout in sCringR. We proceed by induction on m; for m = 0, there is nothing to prove. For m = 1, f ∶ Rn → R is
some smooth function. As we work with discrete objects, the torsion spectral sequence collapses at the second page,
so we should show that

TorC
∞

(Rn+1
)

p (C∞(Rn),C∞(Rn+1+k)) = 0, p ≥ 1,

and that

Tor
C∞(Rn+1

)

0 (C∞(Rn),C∞(Rn+1+k)) ≅ C∞(Rn)⊗C∞(Rn+1) C
∞(Rn+1+k) ≅ C∞(Rn+k).
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Denote the first n coordinates on Rn+1 collectively by x and the last coordinate by y. The function y − f(x) is a
submersion and its zero locus is Graph(f) ≅ Rn, so the ring C∞(Rn) admits a projective resolution as an C∞(Rn+1)-
module of the form C∞(Rn+1)[z], ∂z = y−f(x), by lemma 4.1.3.4. The torsion groups are computed as the homology
of

C∞(Rn+1)[z]⊗C∞(Rn+1) C
∞(Rn+1+k) ≅ C∞(Rn+1+k)[z], ∂z = y − f(x).

By lemma 4.1.3.4 again, the complex on the right hand side is a resolution of C∞(Rn+1+k)/(y−f(x)). Since the map
C∞(Rn+1+k) → C∞(Rn+k) given by restricting to the graph of y − f(x) induces an isomorphism C∞(Rn+1+k)/(y −
f(x))→ C∞(Rn+k), we are done.
Now suppose that for m ≤ l, the statement is true for all n and k. Consider the diagram

C∞(Rn+l+1) C∞(Rn+l+1+k)

C∞(Rn+1) C∞(Rn+1+k)

C∞(Rn) C∞(Rn+k)

where the upper square is a pushout by the induction hypothesis applied to Rn+1. The large rectangle is a pushout
if and only if the lower square is a pushout, so we reduce to the case m = 1, and we are done.

Corollary 4.1.3.6. ( )alg preserves pushouts along effective epimorphisms.

Proof. Apply theorem 4.1.2.2 to the unramified transformation T discR →N(CartSp).

Proving results by ‘unramifiedness’ using the corollary above unlocks the powerful techniques available in the
framework of connective E∞-algebras, and we will appeal to it many times in this work.

Lemma 4.1.3.7. Let M,N be manifolds, then the natural map C∞(M)⊗∞C∞(N)→ C∞(M ×N) is an equivalence.

Proof. Take an open submanifold U ⊂ Rn, and let χU be a characteristic function for U . Denote by x the first n
coordinates and by y the last coordinate on Rn+1, let f(x, y) = χU(x)y − 1 and consider the colimit of the diagram

C∞(R) C∞(Rn+1)

R

ev0

f∗

The left vertical map is an effective epimorphism, so by unramifiedness, we can compute this pushout in sCringR. Using
the spectral sequence of remark 4.1.3.2, we see that the homotopy groups of the pushout are computed as the torsion

groups Tor
C∞(R)
k (R,C∞(Rn+1)). Using the projective resolution C∞(R)[z], ∂z = x of R as a C∞(R)-module, we find

that the homotopy groups are given by the homology of the complex C∞(Rn+1)[z], ∂z = χUy − 1. Lemma 4.1.3.4
implies that this complex has homology C∞(Rn+1)/(f) ≅ C∞(U) concentrated in degree 0. Now for U,V ∈ T open

Diff ,
with presentations C∞(U) ≅ C∞(Rn+1)/(f) and C∞(V ) ≅ C∞(Rm+1)/(g), the coproduct C∞(U) ⊗∞ C∞(V ) is the
colimit of the diagram

C∞(R2) C∞(Rn+1+m+1)

R

ev0

(f×g)∗

Using unramifiedness, the torsion spectral sequence, and lemma 4.1.3.4 again, we find that the pushout above is the
discrete C∞-ring C∞(U × V ).
For general manifolds M,N , we use that TDiff ≃ Idem(T open

Diff ) to realize M and N as retracts of some U respectively V
in T open

Diff . Then M ×N is a retract of U ×V . C∞(M)⊗∞C∞(N) is a retract of C∞(U)⊗∞C∞(V ) and C∞(M ×N) is a
retract of C∞(U ×V ). But as the natural map C∞(U)⊗∞C∞(V )→ C∞(U ×V ) is an equivalence, C∞(M)⊗∞C∞(N)
and C∞(M ×N) split equivalent idempotents, so the natural map C∞(M) ⊗∞ C∞(N) → C∞(M ×N) must be an
equivalence.

Remark 4.1.3.8. Notice that the proof of lemma 4.1.3.7 shows that the essential image of the functor C∞( ) ∶
TDiff → sC∞ring consists of retracts of pushouts of compact projective objects of sC∞ring which are thus compact.
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Lemma 4.1.3.9. The functor C∞( ) ∶ TDiff → sC∞ringop sending a manifold M to the discrete simplicial C∞-ring
of smooth functions on M preserves transverse pullbacks of the form

N ×U M N

M U

where U is an open submanifold of Rn for some n ≥ 1.

Proof. We note that the pullback N ×U M is equivalent to the pullback

(M ×N) ×U×U U N ×M

U U ×U

g

so, as the transformation C∞( ) ∶ TDiff → sC∞ringop preserves binary products by lemma 4.1.3.7, we only have to
deal with pullback diagrams of the form above. Because the map C∞(U × U) → C∞(U) induced by the diagonal
U → U ×U is an (effective) epimorphism and the fact that the transformation of Lawvere theories T discR →N(CartSp)
is unramified, there is a natural equivalence

(C∞(U)⊗∞C∞(U×U) C
∞(N ×M))alg ≃ C∞(U)⊗C∞(U×U) C

∞(N ×M).

As ( )alg is conservative, it suffices to show that C∞(U)⊗C∞(U×U) C
∞(N ×M) is 0-truncated and the natural map

τ≤0(C∞(U)⊗C∞(U×U)C
∞(N ×M))→ C∞((M ×N)×U×U U) is an equivalence. To see this, we note that we work with

discrete objects, so the torsion spectral sequence (4.2) collapses at the second page and we have natural isomorphisms

Tor
C∞(U×U)

k (C∞(U),C∞(N ×M)) ≅ πk(C∞(U)⊗C∞(U×U) C
∞(N ×M))

for all k ≥ 0. Since U ⊂ Rn is open, the diagonal embedding U → U × U is cut out by n independent functions
{f1, . . . , fn}, so lemma 4.1.3.4 provides us with a projective resolution C∞(U ×U)[y1, . . . , yn] of C∞(U) as a C∞(U ×
U)-module. The torsion groups are computed as the homology of

C∞(U ×U)[y1, . . . , yn]⊗C∞(U×U) C
∞(N ×M) ≅ C∞(N ×M)[y1, . . . , yn], ∂yi = fi ○ g, 1 ≤ i ≤ n.

Because g ∶ N ×M → U × U is transverse to U → U × U , the functions fi ○ g are independent, so by lemma 4.1.3.4
again, this complex is a projective resolution of C∞(Z(f1 ○ g, . . . , fn ○ g)). But Z(f1 ○ g, . . . , fn ○ g) is the image of
the embedding (M ×N)U×UU → N ×M , a closed submanifold.

We will momentarily show that the functor C∞( ) preserves all transverse pullbacks. Now we show that sC∞ringopfp
has a natural structure of a geometry. As the algebraic examples of the previous chapter, the admissibility structure
on sC∞ringopfp is defined in terms of localization morphisms.

Definition 4.1.3.10. Let A be a simplicial C∞-ring and let a ∈ π0(A). We say that a map f ∶ A → B such that
f(a) ∈ π0(B) is invertible is a localization of A with respect to a if for each C ∈ sC∞ring, the map HomsC∞ring(B,C)→
HomsC∞ring(A,C) given by composition with f induces a homotopy equivalence of Kan complexes

HomsC∞ring(B,C) ≃Ð→ Hom0
sC∞ring(A,C),

where Hom0
sC∞ring(A,C) is the union of those connected components of HomsC∞ring(A,C) spanned by those maps g

such that g(a) is invertible in the commutative R-algebra π0(C)alg.

In the case of an ordinary C∞-ring A and some a ∈ A, the above definition reduces to the usual C∞ localization
A[1/a] given up to equivalence by the pushout

C∞(R) A

C∞(R ∖ {0}) A[1/a]

qa

of C∞-rings. The localization of a simplicial C∞-ring admits a similar characterization, for which we will need the
following definition.
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Definition 4.1.3.11. (1) A map f ∶ A → B of simplicial commutative rings is strong (in the sense of Toën-Vezzosi
[TV06], definition 2.2.2.1.) if the natural map

πn(A)⊗π0(A) π0(B)→ πn(B)

is an isomorphism for all n ≥ 0.

(2) A map f ∶ A→ B of simplicial C∞-rings is strong if falg ∶ Aalg → Balg is strong.

Before we give the desired characterization of localization morphisms, we recall the following easy lemma.

Lemma 4.1.3.12. Let U ↪M be an open embedding of manifolds, then the induced map C∞(M)→ C∞(U) is a flat
map of commutative R-algebras.

Proof. Take a finite linear combination of 0 as ∑ni=1 gifi∣U = 0 with gi ∈ C∞(U) and fi ∈ C∞(M), then we should show
that there exists a finite set of elements {hj}j ⊂ C∞(U) and linear combinations gi = ∑j hjbij ∣U with bij ∈ C∞(M)
such that ∑i fibij = 0 for all j. We can write each gi as a quotient g′i/γi, where g′i and γi are defined on M such
that γi does not vanish on U . Now pick a characteristic function χU for U and set hi = 1/(γiχU), bij = 0 if i ≠ j and
bii = γigiχU .

Proposition 4.1.3.13. Let A be a simplicial C∞ ring and let a ∈ π0(A), and let f ∶ A → B a map of simplicial
C∞-rings. The following are equivalent:

(1) The map f ∶ A→ B exhibits B as a localization with respect to a.

(2) For every n ≥ 0, the induced map

πn(Aalg)⊗π0(Aalg) (π0(A)[1/a])alg → πn(Balg)

is an equivalence; that is, f is strong and the map of C∞-schemes corresponding to π0(A) → π0(B) is an open
inclusion.

(3) B fits into a pushout diagram

C∞(R) A

C∞(R ∖ {0}) B

qa

f

where qa is the unique up to homotopy map associated to a ∈ π0(A) (note that as a consequence, localizations
always exist).

Proof. First, we show that (1) is equivalent to (3). Let A be a simplicial C∞-ring, and choose some a ∈ π0(A). By
proposition 4.1.1.18 and an elementary cofinality argument, we can write A as a directed colimit of finitely generated
subrings colim i∈JAi ≃ A such that a ∈ π0(Ai) for all i ∈ J . We claim that the map ϕ ∶ A → colim i∈J(Ai[a−1]) is a
localization. To see this, we let C be any simplicial C∞-ring and f ∈ HomsC∞ring(A,C) and we consider the homotopy
pullback

Kf limi∈J HomsC∞ring(Ai[a−1],C)

{f} HomsC∞ring(A,C)

of Kan complexes. The map ϕ is a localization if and only if for each C and each f , Kf is weakly contractible if
f(a) is invertible in π0(C) and empty if f(a) is not invertible. The map f induces maps fi ∶ Ai → C, and Kan
complexes Kfi ∶= {fi}×hHomsC∞ring(Ai,C) HomsC∞ring(Ai[a−1],C), and we have an equivalence limi∈J Kfi ≃Kf . If f(a)
(and therefore fi(a)) is not invertible, Kf is a limit of empty simplicial sets and also empty. If f(a) (and therefore
fi(a)) is invertible, Kf is a limit of weakly contractible Kan complexes indexed by a weakly contractible simplicial
set, and therefore also weakly contractible. Now if Ai → Ai[a−1] satisfies (3), then A → colim i∈J(Ai[a−1]) satisfies
(3), so we reduce to the case of finitely generated simplicial C∞-rings. If A is finitely generated, we have an effective
epimorphism p ∶ C∞(Rn) → A for some n by proposition 4.1.1.18, so the map qa ∶ C∞(R) → A defining a ∈ π0(A)
factors up to homotopy through p, which defines some â ∈ C∞(Rn). Consider the diagram

C∞(R) C∞(Rn) A

C∞(R ∖ {0}) C∞(Rn)[â−1] A[a−1]

p
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It’s easy to see that the right square is pushout, so if the left square is a pushout, the outer rectangle is a pushout as
well, and we reduce to the case of free simplicial C∞-rings, for which we already know that the localization is given
by the pushout (3) in the truncated 1-category of C∞-rings, which coincides with the pushout in sC∞ring by lemma
4.1.3.9.
Now we show that (3) and (2) are equivalent. First, we show that (3) implies (2). Since taking homotopy groups and
tensor products commutes with filtered colimits, we may assume that we’re dealing with finitely generated objects.
The localization of a finitely generated object A is given by the pushout diagram above for some effective epimorphism
p ∶ C∞(Rn) → A. Let U ⊂ Rn be the open set where the function â is nonzero. By unramifiedness, A[a−1] is given
by the pushout A⊗C∞(Rn)C

∞(U) of simplicial commutative rings. Moreover, since U → Rn is an open inclusion, the
map on smooth functions is flat by lemma 4.1.3.12, so applying the torsion spectral sequence we have an equivalence

πn(A)⊗C∞(Rn) C
∞(U) ≃ πn(A⊗C∞(Rn) C

∞(U)) = πn(A[a−1]),

for all n ≥ 0, so we have equivalences

πn(A[a−1]) ≃ πn(A)⊗C∞(Rn) C
∞(U) ≃ πn(A)⊗π0(A) π0(A)⊗C∞(R) C

∞(U) ≃ πn(A)⊗π0(A) π0(A[a−1])

What remains to be shown is that (2) implies (3). If f ∶ A→ B satisfies (2), then there is an induced map A[a−1]→ B
where A[a−1] is the pushout of (3). As we have just verified, this map induces an isomorphism on all homotopy
groups so it is an equivalence as the functors taking homotopy groups are jointly conservative.

Remark 4.1.3.14. Combining remark 4.1.3.8 with proposition 4.1.3.13 shows that the localization of an (almost)
finitely presented simplicial C∞-ring with respect to any a ∈ π0(A) is again (almost) finitely presented.

Corollary 4.1.3.15. Let A be a simplicial C∞-ring. The functor τ≤0 ∶ (sC∞ringop)ad
/A → N(C∞ringop)ad

/π0A
is an

equivalence of ∞-categories.

Proof. We show that τ≤0 is fully faithful and essentially surjective. For essential surjectivity, let π0(A) → B be a
localization morphism in C∞ring determined by some a ∈ π0(A), then proposition 4.1.3.13 immediately shows that
B is isomorphic to the image under τ≤0 of the morphism A → A[a−1]. For fully faithfulness, note that the functor
τ≤0 sends the Hom-spaces in (sC∞ringop)ad

/A to their zero’th truncation. Thus, to show that τ≤0 is fully faithful, it

suffices to show that the Hom-spaces of (sC∞ringop)ad
/A are already discrete. Let A → B and A → C be localization

morphisms. The space Hom(sC∞ringop)ad
/A

(C,B) is equivalent to the space HomsC∞ringA/(B,C), but by [Lur17b], lem.

5.5.5.12, this space fits into a homotopy fibre sequence

HomsC∞ringA/(B,C)Ð→ HomsC∞ring(B,C)Ð→ HomsC∞ring(A,C)

where the fibre is taken over the chosen morphism A → C. Because A → B is a localization, the second map in the
fibre sequence is an inclusion of connected components, so HomsC∞ringA/(B,C) is empty or weakly contractible.

Notation 4.1.3.16. We will denote Gder
Diff for the opposite category of the ∞-category of compact objects in sC∞ring.

To notationally distinguish a finitely presented simplicial C∞-ring A from A as an object of Gder
Diff , we use the notation

SpecA in the latter case (the next subsection will provide motivation for this notation).

We endow Gder
Diff with the structure of a geometry according to the following prescription:

(1) A map f ∶ SpecA → SpecB in Gder
Diff is admissible if and only if there exists an element b ∈ π0(B) such that the

image of b under f is invertible in π0(A) and the induced map B[1/b]→ A is an equivalence.

(2) A collection {SpecB[1/bα] → SpecB}α∈J generates a covering sieve if and only if the germ determined ideal
generated by the elements bα in π0(B) contains the unit.

For the proof that the definition above defines a geometry, we first prove a lemma concerning strong morphisms.

Lemma 4.1.3.17. (1) A retract of a strong morphism is strong.

(2) In a diagram

C

B A

h g

f

where h is strong, f is strong if and only if g is strong.
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Proof. (1) A retraction diagram

A B A

A′ B′ A′

g f g

where f is a strong morphism induces for each n ≥ 0 a diagram

πn(A) πn(B) πn(A)

πn(A)⊗π0(A) π0(A′) πn(B)⊗π0(B) π0(B′) πn(A)⊗π0(A) π0(A′)

πn(A′) πn(B′) πn(A′)

≅

where both horizontal rectangles are retraction diagrams. The inverse of the indicated isomorphism yields a map
πn(A′)→ πn(A)⊗π0(A) π0(A′) which is the inverse of πn(A)⊗π0(A) π0(A′)→ πn(A′).

(2) We are asked to prove that the map πn(B)⊗π0(B) π0(A) → πn(A) is an isomorphism if and only if the induced
map πn(C)⊗π0(C)π0(A)→ πn(A) is an isomorphism, given that πn(C)⊗π0(C)π0(B)→ πn(B) is an isomorphism.
The last isomorphism implies that the map πn(C)⊗π0(C) π0(A) → πn(B)⊗π0(B) π0(A) is also an isomorphism,
so the desired statement reduces to the 2-out-of-3 property for isomorphisms in the commuting diagram

πn(C)⊗π0(C) π0(A) πn(B)⊗π0(B) π0(A)

πn(A)

≅

To see that we have indeed defined an admissibility structure on Gder
Diff , we only have to check that admissible

maps are stable under retracts and that in a diagram

SpecA SpecB

SpecC

f

g h

where h is admissible, f is admissible if and only if g is admissible. Using characterization (2) of localization morphisms
of proposition 4.1.3.13, and lemma 4.1.3.17, we reduce to the discrete case, which is handled in remark 3.1.3.22.

Remark 4.1.3.18. By definition of the admissibility structure on Gder
Diff and the fact that effective epimorphisms

are detected on connected components, the proof of proposition ?? shows that a simplicial C∞-ring A is local as a
Gder

Diff -structure in spaces if and only if π0(A) is an (Archimedean) local C∞ ring.

From the geometry Gder
Diff we deduce the existence of the spectrum functor SpecG

der
Diff ∶ Pro(Gder

Diff) ≃ sC∞ringop →
RTop(Gder

Diff) right adjoint to the global sections functor. Consider the following full subcategories of sC∞ring.

(1) The full subcategory sC∞ringfp of finitely presented simplicial C∞-rings spanned by compact objects.

(2) The full subcategory sC∞ringafp of almost finitely presented simplicial C∞-rings spanned by almost compact
objects.

(3) The full subcategory sC∞ringfg of finitely generated simplicial C∞-rings spanned by almost finitely generated
objects.

(4) The full subcategory sC∞ringfair of fair simplicial C∞-rings spanned by objects A for which π0(A) is a germ-
determined C∞-ring and πn(A) is a complete π0(A) module for all n.
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Definition 4.1.3.19. (1) A Gder
Diff -structured ∞-topos (X ,OX ) is a derived C∞-scheme if X is 0-localic and (X ,OX )

is a Gder
Diff -scheme. We denote the ∞-category of derived C∞-schemes by dC∞Sch.

(2) A 0-localic Gder
Diff -structured ∞-topos (X ,OX ) is a fair affine derived manifold (an affine derived manifold of

finite presentation/almost of finite presentation) if (X ,OX ) lies in the essential image of the spectrum func-

tor SpecG
der
Diff ∶ sC∞ringfair → RTop(Gder

Diff) (sC∞ringfp → RTop(Gder
Diff)/sC∞ringafp → RTop(Gder

Diff)). We denote
the ∞-category of fair affine derived manifolds (affine derived manifolds of finite presentation/almost of finite
presentation) by dC∞Afffair (dC∞Afffp/dC∞Affafp).

(3) A derived C∞-scheme (X ,OX ) is locally fair (locally of finite presentation/locally almost of finite presentation
if (X ,OX ) is locally given by the spectrum of a fair simplicial C∞-ring (a simplicial C∞-ring of finite presen-
tation/almost of finite presentation). The ∞-category of locally fair derived C∞-schemes (derived C∞-schemes
locally of finite presentation/almost of finite presentation) is denoted dC∞Schfair (dC∞Schfp/dC∞Schafp).

Our next goal is to derive some fundamental properties of the spectrum-global sections adjunction for the geometry
just defined. Let

τ≤0 ∶ Gder
Diff Ð→ GDiff

be the functor induced by truncation sC∞ring → τ≤0sC
∞ring ≃ N(C∞ring). This functor preserves finite limits and

carries admissibles to admissibles and coverings to coverings, so we deduce that τ≤0 is a transformation of geometries.
In the language of [Lur11b], the transformation τ≤0 exhibits GDiff as a 0-stub of Gder

Diff , which means that

(1) for every 1-category that admits finite limits, composition with τ≤0 induces an equivalence

Funlex(GDiff ,C)Ð→ Funlex(Gder
Diff ,C).

(2) the admissibility structure on GDiff is the coarsest one that makes τ≤0 a transformation of geometries.

Property (1) follows easily from proposition 4.1.1.22, and (2) is an immediate consequence of corollary 4.1.3.15 and
the definition of admissible coverings in both geometries. It follows that for any ∞-topos X , composition with τ≤0

induces an equivalence

Strloc
GDiff

(X )Ð→ Strloc
Gder

Diff
(X ) ∩ Str≤0

Gder
Diff

(X )

between local GDiff -structures on X and local Gder
Diff -structures on X that take 0-truncated values in X . Since the

functor LTop(GDiff) → LTop(Gder
Diff) induced by τ≤0 carries coCartesian morphisms to coCartesian morphisms, we

deduce that this functor can be identified with the full subcategory inclusion LTop≤0(Gder
Diff) ⊂ LTop(Gder

Diff) of Gder
Diff -

structures Gder
Diff → X that take 0-truncated values in X (as X varies). Our first order of business is the construction

of a left adjoint to this inclusion. Naively, we might simply compose a Gder
Diff -structure with τ≤0 ∶ X → X , but this is

guaranteed to fail as τ≤0 does not preserve finite limits. Since τ≤0 does preserve finite products, we can define the
requisite functor as the upper horizontal arrow in the solid diagram

StrGder
Diff

(X ) StrGDiff (X )

Funπ(N(CartSp),X ) Funπ(N(CartSp), τ≤0X ),

≃ ≃

τ≤0

that we will denote (somewhat abusively) also by τ≤0. At this point, we need a description of what it means to be
local for Gder

Diff -structures and morphisms of such as product preserving functors N(CartSp)→ X .

Lemma 4.1.3.20. Let OX and O′
X be Gder

Diff-structures on X , then OX is local if and only if for each Rn and each
good open cover {Ui → Rn}, the morphism ∐iO(Ui)→ O(Rn) is an effective epimorphism in X . If OX and O′

X are
local Gder

Diff-structures, then α ∶ OX → O′
X is local if and only if for each open embedding Rn ↪ Rn, the diagram

OX (Rn) OX (Rn)

O′
X (Rn) O′

X (Rn)

is a pullback.
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Proof. For every admissible cover U of SpecRA ∈ Gder
Diff , there exists an open cover V of Rn and a morphism f ∶

SpecA → Rn such that U is the pullback of V along f . Since every open cover of Rn is refined by a good one, we
deduce that a Gder

Diff -structure is local if and only if it is local for good open covers of Cartesian spaces.
For the second claim, we consider an admissible map U → SpecRA, a map f ∶ SpecRA → Rn and an open V ⊂ Rn
such that U is obtained by pullback back V along f . We have a commuting cube

OX(V ) O′
X(V )

OX(U) O′
X(U)

OX(Rn) O′
X(Rn)

OX(SpecRA) O′
X(SpecRA)

wherein the faces on the side are pullbacks, so we may replace SpecRA with Rn and U by V . Since V admits a
characteristic function, we may apply the same argument and replace Rn by R, and V by R∖{0}. If we can show that
R ∖ {0} arises as the intersection of R inside some Rn with some open subset W ⊂ Rn such that W is diffeomorphic
to Rn itself, we are done, but this is easy to arrange: choose a smooth bump function ψ(x) ∶ R→ [0,1] whose value is
equal to −1/2 on (−1,1) and equal to 1/2 on (−∞,−2)∪ (2,∞) without local minima or maxima on (−2,−1)∪ (1,2),
then R ∖ {0} is diffeomorphic to the intersection of the graph of ψ with the open set R2 ≅ R ×R>0 ⊂ R2.

Lemma 4.1.3.21. Let X be an ∞-topos and let OX be a local Gder
Diff-structure on X . Then τ≤0OX is a local Gder

Diff-
structure and the map OX → τ≤0OX exhibits a unit transformation for the inclusion

Strloc
GDiff

(X ) ≃ Strloc
Gder

Diff
(X ) ∩ Str≤0

Gder
Diff

(X ) ⊂ Strloc
Gder

Diff
(X ).

Proof. Using lemma 4.1.3.20, we can use the same arguments as in propositions 3.3.3 and 3.3.5 of [Lur11b]: to see
that τ≤0OX is local, it suffices to consider good open coverings of the form {Ui → Rn}. We have a commuting diagram

∐iOX (Ui) OX (Rn)

∐i τ≤0OX (Ui) τ≤0OX (Rn)

It suffices to show that the upper horizontal and right vertical map are effective epimorphisms, which is the case by
assumption and because effective epimorphisms are detected on sheaves of homotopy groups respectively.
To see that OX → τ≤0OX is local, we note that the proof of proposition 3.3.5 of [Lur11b] applies, since the geometry
Gder

Diff has the property that each admissible map is (−1)-truncated. The same argument as in the proof of (3) of
proposition 3.3.3 of [Lur11b] shows that the map OX → τ≤0OX exhibits a unit transformation as claimed.

Using the general yoga of coCartesian fibrations, it’s easy to see that for each ∞-topos X , the map (X ,OX ) →
(X , τ≤0OX ) exhibits a unit transformation for the functor LTop(GDiff) ↪ LTop(Gder

Diff) induced by τ≤0, that is, we
may identify the relative spectrum SpecGDiff

Gder
Diff

with the assignment (X ,OX )↦ (X , τ≤0OX )2, so we have a commuting

diagram

sC∞ring LTop(Gder
Diff)

N(C∞ring) LTop(GDiff)

τ≤0

Spec
Gder

Diff

τ≤0○

SpecGDiff

2In proposition 3.11 of [Por15], it is claimed that for an arbitrary geometry G that is compatible with n-truncations, the relative

spectrum Spec
τ≤0G
G associated to a transformation of geometries G → τ≤nG exhibiting an n-stub coincides with the functor O ↦ τ≤nO,

but this is false in general, since τ≤n ∶ X → X need not preserve finite limits. A version of this is true for geometries G that arise as

the geometric envelope of a pregeometry T : using proposition 3.3.3 of [Lur11b], it can be shown that the relative spectrum Spec
τ≤nG
G

coincides with the assignment O ↦ τ≤nO as functors T → X . Since we have equivalences Strloc
G (X) ≃ Strloc

T (X) and Strloc,≤n
G (X) ≃

Strloc,≤n
T (X), this induces a functor Strloc

G (X) → Strloc,≤n
G (X), which does not in general coincide with the functor composing with

τ≤n ∶ X → X
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of left adjoints. Invoking proposition 2.3.18 of [Lur11b], we deduce that if (X ,OX ) is an (affine) Gder
Diff -scheme, then

(X , τ≤0OX ) is an (affine) GDiff -scheme. In particular, for A a simplicial C∞-ring, the ∞-topos SpecA can be identified
with Shv(X), with X the real spectrum of the C∞-ring π0(A).

Theorem 4.1.3.22. The adjunction

RTop(Gder
Diff) sC∞ringop

Γ

Spec
Gder

Diff

induces an adjoint equivalence of ∞-categories

dC∞Afffair ≃ sC∞ringopfair.

Moreover, a 0-localic Gder
Diff-structured ∞-topos (X ,OX ) is an affine derived fair C∞-scheme if and only if the following

conditions are satisfied.

(1) X has enough points, and the topological space X underlying the 0-localic ∞-topos X is Hausdorff, Lindelöf and
regular with respect to π0(OX).

(2) The global sections of π0(OX) are finitely generated.

Remark 4.1.3.23. Given a local C∞-ringed space (X,OX), we say that X is regular with respect to OX if the global
sections of OX determine the topology of X in the following sense: X carries the initial topology with respect to the
canonical map

X Ð→ SpecR Γ(OX).

The theorem is proven by relating the adjunction (Γ ⊣ SpecG
der
Diff ) to the adjunction on modules for all (sheaves

of) homotopy groups. The following lemmas facilitate this strategy.

Lemma 4.1.3.24. Let C0 ⊂ LTop(GDiff) denote the essential image of the full subcategory C∞ringfg ⊂ C∞ring under

SpecGDiff , and let C ⊂ LTop(Gder
Diff) be the full subcategory spanned by those (X ,OX ) such that (X , τ≤0OX ) lies in C0.

Then Γ∣C takes values in sC∞ringfg and the diagram

sC∞ringfg C

N(C∞ringfg) C0

Γ

Γ

is vertically left adjointable.

Proof. Let (X ,OX ) ∈ C, then it suffices to show that π0(Γ(OX )) is finitely generated as a C∞-ring. To see this, we
observe that Γ(OX ) → Γ(τ≤0OX ) exhibits a 0’th truncation in sC∞ring: since X ≃ Shv(SpecRA) for some finitely
generated A ∈ C∞ring and τ≤0X is a fine sheaf of algebras, this follows from proposition 2.2.5.37. Since the unit map
A → Γ(τ≤0OX ) of C∞-rings coincides with the fairification of A which replaces the ideal I ⊂ C∞(Rn) defining A
with the smallest germ determined ideal containing I, we see that Γ(τ≤0OX ) is a finitely generated C∞-ring. Now
we observe that the statement that Γ(OX ) → Γ(τ≤0OX ) exhibits a 0’th truncation is simply a reformulation of the
vertical left adjointability of the diagram above.

Corollary 4.1.3.25. The commuting diagram

sC∞ringfg C

N(C∞ringfg) C0

τ≤0 τ≤0○

Γ

Γ

of ∞-categories is horizontally left adjointable. In particular, for any finitely generated simplicial C∞-ring A, the 0’th

truncation of the unit map A→ Γ(SpecG
der
DiffA) exhibits π0(Γ(SpecG

der
DiffA)) as the fairification of π0(A).

Now we turn to the behaviour of SpecG
der
Diff on the higher homotopy groups.

Construction 4.1.3.26. Let A be a finitely generated simplicial C∞-ring, and let sC∞ring′A/ ⊂ sC∞ringA/ be the
full subcategory spanned by those maps A→ B for which the following condition is satisfied.
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(∗) The map f ∶ A→ B induces an equivalence

(SpecA, τ≤0OSpecA)Ð→ (SpecB, τ≤0OSpecB)

of Gder
Diff -structured ∞-topoi.

Then the spectrum functor takes values in the full subcategory

LTop(Gder
Diff)′(SpecA,OSpecA)/ ⊂ LTop(Gder

Diff)(SpecA,OSpecA)/

satisfying the condition that the projection to LTopSpecA/ lands in the full subgroupoid of maps that are equivalences
of ∞-topoi. This subgroupoid is a contractible Kan complex with initial object SpecA, so the inclusion of the fibre

Shvloc
sC∞ring(SpecA)OSpecA/ ≃ Strloc

Gder
Diff

(SpecA)OSpecA/ Ð→ LTop(Gder
Diff)′(SpecA,OSpecA)/

is an equivalence of ∞-categories. The functor SpecG
der
Diff ∣sC∞ring′

A/
then takes values in the full subcategory

Shvloc
sC∞ring(SpecA)′OSpecA/ ⊂ Shvloc

sC∞ring(SpecA)OSpecA/

spanned by those maps OSpecA → O that induce an equivalence after applying τ≤0, in view of condition (∗). We
claim that the global sections functor

Γ ∶ Shvloc
sC∞ring(SpecA)′OSpecA

Ð→ sC∞ringA/

takes values in the full subcategory sC∞ring′A/ of objects satisfying condition (∗). To see this, note that for O ∈
Shvloc

sC∞ring(SpecA)′OSpecA
the map A → Γ(O) is given by A → Γ(OSpecA) → Γ(O). The first map induces the

fairification on π0 by corollary 4.1.3.25, and the second map induces an isomorphism on π0 by the commutativity of
the diagram in corollary 4.1.3.25, which guarantees that condition (∗) is satisfied. We conclude that the adjunction

(SpecG
der
Diff ⊣ Γ) restricts to an adjunction

sC∞ring′A/ Shvloc
sC∞ring(SpecA)′OSpecA/

Spec
Gder

Diff

Γ

We have for all n ≥ 0 a commuting diagram

Shvloc
sC∞ring(SpecA)′OSpecA/ sC∞ring′A/

Modπ0(OSpecA)alg Modπ0(A)alg

Γ

πn πn

Γ

where the left vertical functor is simply taking homotopy groups openwise on SpecRA because we work with fine
sheaves.

Lemma 4.1.3.27. For each n ≥ 0, the diagram

Shvloc
sC∞ring(X )′OSpecA/ sC∞ring′A/

Modπ0(OSpecA)alg Modπ0(A)alg

Γ

πn πn

Γ

is horizontally left adjointable.

Proof. Since the functor Γ on modules is a fully faithful right adjoint participating in reflective localization, it
suffices to argue that the right vertical map πn carries the unit map B → Γ(OSpecB) to a localization map for each
f ∶ A→ B ∈ sC∞ring′A/. The unit map B → Γ(OSpecB) is identified with the global sections of the sheafification map
for the presheaf defined by

sC∞ringad
A/ Ð→ sC∞ring, Ua ↦ B[f(a)−1],

where Uα = ev−1
a (R ∖ {0}), with eva ∶ HomC∞ring(π0(A),R) → R evaluating at a ∈ π0(A). Denote this presheaf

by ÕSpecB , then the map πn(B) → πn(Γ(OSpecB)) of π0(A)-modules is given by the global sections of the map of
presheaves α ∶ πn(ÕSpecB)→ πn(OSpecB). It follows from proposition 2.2.5.37 that the presheaf πn(OSpecB) is a sheaf
and that α exhibits a sheafification, but this describes precisely the unit map of the adjunction (MSpecπ0(A) ⊣ Γ)
at the object π0(B).
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Proof of Theorem 4.1.3.22. First, note that for A a finitely generated simplicial C∞-ring, the object ΓSpecG
der
DiffA is

fair; this follows immediately from corollary 4.1.3.25 and lemma 4.1.3.27. If A is already fair, then the corollary and

lemma imply that the map πn(A) → πn(ΓSpecG
der
DiffA) is an equivalence for all n ≥ 0; this proves the equivalence

dC∞Afffair ≃ sC∞ringopfair.
For the second assertion, if (X ,OX ) is an affine derived fair C∞-scheme, then (X ,OX ) = (SpecA,OSpecA) for some
fair simplicial C∞-ring A, so by the first part of the proof (X ,OX ) satisfies the condition in the statement of the
theorem. For the converse, we take a 0-localic Gder

Diff -structured ∞-topos (X ,OX ) satisfying the stated condition, then
it follows from theorem 4.41 of [Joy12b] that the object (X , τ≤0OX ) lies in C0 so that Γ(τ≤0OX ) is a finitely generated
simplicial C∞-ring. We should show that the counit map

SpecG
der
Diff Γ(OX )Ð→ (X ,OX )

is an equivalence. It follows from corollary 4.1.3.25 that this counit map becomes an equivalence after applying τ≤0.
Now the map

OSpecΓ(OX ) Ð→ OX

is a counit for the adjunction in lemma 4.1.3.27, so the map

πn(OSpecΓ(OX ))Ð→ πn(OX )

of sheaves of π0(OSpecΓ(OX ))-modules is a counit transformation and therefore an equivalence, as Γ ∶ Modπ0(OSpecA) →
Modπ0(A) is fully faithful. Since X is hypercomplete, we conclude.

Remark 4.1.3.28. The functor SpecG
der
Diff does not take values in hypercomplete ∞-topoi. To see this, note that

for any finite n ≥ 0, the characterization of affine fair derived C∞-schemes of theorem 4.1.3.22 implies that the cube
[0,1]n equipped with its usual sheaf of smooth functions, is an affine fair derived C∞-scheme. It follows that the

functor SpecG
der
Diff sends the C∞-ring C∞([0,1]n) to the cube [0,1]n, so SpecG

der
Diff sends the colimit of the diagram

C∞([0,1])Ð→ . . .Ð→ C∞([0,1]n)Ð→ C∞([0,1]n+1)Ð→ C∞([0,1]n+2)Ð→ . . .

to the Hilbert cube.

Warning 4.1.3.29. The notion of affineness changes as we vary which adjectives we add to our derived C∞-schemes.
For instance, there are derived locally fair C∞-schemes that are affine derived C∞-schemes, yet not affine as derived
fair C∞-schemes. Similarly, there are derived C∞-schemes locally almost of finite presentation that are affine derived
fair C∞-schemes, but not affine derived manifolds. The existence of such objects is essentially a consequence of the
fact that the étale topology on derived C∞-schemes is not quasi-compact.

We have defined affine derived manifolds in terms of almost finitely presented simplicial C∞-rings. For this
to be a sensible definition, we would expect that affine derived manifolds can be retrieved as the spectra of their
global sections, that is, we like to have an inclusion sC∞ringafp ⊂ sC∞ringfair. Suppose for a moment that finite
colimits in sC∞ringfair are computed in sC∞ring, then we would be able to conclude that sC∞ringfair contains
sC∞ringfp as a full subcategory. Indeed, theorem 4.1.3.22 shows that retracts in sC∞ringfair are computed in sC∞ring,
and by lemma 4.1.1.20 it suffices to show that sC∞ringfair contains the essential image of the Yoneda embedding
j ∶ N(CartSp)→ sC∞ring and that sC∞ringfair is stable under finite colimits and retracts.
In reality, the reflective subcategory sC∞ringfair admits finite colimits by theorem 4.1.3.22, as sC∞ringfg admits finite
colimits, but these are not necessarily computed in sC∞ring. Thus, to prove the inclusion sC∞ringfp ⊂ sC∞ringfair,

the strategy above does not work 3. The proof below is based on proposition 4.1.3.32, stating that every simplicial
C∞-ring admits a ‘cell decomposition’ indexed by degree, and that for almost finitely presented objects, this cell
decomposition is sufficiently finite.

Notation 4.1.3.30. Let V be a real vector space, possibly of infinite dimension. We write

C∞(V ∨) ∶= colim
V ′⊂V dimV ′<∞

C∞((V ′)∨)

for the free simplicial C∞-ring on V . Evaluation at 0 ∈ V ∨ yields a map C∞(V ∨) → R of simplicial C∞-rings, so
C∞(V ∨) is augmented over the initial object in sC∞ring, and we may consider the n-fold suspension ΣnC∞(V ∨)
with respect to the augmentation.

3This point was glossed over in [BN11]
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Definition 4.1.3.31. Let A → B be a morphism of simplicial C∞-rings. We say that B is a good A-cell object if B
is a colimit of a sequential diagram

A = A−1
φ−1Ð→ A0

φ0Ð→ A1 Ð→ . . . ,

where φ−1 is a pushout along a map of the form A → A ⊗∞ C∞(V−1) for V−1 a possibly infinite dimensional vector
space, and φn for n ≥ 0 is a pushouts along a map of the form A ⊗∞ ΣnC∞(Vn) → A for Vn a possibly infinite
dimensional vector space. A good A-cell object is

(1) almost finite if the dimension of the vector space Vn is finite for each n ∈ Z≥−1.

(2) finite if it is almost finite and the directed colimit over Z≥−1 in the definition may be replaced by a finite directed
subset {n}0≤n≤k.

Proposition 4.1.3.32. Let A→ B be a morphism of simplicial C∞-rings, then the following hold.

(1) B is equivalent to a good A-cell object.

(2) If B is almost finitely presented over A, then B is equivalent to an almost finite good A-cell object.

(3) If B is finitely presented over A, then B is equivalent to a retract of a finite good A-cell object.

Cell decompositions which are guaranteed to exist by proposition 4.1.3.32 are among the most useful tools we
develop in this work; they will appear again in later sections. We prove proposition 4.1.3.32 at the end of this section.
Now we return to the question of fairness for almost finitely presented simplicial C∞-rings.

Proposition 4.1.3.33. Let A be an almost finitely presented simplicial C∞-ring, then A is fair.

Proof. Let A be almost finitely presented. We wish to show that A is fair. We first make the following observations.

(1) A is fair if and only if τ≤nA is fair for all n ≥ 0.

(2) For every n ≥ 0, there exists a finitely presented simplicial C∞-ring A′ such that τ≤nA is a retract of τ≤nA
′

([Lur17b], cor. 5.5.7.4).

(3) As retracts are limits and the inclusion sC∞ringfair ↪ sC∞ring preserves limits by theorem 4.1.3.22, retracts in
sC∞ringfair are computed in sC∞ring.

Combining these facts, we may assume that A is finitely presented. Using proposition 4.1.3.32 and the stability of
sC∞ringfair under retracts again, we may also assume that A has a presentation as a finite good R-cell object. Such
a cell object is inductively obtained by pushouts of the form

Σn−1C∞(Rn) An−1

R An

where A0 = C∞(Rm), for some finite m. By unramifiedness, Aalg is given by the colimit of maps obtained by the
same sequence of pushout diagrams in sCringR. We proceed by induction on the length k of the finite cell object, the
case k = 0 being trivial.
Recall the left proper combinatorial model category structure on cdga≥0

R which presents the ∞-category sCringR.
Lemma 4.1.3.4 implies that in the model category cdga≥0

R , the morphism C∞(Rn) → R has a cofibrant replacement
as C∞(Rn)→ C∞(Rn)[y1, . . . , yn], with yi in degree −1 and differential ∂yi = xi, the i’th coordinate function on Rn.
Since Σn−1C∞(Rk)alg ≃ R[ε1, . . . , εk] with ∣εi∣ = n − 1 for n > 1, the map Σn−1C∞(Rk)alg → R can be replaced by
a finite coproduct of copies of the generating cofibration R[εi] → R[εi, εi+1]. As the model category cdga≥0

R is left
proper, it follows that Aalg is given by the (ordinary) colimit over a sequence of maps obtained by pushouts along the
cofibrations we have just described. We have found that the object Aalg has a presentation in cdga≥0

R by a quasi-free
object of the form

Ã = C∞(Rm)[ε11, . . . , ε1l1 , ε
2
1, . . . , ε

2
l2 , . . . , ε

k
1 , . . . , ε

k
lk
]

where ∣εiji ∣ = i for 1 ≤ i ≤ k and some differential. As π0(A) is finitely presented and therefore fair as a C∞-ring
we only have to show that for all n ≥ 0, πn(A) is a complete π0(A)-module. Fix n > 0, and consider the truncated
C∞dga τ≤(n+1)Ã, so that we have Hn(τ≤(n+1)Ã) ≅ Hn(Ã) = πn(A). As A is a finite good cell object, Ã is a finitely

generated free C∞(Rm)-module in each degree, so τ≤(n+1)Ã is a finitely generated and free C∞(Rm)-module. Now
consider the presheaf of dg C∞(Rm)-modules on Rm given by

F ∶= U ↦ U ↦ τ≤(n+1)(C∞(U)[ε11, . . . , ε1l1 , ε
2
1, . . . , ε

2
l2 , . . . , ε

k
1 , . . . , ε

k
lk
]),
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whose module of global sections is τ≤(n+1)Ã. This presheaf is a sheaf, precisely because τ≤(n+1)Ã is a finitely generated

free C∞(Rm)-module4. By proposition 2.2.5.37 the homology groups of τ≤(n+1)Ã are given by the global sections of

the sheaves of homology groups of F . This implies in particular that Hn(Ã) is a complete C∞(Rn)-module. As the
map C∞(Rm)→ π0(A) is surjective, the module Hn(Ã)⊗C∞(Rm)π0(A) ≅Hn(Ã) ≅ πn(A) is a complete π0(A)-module
by proposition 3.1.3.42.

Corollary 4.1.3.34. The equivalence

(Γ ⊣ SpecG
der
Diff ) ∶ dC∞Afffair ≃ sC∞ringopfair

restricts to an equivalence

(Γ ⊣ SpecG
der
Diff ) ∶ dC∞Affafp ≃ sC∞ringopafp.

Remark 4.1.3.35. Let A be a simplicial C∞-ring almost of finite presentation. It follows from proposition 4.1.3.33
and theorem 4.1.3.22 that the presheaf

Ua z→ A[a−1]
of simplicial C∞-rings on the real spectrum of A is already a sheaf. There is another class of simplicial C∞-rings
for which this is true (which is incomparable with the class of almost finitely presented objects in the sense that
neither class contains the other): any simplicial C∞-ring A has an underlying E∞-algebra object in the ∞-category
of convenient vector spaces. If the locally convex topology on each πn(A) is Fréchet, then the structural presheaf is
already a sheaf. If A is discrete and finitely generated, this class consists precisely of free C∞-rings quotiented by
near-point determined ideals, by Whitney’s spectral theorem. Quotients by ideals generated by finitely many analytic
functions are in this class, that is, C∞-rings of functions on analytic sets, as are C∞-rings of manifolds with corners.
As a result, simplicial C∞-rings in this class are fair.

Remark 4.1.3.36. Note that SpecG
der
Diff sends admissible maps A→ A[a−1] to étale maps of Gder

Diff -structured topoi,

and the topology on sC∞ringafp coincides under SpecG
der
Diff with the étale topology on dC∞Aff coming from the

restriction of the étale topology on RTop(Gder
Diff).

The rest of this subsection is devoted to the proof of proposition 4.1.3.32. The following lemmas are adapted from
[Lur11a], lemmas 12.18 and 12.19.

Remark 4.1.3.37. The free C∞-ring functor FC
∞

preserves colimits, so we have ΣnC∞(V ∨) ≃ FC
∞
(Sym●(V [n]))

for each R-module V . The forgetful-free adjunction between E∞-algebras and simplicial C∞-rings now establishes
the equivalence

HomsC∞ring(ΣnC∞(V ∨),A) ≃ HomModR(V [n],Aalg)
for all A ∈ sC∞ring.

Lemma 4.1.3.38. Let V be a real vector space. The map V [n] → ΣnC∞(V ∨)alg corresponding to the identity
ΣnC∞(V ∨) → ΣnC∞(V ∨) via the equivalences above induces an equivalence Sym●(V [n]) → ΣnC∞(V ∨)alg of E∞-
algebras over R for n > 0.

Proof. Since all forgetful and free functors involved commute with filtered colimits, we may write V = colim V ′⊂V,dimV ′<∞

and suppose that V is finite dimensional. We work by induction on n. For n = 1, we are asked to prove that the
natural map

R⊗Sym●(V ) R→ R⊗∞C∞(V ∨) R ≃ R⊗C∞(V ∨)alg R
is an equivalence (the last equivalence follows by unramifiedness). Suppose that V is 1-dimensional, then Sym●(V ) ≃
R[x] and we have a map of projective resolutions

0 R[x] R[x] R

0 C∞(R) C∞(R) R

x

id

x

where x denotes multiplication by the function x ↦ x on R which shows that Tor
R[x]
i (R,R) ≅ Tor

C∞(R)
i (R,R) for all

i ≥ 0, so we are done for n = 1 and dimV = 1. For V k-dimensional, the map Sym●(V [1]) → ΣC∞(V ∨)alg is simply
the k-fold tensor product of the equivalence we have just established. The induction step for n ≥ 1 follows at once
from unramifiedness.

4The importance of the finiteness condition can be explained as follows: let V be an infinite dimensional real vector space, then the
presheaf F ′

∶ U ↦ C∞
(U)⊗R V on Rm is not a sheaf. Indeed, let {eα}α∈A be a (Hamel) basis for V , and take an infinite collection of

disjoint opens {Ui}i∈U in Rm indexed by a set I ⊂ A. Then assigning to the open Ui the section 1 ⋅ei yields a collection of local sections
which cannot be glued to a section on ∐i∈I Ui ⊂ Rm. In fact, if B is a fair C∞-ring, then B ⊗R V is a complete B-module if and only if
SpecRB is compact; see also [Joy12a], example 5.28 (d)
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Lemma 4.1.3.39. Let A be a simplicial C∞-ring and let V be a vector space. Let n > 0 and V [n] → Aalg be a map
of R-modules adjoint to a map ϕ ∶ V ⊗RA

alg[n]→ Aalg of Aalg-modules. By taking the symmetric algebra and the free
simplicial C∞-ring, V [n]→ Aalg is adjoint to a map ΣnC∞(V ∨)→ A. Consider the pushout diagram

ΣnC∞(V ∨) A

R B

Then there is a natural map cofib(ϕ)→ Balg of Aalg-modules which has (2n+2)-connective cofibre.

Proof. By unramifiedness and lemma 4.1.3.38, we have Balg ≃ R⊗Sym●(V [n]) A
alg. The composition

V ⊗R A
alg[n] ϕÐ→ Aalg Ð→ B

of morphisms of Aalg-modules is homotopic to the composition

V ⊗R A
alg[n]Ð→Sym●(V [n])Ð→ B

which is nullhomotopic by construction, yielding the desired map cofib(ϕ)→ B. Since taking cofibres commutes with
tensor products, we have an equivalence

cofib(V [n]⊗R Sym●(V [n])→ Sym●(V [n]))⊗Sym●(V [n]) A
alg ≃ cofib(V ⊗R A

alg[n]→ Aalg) = cofib(ϕ).

One readily verifies that cofib(V [n] ⊗R Sym●(V [n]) → Sym●(V [n])) has vanishing homotopy groups in degrees
0 < i ≤ 2n, so the map cofib(V [n]⊗R Sym●(V [n]) → Sym●(V [n])) → R has (2n+2)-connective cofibre, showing that
the map

cofib(V [n]⊗R Sym●(V [n])→ Sym●(V [n]))⊗Sym●(V [n]) A
alg ≃ cofib(ϕ)→ Balg ≃ R⊗Sym●(V [n]) A

alg

has (2n + 2)-connective cofibre as well.

Proof of Proposition 4.1.3.32. (1) Let A → B be a simplicial C∞-ring. We will inductively define a sequence of n-
connective maps ψn ∶ An → B formed by pushouts as in definition 4.1.3.31. For the base step of the induction,
choose an effective epimorphism A⊗∞C∞(RJ0)→ B; for instance, J0 may be the set of those generators of π0(B)
that are not in the image of π0(A)→ π0(B). Now let n > 0. Assuming we have constructed an (n−1)-connective
map ψn−1 ∶ An−1 → B, we construct ψn. We have πj(An−1) ≃ πj(B) for j < (n− 1). The algebraic fibre fib(ψalg

n−1)
of the map ψalg

n−1 ∶ A
alg
n−1 → Balg of connective E∞-algebras over R fits into a long exact sequence

. . .→ πn(Aalg
n−1)→ πn(Balg)→ πn−1(fib(ψalg

n−1))→ πn−1(Aalg
n−1)→ πn−1(Balg)→ 0→ . . .

Choose a set Jn and a map RJn ⊗R A
alg
n−1[n − 1] → fib(ψalg

n−1) of Aalg
n−1-modules that induces a surjective map

RJn[n − 1]⊗R π0(Aalg
n−1)→ πn−1(fib(ψalg

n−1)). The composition

ϕ ∶ RJn ⊗R A
alg
n−1[n − 1]Ð→ fib(ψalg

n−1)Ð→ Aalg
n−1

in the ∞-category of Aalg
n−1-modules is adjoint to a map

RJn[n − 1]Ð→ Aalg
n−1

of R-modules. This map yields a map Sym●(RJn[n − 1]) → Aalg
n−1 in sCringR, which is in turn adjoint to a map

Σn−1C∞((RJn)∨)→ An−1 of simplicial C∞-rings, with Σn−1C∞((RJn)∨) the (n−1)’th suspension of C∞((RJn)∨)
at the basepoint 0 ∈ (RJn)∨. Now we define An as the right pushout square in the diagram

Σn−1C∞((RJn)∨) A⊗∞ Σn−1C∞((RJn)∨) An−1

R A An

f

where the left square and the outer rectangle are pushouts as well. The canonical nullhomotopy of the map
RJn ⊗R A

alg
n−1[n − 1] → fib(ψalg

n−1) → Balg yields a homotopy between ψn−1 ○ f and Σn−1C∞((RJn)∨) → A → B, so
we get a map ψn ∶ An → B. We check that ψn is n-connective: notice that the left and middle vertical maps in
the diagram above induce surjections on connected components, so by unramifiedness, we have an equivalence
Aalg
n ≃ R ⊗Σn−1C∞((RJn )∨)alg A

alg
n−1. For n = 1, we observe that π0(A1) ≃ π0(C∞((RJ0)∨)/π0(fib(ψalg

0 ))) ≃ π0(B).
For n > 1, lemma 4.1.3.39 provides us with a map cofib(ϕ) → An with (2n)-connective cofibre. Comparing the
πn−1-terms in the long exact sequence associated with the fibre sequence fib(ψalg

n ) → Aalg
n → B with those of the

long exact sequence associated to the cofibre sequence of ϕ yields the desired connectivity estimate.
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(2) Let A be a simplicial C∞-ring and choose a good cell object {Ai}i∈Z≥0 with an equivalence colim i∈Z≥0Ai ≃ A. We
will show that if B is a finitely presented simplicial C∞-ring, then any morphism B → A factors through a finite
good cell object. The desired statement then follows by applying this to the identity morphism A → A. Choose
some morphism f ∶ B → A. We have A ≃ colim i∈Z≥0Ai, so f factors through some Ai. We prove by descending
induction that f factors through a cell complex with finitely many cells in degrees greater than j for every j ≤ i.
For j = i, we use that

Ai = R⊗∞Σi−1C∞((RJi )∨) Ai−1 ≃ colim
S⊂Ji, ∣S∣<∞

R⊗∞Σi−1C∞(RS) Ai−1,

to deduce that the map B → Ai factors through some R ⊗∞Σi−1C∞(RS)
Ai−1 where S is a finite set. Now assume

that B → Ai factors through a cell complex Ã that is obtained from the object Aj , j < i, by attaching finitely
many cells (in degrees > j). Aj is itself obtained as R⊗∞

Σj−1C∞((RJj )∨
Aj−1, where Jj may be an infinite set. Just

as in the case i = j, we have Aj ≃ colim S′⊂Jj , ∣S′ ∣<∞CS′ , where we write CS′ ∶= R⊗∞
Σj−1C∞(RS′ )Aj−1. By assumption

on Ã, we attach only finitely many cells (say n) in degree j, given by a pushout

R⊗∞ΣjC∞(Rn) colim
S′⊂Jj , ∣S′ ∣<∞

CS′ .

Because ΣjC∞(Rn) is finitely presented, the map ΣjC∞(Rn)→ colim S′⊂Jj , ∣S′ ∣<∞CS′ factors through some CS′ , so
we can write the pushout above as the colimit colim S′′⊃S′, ∣S′′ ∣<∞R⊗∞ΣjC∞(Rn)

CS′′ . Now we repeat this argument
for all cells of higher degrees, using finite presentation as there are only a finite number of cells left in each degree.
We find that Ã can be written as some filtered colimit colim k∈J Ãk, where each Ãk is a relative cell complex
obtained by attaching a finite number of cells to the object Aj−1. Using compactness of B, we see that B → Ã
factors through some Ãk. This completes the induction step.

We observe that the construction of good cell objects in the proof of proposition 4.1.3.32 gives a bit more
information.

Proposition 4.1.3.40. Let f ∶ A → B be a morphism of simplicial C∞-rings, and suppose we have chosen a
presentation

A = A−1
φ−1Ð→ A0

φ0Ð→ A1 Ð→ . . .Ð→ B

of B as a good A-cell object. If f is n-connective, then we may assume that A = An.

4.1.4 Simplicial C∞-rings of finite presentation as a geometric envelope

Armed with the geometry Gder
Diff , we can complete our comparison of simplicial C∞-rings with TDiff -structures, and

show that the geometry Gder
Diff is indeed a geometric envelope of TDiff . As a corollary, we find that the full subcategory

of spectra of finitely presented simplicial C∞-rings coincides with the derived manifolds of finite presentation we have
already defined.
It’s interesting to note how neatly the theory of derived differential geometry fits into the template of [Lur11b],
sections 4.2 and 4.3 (which concern derived algebraic geometry for the Zariski and étale topology respectively).
Although most of the non-formal arguments we use to show that our theory indeed follows this paradigm have to
do with differential topology as opposed to algebra, many statements remain the same modulo replacing TDiff with
TZar(k)/Tét(k) and simplicial commutative rings with simplicial C∞-rings; compare for instance theorem 4.1.4.6 with
[Lur11b], proposition 4.2.3 and theorem 4.1.3.22 with [Lur11b], theorem 4.2.15.
Before we apply a formal argument, we need an improvement of lemma 4.1.3.9.

Proposition 4.1.4.1. The functor C∞( ) ∶ TDiff → sC∞ringop sending a manifold M to the discrete simplicial
C∞-ring of smooth functions on M is fully faithful, and preserves finite products and transverse pullbacks.

Proof. Fully faithfulness follows because the functor in the proposition takes M to the ordinary C∞-ring of smooth
functions on M , which is a fully faithful functor (see [MR91]), followed by the fully faithful inclusion of discrete
objects into sC∞ring. The claim about finite products is proven in lemma 4.1.3.7, so we only have to show that
pullback diagrams

Y ×Z X X

Y Z

p

i

are preserved. Denote the pullback Y ×ZX by P . By theorem 2.8 of chapter 1 of [MR91], the map τ≤0(C∞(Y )⊗∞C∞(Z)

C∞(X)) → C∞(P ) is an equivalence, so we only have to show that the higher homotopy groups vanish. Choose a

134



cover {Uα} of Z such that each Uα is diffeomorphic to an open in RdimZ , and let {Vα} denote the induced cover on
P . Consider for each n ≥ 1 the sheafification of the presheaf of C∞(P )-modules on P sending an open W ⊂ P to
C∞(W )⊗C∞(P ) πn(C∞(Y )⊗∞C∞(Z) C

∞(X)). For each Vα ⊂ Z, we have

C∞(Vα)⊗C∞(P ) πn(C∞(Y )⊗∞C∞(Z) C
∞(X)) ≅ πn(C∞(i−1(Uα))⊗∞C∞(Uα) C

∞(p−1(Uα)))

by lemma 4.1.3.13. But by lemma 4.1.3.9, the transverse pullback i−1(Uα)×Uα p−1(Uα) is preserved by C∞( ) so the
simplicial C∞-ring C∞(i−1(Uα))⊗∞C∞(Uα) C

∞(p−1(Uα)) is discrete. This implies that

SpecG
der
DiffC∞(Y )⊗∞C∞(Z) C

∞(X) = (Shv(P ),OP ),

the manifold-theoretic intersection equipped with its local sheaf of C∞-rings of smooth functions. Thus, the map

C∞(Y ) ⊗∞C∞(Z) C
∞(X) → ΓSpecG

der
DiffC∞(Y ) ⊗∞C∞(Z) C

∞(X) coincides with the map C∞(Y ) ⊗∞C∞(Z) C
∞(X) →

C∞(P ). But this morphism is an equivalence by proposition 4.1.3.33.

For an ∞-topos X , there is a natural equivalence C∞ring(X ) ≃ Funlex(sC∞ringopfp ,X ) = StrGder
Diff

(X ) by proposition

4.1.1.22, and we write OF for the Gder
Diff -structure associated to a C∞-ring F in X . We say that a C∞-ring F in an

∞-topos X is local if OF is a local Gder
Diff -structure in X . The subcategory whose objects are local C∞-rings in X and

whose morphisms are local morphisms between them is denoted C∞ringloc(X ) ≃ Strloc
Gder

Diff
(X ).

The following proposition shows that the theories of C∞-rings and TDiff -structures are equivalent.

Proposition 4.1.4.2. Let X be an ∞-topos. Let ι∗ ∶ StrTDiff (X ) → C∞ring(X ) be the functor that sends a TDiff-
structure to its underlying C∞-ring. Let ι∗ ∶ C∞ring(X ) → Fun(TDiff ,X ) be a functor taking right Kan extensions as
in the diagram

N(CartSp) X

TDiff

ι

F

ι∗F

(1) ι∗ takes values in TDiff-structures on X and sends C∞ringloc(X ) to Strloc
TDiff

(X ).

(2) ι∗ and ι∗ define an equivalence of ∞-categories between StrTDiff (X ) and C∞ring(X ) that restricts to an equivalence
on local objects and local morphisms.

Proof. (1) Let F be a C∞-ring in X . The right Kan extension j∗F of F along the opposite of the Yoneda embedding
j ∶ N(CartSp)↪ PShv(N(CartSp)op)op preserves all small limits by [Lur17b], lemma 5.1.5.5. Applying the adjoint
functor theorem ([Lur17b], cor. 5.5.2.9 and remark 5.5.2.10) to (j∗F )op ∶ PShv(N(CartSp)op)→ X op, we obtain a
left adjoint L ∶ X → PShv(N(CartSp)op)op to j∗F . We show that for any Y ∈ X , L(Y ) preserves finite products:
the map L(Y )(Rn)→ L(Y )(R)n is equivalent to the top horizontal map in the commuting diagram

HomPShv(N(CartSp)op)op(L(Y ), j(Rn)) HomPShv(N(CartSp)op)op(L(Y ), j(R))n

HomX (Y,F (Rn)) HomX (Y,F (R))n
≃ ≃

in H. Since the vertical maps are equivalences and the lower horizontal map is an equivalence by assumption
on F , the upper horizontal map is an equivalence as well, which shows that L lands in sC∞ringop. It follows
that L is a left adjoint of j∗F ∣sC∞ringop , so j∗F ∣sC∞ringop preserves small limits. Since the functor sC∞ringop →
PShv(N(CartSp)op)op is fully faithful, j∗F ∣sC∞ringop is a right Kan extension along the inclusion N(CartSp) →
sC∞ringop. This inclusion factors as in the diagram

N(CartSp) X

TDiff

sC∞ringop

ι

F

ι∗F

C∞( )

j∗F ∣sC∞ringop

and we define ι∗F as the composition j∗F ∣sC∞ringop ○ C∞( ). Since proposition 4.1.4.1 guarantees that C∞( )
preserves finite products and transverse pullbacks, the same is true for ι∗F , so ι∗F preserves in particular pullbacks
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along admissible maps; that is, ι∗F is a TDiff -structure. By proposition 4.1.4.1 again, C∞( ) is fully faithful, so
ι∗F is a right Kan extension of F along ι.
To see that ι∗ preserves local objects and local morphisms, we note that the assignment F ↦ OF sending a
C∞-ring in X to a left exact functor from sC∞ringopfp is also a right Kan extension. Thus, ι∗F is canonically
equivalent to the restriction of OF to TDiff ⊂ sC∞ringopfp viewed as a full subcategory via C∞( ). Now it is clear
that locality is preserved.

(2) We check that ι∗ and ι∗ are mutually inverse to one another. It is clear that the counit ι∗ ○ ι∗ → id is an
equivalence, since we Kan extend along a full subcategory inclusion. To see that the unit id → ι∗ ○ ι∗ is an
equivalence, we first restrict to T open

Diff . Since any open submanifold U of Rn has a characteristic function, U fits
into a pullback diagram

U R ∖ {0}

Rn R

where the vertical maps are admissible. Let O ∈ StrTDiff (X ), then ι∗ι
∗O lies also in StrTDiff (X ), so O(U) →

ι∗ι
∗O(U) is an equivalence if O → ι∗ι

∗O is an equivalence on Rn, R and R ∖ {0}. This is obviously true for Rn
and R. We can use the same argument to show that the equivalence also holds on R∖{0} if R∖{0} is diffeomorphic
to a pullback of a diagram in N(CartSp) where one of the maps in the diagram is admissible, but this is easy to
arrange: choose a smooth bump function ψ(x) ∶ R → [0,1] whose value is equal to −1/2 on (−1,1) and equal to
1/2 on (−∞,−2) ∪ (2,∞) without local minima or maxima on (−2,−1) ∪ (1,2), then R ∖ {0} is diffeomorphic to
the intersection of the graph of ψ with the open set R2 ≅ R ×R>0 ⊂ R2.
To show that O(M) → ι∗ι

∗O(M) is an equivalence for any manifold M , we use that TDiff ≃ Idem(T open
Diff ) to

realize M as the splitting of an idempotent U → U in T open
Diff . Since O(U)→ ι∗ι

∗O(U) is an equivalence and X is
idempotent complete, ι∗ι

∗O(M) and O(M) split the same idempotent, so they are equivalent through the map
O(M) → ι∗ι

∗O(M). We will be done once we show that ι∗ sends local TDiff -structures to local C∞-rings. The
equivalence we have just established shows that a TDiff -structure O is canonically equivalent to the restriction of
Oι∗O to TDiff ⊂ sC∞ringopfp , confirming that ι∗ preserves local objects and local morphisms.

Remark 4.1.4.3. If F is a local C∞-ring in an ∞-topos X , one can also prove that the left Kan extension ι!F
of F satisfies ι!F (M) = colim ∆opF (Č(h)), where Č(h) is the Čech nerve of a good open cover h ∶ ∐iUi → M
by admissibles. From there, it is possible to prove that ι!F is a local TDiff -structure on X (the preservation of the
required limits follows because colimits are universal in X ). Since local TDiff -structures are determined by their values
on N(CartSp), the left Kan extension functor ι! is an equivalence with inverse ι∗ when restricted to the subcategories
of local objects, and it is therefore equivalent to ι∗.

Remark 4.1.4.4. The proof of proposition 4.1.4.2 can be amended to show that for any ∞-category C that admits
finite limits and is idempotent complete, the restriction functor ι∗ ∶ Funad(TDiff ,C) → Funπ(N(CartSp),C) is an
equivalence: denote C′ ∶= PShv(C), then C′ has all small limits and for any diagram in C that has a limit in C, this
limit is also a limit in C′. For f ∈ Funπ(N(CartSp),C), we can consider f as a product preserving functor into C′,
and the arguments of proposition 4.1.4.2 show that ι∗f exists and lies in Funad(TDiff ,C′). Because C admits finite
limits and is idempotent complete, and ι∗f only creates retracts of pullbacks of objects in the essential image of f ,
ι∗f factors through C. The counit of the adjunction is clearly an equivalence, and the unit is an equivalence by the
same argument as in the proof of proposition 4.1.4.2.

Remark 4.1.4.5. Observe that proposition 4.1.4.1 and the argument of remark 4.1.4.4 allow us to prove the following
slightly stronger assertion: let C be an ∞-category that admits finite limits and is idempotent complete, and let
Fun⋔(TDiff ,C) be the full subcategory of functors TDiff → C spanned by those that preserve finite products and
transverse pullbacks, then the restriction map Fun⋔(TDiff ,C)→ Funπ(N(CartSp),C) is an equivalence.

The functor C∞( ) ∶ TDiff → sC∞ringop factors through Gder
Diff , so we may state the following theorem.

Theorem 4.1.4.6. The functor C∞( ) ∶ TDiff → Gder
Diff exhibits Gder

Diff as a geometric envelope of TDiff .

Proof. We should show that C∞( ) lies in Funad(TDiff ,Gder
Diff), that for any idempotent complete ∞-category C that

admits finite limits, composition with C∞( ) induces an equivalence

Funlex(Gder
Diff ,C)

≃Ð→ Funad(TDiff ,C),
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and Gder
Diff is endowed with the coarsest admissibility structure that makes C∞( ) a transformation of pregeometries.

Firstly, C∞( ) lies in Funad(TDiff ,Gder
Diff) by proposition 4.1.4.1. Now let C be an idempotent complete ∞-category

admitting finite limits, then we have a commuting diagram

Funad(TDiff ,C)

Funlex(Gder
Diff ,C) Funπ(N(CartSp),C)

θ′′

θ′

θ

By proposition 4.1.1.22, the functor θ′ is an equivalence and by remark 4.1.4.4, the functor θ′′ is an equivalence. It
follows that θ is an equivalence as well.
By proposition 4.1.3.13, every admissible map is a pullback of an admissible map in TDiff , and just as in remark
3.1.3.24, every admissible covering in Gder

Diff is pulled back from a covering in TDiff . Consequently, the admissibility
structure on Gder

Diff is indeed the coarsest one that makes C∞( ) a transformation of pregeometries.

Corollary 4.1.4.7. Let (Gder
Diff)≤n be the opposite category of the (n+1)-category of compact objects in τ≤nsC

∞ring for
n ≥ 0. The inclusion TDiff ↪ (Gder

Diff)≤n exhibits (Gder
Diff)≤n as an n-truncated geometric envelope of TDiff . In particular,

the inclusion TDiff ↪N(C∞ringfp)op exhibits N(C∞ringfp)op as a 0-truncated geometric envelope of TDiff .

Proof. Easy consequence of theorem 4.1.4.6 and remark 3.1.2.8.

Proposition 4.1.4.2 shows composition with C∞( ) induces an equivalence between RTop(TDiff) and RTop(Gder
Diff).

Corollary 4.1.4.8. The spectrum functor SpecTDiff ∶ TDiff → RTop(TDiff) coincides with the composition SpecG
der
Diff ○

C∞( ).

Proof. Easy consequence of theorem 4.1.4.6 and proposition 3.1.2.3.

Corollary 4.1.4.9. The adjoint equivalence

(Γ ⊣ SpecG
der
Diff ) ∶ dC∞Affafp ≃ sC∞ringopafp

restricts to an equivalence
dC∞Afffp ≃ sC∞ringopfp .

Proof. dC∞Afffp was defined as the smallest subcategory of RTop(TDiff) containing the essential image of SpecTDiff

closed under retracts and finite limits. SpecTDiff factors through C∞( ) ∶ TDiff → sC∞ringopfp via the fully faithful

and limit preserving functor SpecG
der
Diff , so dC∞Afffp is equivalent, via SpecG

der
Diff , to the smallest full subcategory of

sC∞ringop containing the essential image of C∞( ) that is stable under retracts and finite limits. Since any manifold
is a retract of a limit of a transverse pullback diagram in N(CartSp), dC∞Afffp is equivalent is to the smallest full
subcategory of sC∞ringop containing the essential image of the Yoneda embedding j ∶ N(CartSp) → sC∞ringop that
is stable under retracts and finite limits. Now the result follows from lemma 4.1.1.20.

Notation 4.1.4.10. In the sequel, we will write Spec for the functor SpecG
der
Diff ∶ sC∞ring → LTop(Gder

Diff).

4.1.5 C∞dga’s of finite presentation as a geometric envelope

Our first definition of the ∞-category of affine derived manifolds was conceptually satisfying, but computationally
inconvenient. In this subsection, we are at the other end of the spectrum: we show that affine derived manifolds admit
a presentation as C∞dga’s, which shows that the objects we are studying are not far removed from the d-manifolds
of Joyce [Joy12b] or the dg-manifolds of Behrend-Liao-Xu [BLX20].

Definition 4.1.5.1. Let cdga≥0
R be the category of connective differentially graded algebras over R (grading con-

ventions are homological). It comes with a canonical projection cdga≥0
R → CAlgR by restricting to degree 0, which is

right adjoint to the obvious inclusion CAlgR → cdga≥0
R . The category of C∞dga’s, denoted C∞dga, is the pullback

cdga≥0
R ×CAlgR C

∞ring. Concretely, a C∞dga is a connective differentially graded algebra A●, such that A0 has the
structure of a C∞-ring compatible with its R-algebra structure. A morphism of C∞dga’s is a homomorphism of
connective dg algebras that restricts to a morphism of C∞-rings in degree 0.

Remark 4.1.5.2. Occasionally, we will have to work with C∞dga’s whose underlying chain complex is not connective.
The obvious inclusion CAlgR → cdgaR has a right adjoint cdgaR → CAlgR which takes A● to ker(∂0) ⊂ A0. The
category of nonconnective C∞dga’s, denoted C∞dganc, is the pullback cdgaR ×CAlg C

∞ring whose objects are cdga’s
A● for which ker(∂0) is a C∞-ring.
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Remark 4.1.5.3. Consider the commuting diagram

cdga≥0
R Mod≥0

R

CAlgR VectR

of categories. By [Lur17a], cor. 3.2.3.2 the horizontal maps preserve and detect sifted colimits, and the right vertical
map preserves all colimits, so the left vertical map preserves sifted colimits as well. Since the functor C∞ring → CAlgR
preserves sifted colimits, it follows from [Lur17b], lem. 5.4.5.5 that the forgetful functors C∞dga → cdga≥0

R and
C∞dga → C∞ring preserve sifted colimits. For nonconnective C∞dga’s, the same remarks hold for filtered colimits.
It follows that both C∞dga and C∞dganc are compactly generated.

Construction 4.1.5.4. There is a forgetful-free adjunction

(FC
∞

dg ⊣ ( )alg
dg ) ∶ cdga≥0

R C∞dga ,

where the right adjoint ( )alg
dg ) takes a C∞dga to its underlying connective cdga. The left adjoint FC

∞
dg takes a cdga

A● with A0 = 0 to A● as a C∞dga, and it takes R[x1, . . . , xn] in degree 0 to the free C∞dga C∞(Rn) in degree 0.
The forgetful functor ( )alg

dg is conservative and preserves sifted colimits and is therefore monadic, by the classical
Barr-Beck theorem.

Lemma 4.1.5.5 (Unramifiedness). Let

A● B●

C● D●

g

f

be a pushout diagram of possibly nonconnective C∞dga’s, and suppose that either f or g induces a surjection of
C∞-rings after applying the functor ker(∂0). Then the canonical map

(B●)alg
dg ⊗(A●)

alg
dg

(C●)alg
dg Ð→ (D●)alg

dg

is an isomorphism.

Proof. Using the fact that the operation of taking hom sets commutes with limits of categories, it is not hard to see
that a pushout B● ⊗∞A● C● of (possibly nonconnective) C∞dga’s fits into a pushout diagram

ker(∂B0)⊗ker(∂A0
) ker(∂C0) ker(∂B0)⊗∞ker(∂A0

) ker(∂C0)

B● ⊗A● C● B● ⊗∞A● C●

of (nonconnective) cdga’s. If either ker(∂A0) → ker(∂B0) or ker(∂A0) → ker(∂C0) is a surjection, the top horizontal
map in this diagram is an equivalence by lemma 4.1.3.5.

Proposition 4.1.5.6 (Carchedi-Roytenberg [CR12b; CR12a]). There is a combinatorial model structure on C∞dga

that is transferred along the adjunction (FC
∞

dg ⊣ ( )alg
dg ). Specifically, a map f is a fibration respectively a weak equiv-

alence if and only if falg
dg is a fibration respectively a weak equivalence, and the set of generating (trivial) cofibrations

is the image under FC
∞

dg of the set of generating (trivial) cofibrations in cdga≥0
R . Explicitly, the set of generating

cofibrations I contains the maps

RÐ→ C∞(R), C∞(R)Ð→ C∞(R)[ε1], R[εi]Ð→ R[εi, εi+1], i ≥ 1. (4.3)

where ∣εi∣ = i, and the differentials are given by ∂εi = εi+1 for i ≥ 2 and ∂ε1 = x for x the identity function on R. The
set of generating trivial cofibrations J contains the maps

RÐ→ C∞(R)[ε1], RÐ→ R[εi, εi+1], i ≥ 1. (4.4)
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Proof. The proof of Carchedi-Roytenberg uses Quillen’s path object argument. We will argue somewhat differently
as follows. It follows from remark 4.1.5.3 that C∞dga is compactly generated. Using adjointness, we see that a
map g in C∞dga is a trivial fibration (i.e. a weak equivalence and a fibration) if and only if g satisfies the right
lifting property with respect to the morphisms in the class I, and that g is a fibration if and only if it satisfies the
right lifting property against the morphisms in the class J . Now it follows from the small object argument that all
morphisms can be factored by a morphism in the class J , the weak saturation of J , followed by a fibration. Similarly,
all morphisms can be factored by a morphism in the class I, the weak saturation of I, followed by a trivial fibration.
By a standard argument, it is enough to show that every morphism in J is a weak equivalence as a morphism in
cdga≥0

R . Since the forgetful functor ( )alg
dg ∶ C∞dga→ cdgaR preserves filtered colimits, weak equivalences in C∞dga

are stable under retracts and transfinite compositions so we are reduced to showing that a pushout of any map in
C∞dga along any of the generating trivial cofibrations of (4.4) is a weak equivalence. For the map R → R[εi, εi+1],
this follows immediately from lemma 4.1.5.5: a pushout along this map is simply a coproduct with R[εi, εi+1] in
cdga≥0

R . For the case of R→ C∞(R)[ε], we have to show that for any C∞dga A●, the canonical map

f ∶ A● Ð→ A● ⊗∞ C∞(R)[ε]

is a quasi-isomorphism, where ⊗∞ now denotes the tensor product in C∞dga. The map f admits a retraction that
fits into a pushout diagram

C∞(R)[ε] R

A● ⊗∞ C∞(R)[ε] A●

of C∞dga’s. To show that f is a weak equivalence, it suffices to show the lower horizontal map in the diagram is one,
but since the upper horizontal map is a weak equivalence and a surjection in degree 0, this is guaranteed by lemma
4.1.5.5 and the fact that the model category cdga≥0

R is left proper.

We denote the ∞-category of (fibrant)-cofibrant C∞dga’s localized at the weak equivalences by C∞Alg. Note
that there is an obvious fully faithful and coproduct preserving functor N(CartSp)op ↪ C∞Alg. This functor left Kan
extends to yield a colimit preserving functor ϕ ∶ sC∞ring → C∞Alg.

Using that fibrations and trivial fibrations in C∞dga are stable under filtered colimits, we deduce that taking
filtered colimits in C∞dga preserves trivial fibrations and thus (by Ken Brown’s lemma and the fact that all objects
are fibrant) all weak equivalences, so that filtered colimits are also homotopy colimits.

Theorem 4.1.5.7 (C∞-Dold-Kan Correspondence). The functor ϕ ∶ sC∞ring → C∞Alg induced by the fully faithful
inclusion N(CartSp)op ↪ C∞Alg is an equivalence of ∞-categories.

Proof. We have a commuting diagram

N(PolyR)op N(CartSp)op

E∞AlgR C∞Alg
LFC

∞
dg

of ∞-categories, where LFC
∞

dg is the left derived functor of the free C∞dga functor of construction 4.1.5.4. Passing
to the sifted colimit completion ([Lur17b], cor. 5.3.6.10), we obtain a commuting diagram

sCringR sC∞ring

E∞AlgR C∞Alg

≃

FC
∞

ϕ

LFC
∞

dg

of presentable ∞-categories and functors admitting right adjoints between them. Let U ∶ C∞Alg → sC∞ring be a
right adjoint to ϕ, and let D ⊂ sC∞ring be the full subcategory spanned by those objects C for which the unit map
C → U(ϕ(C)) is an equivalence. It suffices to show that D = sC∞ring, and that U is conservative. Since ϕ is a
left Kan extension along the functor N(CartSp)op ↪ C∞Alg, the full subcategory N(CartSp)op ⊂ sC∞ring lies in D.
Passing to right adjoints in the diagram above, we have a diagram

C∞Alg sC∞ring

E∞AlgR

G

U

( )
alg
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where G = ( )alg
dg is the right derived forgetful functor of construction 4.1.5.4. As G and ( )alg are both conservative,

U is also conservative. Let K ∶= {fi ∶Ki → C∞Alg} be the collection of small diagrams in C∞Alg such that

(a) G preserves colimits of diagrams in K.

(b) ( )alg preserves colimits of diagrams in K after applying U .

Now note that, as ( )alg is conservative, U also preserves the colimits of the diagrams in K. We observe the following:

(1) All filtered diagrams are in K, since the underived functor G ∶ C∞dga → cdga≥0
R preserves ordinary filtered

colimits, which are also homotopy colimits as the model structure on C∞dga is combinatorial.

(2) Pushouts diagrams along the map

LFC
∞

dg (R[x]→ R) = ϕ(C∞(R)→ R)

are in K. To see that (a) holds, note that this map is modelled by the generating cofibration C∞(R)→ C∞(R)[ε]
with ∣ε∣ = 1, which is also a cofibration in cdga≥0

R . As cdga≥0
R is left proper, this suffices. Observe that applying

U to this map yields an effective epimorphism (because this can be checked by applying ( )alg), so (b) follows by
unramifiedness.

(3) Pushouts diagrams along the map

LFC
∞

dg (R[εn]→ R) = ϕ(ΣnC∞(R)→ R)

where n ≥ 1 and ∣εn∣ = n are in K. Again, (a) holds because this map is modelled by the generating cofibration
R[εn]→ R[εn, εn+1] and (b) holds because applying U yields an effective epimorphism.

It follows that U preserves the colimits described above, so D ⊂ sC∞ring is stable under filtered colimits and pushouts
along the maps ΣnC∞(R) → R for n ≥ 0. All good R-cell objects in sC∞ring are constructed out of such colimits
from the subcategory N(CartSp)op so proposition 4.1.3.32 shows that we indeed have D = sC∞ring.

Remark 4.1.5.8. In summary, we have very tractable models available for the geometric envelope of TDiff , and
for the category of affine derived manifolds, namely dC∞Aff ≃ C∞Algopafp and dC∞Afffp ≃ C∞Algopfp by taking global
sections and applying the smooth Dold-Kan correspondence.

Proposition 4.1.5.9. The functor sC∞ring → C∞Algnc induced by the right Quillen functor C∞dga≥0 → C∞dga is
fully faithful. Moreover, there is a commuting diagram

C∞Algnc E∞Algnc
R

sC∞ring E∞Algcn
R

τ≥0

( )
alg

τ≥0

( )
alg

in PrR
ω (compactly generated presentable ∞-categories and right adjoint continuous functors between them) which is

τ≥0-left adjointable. The horizontal functors of this diagram are conservative.

Proof. We have a strictly commuting diagram of left derived functors

C∞dgafc cdgafc

C∞dga≥0,fc cdga≥0,fc

between fibrant-cofibrant objects, using the fact that all objects in these model categories are fibrant. All functors
in this diagram preserve weak equivalences, so taking the coherent nerve applying the fibrant replacement functor
in the model category of marked simplicial sets, we obtain a (strictly) commuting diagram of ∞-categories. Each of
these functors admits a right adjoint, and we obtain the desired diagram of ∞-categories commuting up to homotopy
by passing the right adjoints. The unit of the adjunction on the left is an equivalence, so in order for the square to
be τ≥0-left adjointable, it suffices to show that the unit of the adjunction on the right is also an equivalence, which is
clear.

We understand the model structure on C∞dga’s fairly well, so it is easy to compute explicit homotopy colimits
presenting derived (non-transverse) intersections by taking cofibrant replacements.
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Example 4.1.5.10 (Koszul C∞dga’s and derived zero loci of smooth functions). Let f = (f1, . . . , fm) ∶ Rn → Rm be
a smooth function. The derived zero locus dZ(f) of this function can be represented by a finitely presented C∞dga,
the homotopy pushout of the diagram

C∞(Rm) C∞(Rn)

R dZ(f)

ev0

f∗

We can get a nice model for dZ(f) if we replace the map C∞(Rm)→ R with the cofibration C∞(Rm)→ C∞(Rm)[e1, . . . , em],
with ∂ei = xi for xi, 1 ≤ i ≤ m the coordinate functions on Rm. Since all objects in the diagram are cofibrant, the
derived zero locus is modelled by the ordinary pushout of C∞dga’s C∞(Rn)⊗∞C∞(Rm) C

∞(Rm)[e1, . . . , em]. We note
that C∞(Rm) → C∞(Rm)[e1, . . . , em] is surjective in degree 0, so lemma 4.1.5.5 asserts that the derived zero locus
is given by the tensor product C∞(Rn) ⊗C∞(Rm) C

∞(Rm)[e1, . . . , em] of cdga’s. This C∞dga is isomorphic to the
Koszul C∞dga C∞(Rn)[e1, . . . , em] with differential ∂ei = fi, through the map

C∞(Rn)⊗C∞(Rm) C
∞(Rm)[e1, . . . , em]→ C∞(Rn)[e1, . . . , em], h⊗ (g0 +

m

∑
i=1

giei)↦ hf∗(g0) +
m

∑
i=1

hf∗(gi)ei.

Example 4.1.5.11 (Kuranishi C∞dga’s and derived critical loci of smooth functions). This example is largely a
translation to the smooth setting of Vezzosi’s notes on derived critical loci [Vez13]. Let E →M be a finite rank vector
bundle over a manifold M . Generalizing the example above, we would like to find a convenient C∞dga model for the
derived zero locus of some smooth section s ∶M → E. We start by taking a suitable cofibrant replacement of the map
0∗ ∶ C∞(E)→ C∞(M) given by pulling back along the zero section: consider the C∞dga

C∞(E)⊗C∞(M) Γ(Λ●E∨), ∂(f ⊗ t)(x, vx) = f(x, vx)t∣x(vx), x ∈M, v ∈ Ex and t ∈ Γ(Λ●E∨), ∣t∣ = 1

(as we explained in the previous example, it doesn’t matter whether we take a pushout of cdga’s or C∞dga’s here
because the map C∞(M)→ Γ(Λ●E∨) is an isomorphism in degree 0). We claim that the factorization

C∞(E)→ C∞(E)⊗C∞(M) Γ(Λ●E∨)→ C∞(M)

is a cofibration followed by a trivial fibration. Indeed, we note that this factorization is functorial in E so we only
have to check the claim for E a trivial bundle by stability of cofibrations and trivial fibrations under retracts and
the fact that any vector bundle is a retract of a trivial one. In the case of the trivial bundle Rn ×M → M , the
factorization is simply

C∞(M ×Rn)→ C∞(M ×Rn)[e1, . . . , en]→ C∞(M), ∣ei∣ = 1, ∂ei = xi, 1 ≤ i ≤ n.

Note that the first map is a pushout of a coproduct of generating cofibrations (and thus a cofibration), and the second
map is a quasi-isomorphism by lemma 4.1.3.4 and degreewise surjective (and thus a trivial fibration). To compute

the homotopy pushout C∞(M) ⊗∞,L
C∞(E)

C∞(M) of C∞dga’s, it is not enough to replace C∞(E) 0∗→ C∞(M) with

the cofibration above, as the objects in the diagram are not cofibrant. However, since s∗, the pullback along the
zero section, is an effective epimorphism, we may compute the homotopy colimit in cdga≥0

R by unramifiedness. To
compute the homotopy colimit in connective cdga’s, it suffices to replace 0∗ with the cofibration above because the
projective model structure on cdga≤0 is left proper. We conclude that the derived zero locus of the smooth section
s ∶M → E is computed by the ordinary pushout of connective cdga’s

C∞(E) C∞(M)

C∞(E)⊗C∞(M) Γ(Λ●E∨) dZ(s)

s∗

(the vertical map induces an isomorphism in degree 0, so, by the same argument as in the previous example, this is
also the pushout in C∞dga’s) so the derived zero locus is simply the tensor product

dZ(s) = C∞(M)⊗C∞(E) C
∞(E)⊗C∞(M) Γ(Λ●E∨) ≃ Γ(Λ●E∨),

with its obvious structure of a C∞-ring in degree 0. One readily verifies that under this isomorphism, the differential
maps to ∂t = t(s), t ∈ Γ(E∨). We call the C∞dga (Γ(Λ●E∨), ∂t = t(s)) a Kuranishi C∞dga for dZ(s)5. We will later

5While it is customary -mainly in algebraic geometry- to name this complex also after Koszul, we have decided to invoke Kuranishi’s
name since in the study of moduli problems in differential geometry the spaces people consider (in the absence of stacky structures) are
modelled on ‘Kuranishi neighbourhoods’; zero loci of sections of a vector bundle (the so-called ‘obstruction bundle’). The Kuranishi
C∞dga’s we have just introduced are the homotopically correct objects that capture the derived geometry of zero loci of sections of
vector bundles
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see that any affine derived manifold X such that the cotangent complex LX has Tor-amplitude [−1,0] can be realized
as a Kuranishi C∞dga for some finite rank vector bundle E →M .
Specializing to the case where the section s is the differential df ∶ M → T ∨M of a smooth function f ∶ M → R,
we obtain the derived critical locus dCrit(f) = dZ(df) = (Λ●Γ(TM), ∂v = df(v)), which is (−1)-shifted symplec-
tic [Pan+11] (with associated P0-structure the Schouten-Nijenhuis bracket of polyvector fields) and comes with a
canonical Lagrangian fibration dCrit(f)→M [Gra20].

Remark 4.1.5.12. While Koszul C∞dga’s are always cofibrant, Kuranishi C∞dga’s are usually not. For instance,
C∞(R∖{0}) is not cofibrant as a C∞dga, since a lift of an invertible element along a surjection need not be invertible.
However, there is an alternative model for sC∞ring in which this C∞dga’s is cofibrant: there is a localization functor
on C∞dga that carries an object A● to the pushout A● ⊗∞A0

Ã0, where Ã0 is the germ of the zero locus of the zero’th
differential on A. The essential image of this functor admits a model structure right transferred from C∞dga which
is Quillen equivalent to C∞dga [Pri18].

4.1.6 Flatness of C∞-completions and acyclicity of flat ideals

We have seen that resolving effective epimorphisms by morphisms dual to embeddings of graphs and some elementary
properties of smooth functions lead to concrete ways of computing C∞-tensor products A⊗∞B C, at least if one of the
maps involved is an effective epimorphism. This result relates an operation induced by the extra C∞-structure on
our derived rings to the underlying homotopical algebra. In this technical subsection, we take up several other such
problems which arise naturally in derived C∞-geometry and are central to many constructions that follow in this
work. The ideas in this subsection come from a variety of classical results on ideals of C∞-functions due to Whitney,
Lojasiewicz, Malgrange [Mal66] and Tougeron [ Loj59; Mal66; Tou72].
Given a simplicial commutative R-algebra, we may ask for a prescription for computing the homotopy groups of the
free simplicial C∞-ring FC

∞
(A) on A. We will show the following.

Proposition 4.1.6.1. Let A be a simplicial commutative R-algebra, then the unit map A → FC
∞
(A)alg is flat (see

definition 4.1.6.16) and thus induces for all n ≥ 0 an equivalence

πn(A)⊗π0(A) π0(FC
∞
(A)alg) ≃ πn(FC

∞
(A)alg).

In particular, the Beck-Chevalley transformation FC
∞
○in → in○FC

∞
n is an equivalence, where in denotes the inclusions

τ≤nsC
∞ring ⊂ sC∞ring and τ≤nsCringR ⊂ sCringR.

Another obvious question stems from the observation that unramifiedness tells us nothing about the homotopy
groups of the coproduct A⊗∞ B of two simplicial C∞-rings, since the map R→ A is an effective epimorphism if and
only if it is an equivalence. Proposition 4.1.6.1 gives a description of the homotopy groups of A⊗∞B when A and B
lie in the essential image of the functor FC

∞
; indeed, in that case, we have isomorphisms

πn(A⊗∞ B) ≅ πn(A⊗B)⊗π0(A)⊗π0(B) π0(A⊗∞ B)

for all n ≥ 0. It may then seem reasonable to expect that for any pair of simplicial C∞-rings A and B, the canonical
map

πn(A⊗B)⊗π0(A)⊗π0(B) π0(A⊗∞ B)Ð→ πn(A⊗∞ B) (4.5)

is an isomorphism. This assertion however is equivalent to an open problem in differential geometry.

Proposition 4.1.6.2. (1) The following are equivalent.

(a) For any m,n ∈ Z≥1, the map C∞(Rn) ⊗C∞(Rm) → C∞(Rn+m) induced by the projections Rn+m → Rn and
Rn+m → Rm onto the first n coordinates and the last m coordinates respectively is a flat map of commutative
R-algebras.

(b) For any pair of simplicial C∞-rings A and B, the canonical map

Aalg ⊗Balg Ð→ (A⊗∞ B)alg

is a flat map of simplicial commutative R-algebras.

(2) The following are equivalent.

(a) For any m,n ∈ Z≥1, the map C∞(Rn) → C∞(Rn+m) induced by the projection Rn+m → Rn onto the first n
coordinates is a flat map of commutative R-algebras.

(b) For any simplicial C∞-ring A and any m ∈ Z≥1, the map Aalg → (C∞(Rm)⊗∞A)alg is a flat map of simplicial
commutative R-algebras.
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(c) For any simplicial C∞-ring A and any m ∈ Z≥1, the map Aalg → (C∞(Rm) ⊗∞ A)alg is strong, that is, the
canonical map

πn(A)⊗π0(A) π0(A⊗∞ C∞(Rm))Ð→ πn(A⊗∞ C∞(Rn))
is an isomorphism for all n ≥ 0.

(d) For any m ∈ Z≥1 and any finitely generated ideal I ⊂ C∞(Rn), the first homotopy group of the coproduct
C∞(Rn)/I ⊗∞ C∞(Rm) taken in sC∞ring vanishes.

Clearly, the equivalent conditions of (1) imply those of (2). If we could establish the veracity of the conditions in
proposition 4.1.6.4, we would also decide the question of left properness of the model category structure on C∞dga in
the positive. Unfortunately, we haven’t so far been able to prove that either of the conditions in this proposition are
true, or provide a counterexample. Instead, we offer the following criterion for when the maps (4.5) are isomorphisms.

Proposition 4.1.6.3. Let A and B be simplicial C∞-rings and suppose that the coproduct π0(A)⊗∞ π0(B) taken in
sC∞ring is 0-truncated. Then the canonical map Aalg ⊗Balg → (A⊗∞ B)alg is strong.

We will prove this proposition in the next chapter, using obstruction theory along the Postnikov tower. In view
of this result, it will be useful to identify some class of C∞-rings whose coproduct in sC∞ring is 0-truncated.

Proposition 4.1.6.4. Let X ⊂ Rn be a closed subset. Let I ⊂ C∞(Rm) be an ideal that is either principal or of the
form m∞

Y for some closed subset Y ⊂ Rm. Then the unit map of the 0’th truncation functor

C∞(Rn)/m∞
X ⊗∞ C∞(Rm)/I Ð→ τ≤0(C∞(Rn)/m∞

X ⊗∞ C∞(Rm)/I)

is an equivalence.

Propositions 4.1.6.1 and 4.1.6.4 are not quite obvious and will require some nontrivial facts about real analytic
functions and Whitney functions. We will momentarily prove proposition 4.1.6.1 and give a proof of proposition
4.1.6.4 at the end of this subsection. First, we record a few consequences of these results. Note that proposition
4.1.6.4 asserts in particular that the theorem of Reyes-Van Quê remains true at the derived level.

Corollary 4.1.6.5. The class of discrete simplicial C∞-rings of Whitney functions is closed under coproducts in
sC∞ring: let X ⊂ Rn and Y ⊂ Rm be closed subsets, and let C∞(X;Rn) and C∞(Y ;Rm) be the discrete simplicial
C∞-rings of Whitney functions on X and Y respectively, then the canonical map

C∞(X;Rn)⊗∞ C∞(Y ;Rm)Ð→ C∞(X × Y ;Rn+m)

is an equivalence, where the tensor product is the coproduct of simplicial C∞-rings.

As it turns out, this is an essential result for the development of derived logarithmic C∞-geometry and derived
C∞-geometry with corners. In particular, proposition 4.1.6.4 guarantees that the notion of the ‘subspace of positive
elements’ of a simplicial C∞-ring is well behaved (it is canonically endowed with the structure of homotopy coherent
commutative monoid, or a Γ-object in the sense of Segal, as we will show later). Recall that a category CartSpc
of Cartesian spaces with corners has as objects the Cartesian spaces with corners Rn × Rk≥0 and as morphisms the
interior b-maps. Let X ⊂ Rn and Y ⊂ Rm correspond to closed quadrants of the form Rk ×Rn−k≥0 and Rl ×Rm−l

≥0 , then
proposition 4.1.6.4 implies that the composition

N(CartSpc)
jÐ→ sC∞ringc

ι∗cÐ→ sC∞ring

preserves coproducts, where ιc is the fully faithful morphism of Lawvere theories CartSp → CartSpc. As ι∗c is a sifted
colimit completion of ιc, we find that ι∗c preserves all small colimits which then implies the following result.

Corollary 4.1.6.6. Let sC∞ringpc be an ∞-category of simplicial C∞-ring with pre-corners, and consider the ad-
junction

sC∞ring sC∞ringpc
ιc!

ι∗c

Then the functor ι∗c carrying a C∞-ring with pre-corners to the underlying C∞-ring is a left adjoint. The right adjoint
is given by the functor ιc∗ ∶ sC∞ring → sC∞ringpc obtained by adjunction from the functor

CartSpopc × sC∞ring sC∞ringoppc × sC∞ring sC∞ringop × sC∞ring Sjop×id ι∗c×id HomsC∞ring
(4.6)

which is on objects given by the formula

ιc∗(A)(Rk ×Rn−k≥0 ) = HomsC∞ring(C∞(Rk ×Rn−k≥0 ),A).
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Proof. The existence of a right adjoint to ι∗c is a consequence of the adjoint functor theorem. The composition

PShv(CartSpc)
L→ sC∞ringpc

ι∗c→ sC∞ring where L is a left adjoint to the inclusion preserves colimits and is therefore
a left Kan extension of i∗c ○ jop ∶ CartSpopc → sC∞ring along the Yoneda embedding, and we can identify the functor
obtained via adjunction from (4.6) as a right adjoint to ι∗c ○L. Since this right adjoint factors through sC∞ringpc by
corollary 4.1.6.5, it is also right adjoint to i∗c .

This corollary admits a somewhat surprising corollary itself.

Proposition 4.1.6.7. The functor ι∗c ∶ sC∞ringpc → sC∞ring is a presentable fibration.

Proof. Clearly, ι∗c is a categorical fibration, so it suffices to show that ι∗c is a Cartesian and coCartesian fibration with
presentable fibres. We use the following formal argument, the proof of which is easy and left to the reader.

(∗) Let p ∶ C → D be an inner fibration among ∞-categories, and suppose that C admits pushouts and that p
preserves pushouts, and that p admits a fully faithful left adjoint. Then p is a coCartesian fibration and an
edge e ∶ ∆1 → C is p-coCartesian if and only if the diagram ∆1 ×∆1 → C obtained from e by applying the counit
transformation is a pushout.

Applying (∗) and its dual to ι∗c , we deduce that ι∗c is a Cartesian and coCartesian fibration. For the assertion
regarding presentability, we first note that the fibres of ι∗c are accessible as the ∞-category of accessible ∞-categories
and accessible functors between them is stable under pullbacks in Ĉat∞ (note that the functor ∆0 ↪ C classifying
some object C ∈ C preserves colimits of weakly contractible diagrams for any ∞-category C; in particular, this functor
is κ-accessible for any regular cardinal κ). The presentability of the fibres now follows from the following formal
argument.

(∗∗) Let p ∶ C → D be a coCartesian fibration among ∞-categories and K a simplicial set. Let f ∶ K → CD be a
diagram in the fibre over some object D ∈ D. Let iD ∶ CD ⊂ C denote the inclusion, and suppose that the induced
diagram iDf ∶ K → C admits a colimit and that p preserves the colimit of iDf . Then the diagram f admits a
colimit.

We prove (∗∗). Let C denote a colimit of iDf and denote D′ = p(C) so that we have a map D → D′ for each k ∈K.
Pick one such map e ∶D →D′. We have a diagram

K C

K⊳ D

iDf

wherein the diagonal carries the cone point to C. Since the lower horizontal functor K⊳ → D is a colimit diagram,
the square is also a p-colimit diagram. It follows from [Lur17b], prop. 4.3.1.9 that the object C is a p-colimit of
the diagram e!f ∶ K → CD′ ⊂ C. Since D′ is a colimit of the constant diagram with domain K on D, there is a map
e′ ∶D′ →D such that e′ ○ e ≃ idD, so using [Lur17b], prop. 4.3.1.10, we deduce that e′!(C) is a colimit of the diagram
e′!e!f ≃ f ∶K → CD.

We give one final application of proposition 4.1.6.4, answering another question about the interaction of C∞-
geometry and the categorical structure of sC∞ring. Corollary 4.1.6.5 asserts that the class of C∞-rings of Whitney
functions is closed under coproducts; we may also ask whether the class of C∞-rings of Whitney functions on closed
sets in a given Rn is closed under intersections. We verify this is the case for a class of self-intersections.

Proposition 4.1.6.8. Let {Xi ⊂ R}i∈I be a finite collection of closed subsets and let X = ∏iXi ⊂ Rn be the product
as a closed subset of Rn. Let p ∶ C∞(Rn)→ C∞(X;Rn) be the quotient map onto the discrete simplicial C∞-rings of
Whitney functions on X. Then the commuting diagram

C∞(Rn) C∞(X;Rn)

C∞(X;Rn) C∞(X;Rn)

p

p

id

id

is a pushout in the ∞-category sC∞ring.

Remark 4.1.6.9. It follows from unramifiedness that the diagram above is also a pushout in sCringR.

For the proof, we recall the following notion.
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Definition 4.1.6.10. Let X,Y ⊂ Rn be closed subsets. The sets X and Y are regularly situated if either X ∩ Y = ∅
or for each x0 ⊂X ∩Y , there is a neighbourhood x0 ∈ V in Rn for which there are constants C ∈ R>0 and λ ∈ R≥0 such
that for each x ∈ V ∩X, we have the inequality

Cd(x,X ∩ Y )λ ≤ d(x,Y ),

where d( , ) denotes the Euclidean distance on Rn.

Example 4.1.6.11. If X ⊂ Y , then X and Y are regularly situated. In particular, two copies of the same set X are
regularly situated.

Example 4.1.6.12. Let X,Y ⊂ Rn be subanalytic closed sets, then X and Y are regularly situated. This is proven
by Bierstone-Milman [BM88].

In the next chapter, we will give a characterization of the condition of being regularly situated for X,Y ⊂ Rn in
terms of the derived intersection of the locally finitely generated C∞-schemes (X,C∞

(X;Rn)) and (Y,C∞
(Y ;Rn)).

Definition 4.1.6.13. Given a closed set X ⊂ Rn, the spaceM(X;Rn) of smooth functions f ∶ Rn ∖X → R that have
the property that for any compact K ⊂ Rn and any multi-index k ∈ Zn≥0, there exist constants C,α ∈ R>0 such that
for each x ∈K ∖K ∩X the inequality

∣Dk(f)(x)∣ ≤ Cd(x,X)−α

is satisfied, is the space of multipliers for the ideal m∞
X : for any ϕ ∈M(X;Rn) and any f ∈ m∞

X , the function fϕ
defined on Rn ∖X uniquely extends to a C∞-function (still denoted fϕ) on Rn that is flat on X.

We will require the following result.

Lemma 4.1.6.14 (Tougeron’s Multiplier Lemma). Let X,Y ⊂ Rn be closed and regularly situated, then there exists
a multiplier ϕ for the ideal m∞

X∩Y that equals 0 in a neighbourhood of X ∖X ∩ Y and equals 1 in a neighbourhood of
Y ∖X ∩ Y .

Proof. Lemme 4.5 of [Tou72].

Proof of proposition 4.1.6.8. Applying corollary 4.1.6.5, we may assume that n = 1. It is obvious that the diagram in
the statement of the proposition is a pushout after applying the 0’th truncation functor τ≤0, so it suffices to argue that
the higher homotopy groups vanish. Since sC∞ring is a coCartesian symmetric monoidal ∞-category, the pushout
C∞(X;R) ⊗∞C∞(R) C

∞(X;R) is a colimit of the two sided Bar construction BarC∞(R)(C∞(X;R),C∞(X;R))●, the
simplicial object

. . . C∞(X)⊗∞ C∞(R)⊗
∞2 ⊗∞ C∞(X) C∞(X)⊗∞ C∞(R)⊗∞ C∞(X) C∞(X)⊗∞ C∞(X).

It follows from corollary 4.1.6.5 that BarC∞(R)(C∞(X;R),C∞(X;R))k ≃ C∞(X × Rk × X) and the face maps are

induced by the various inclusions of small diagonals X×Rm×X ↪X×Rk×X for m < k. As geometric realizations are
sifted, the colimit ∣BarC∞(R)(C∞(X;R),C∞(X;R))●∣ may be computed in the ∞-category ModR, where it becomes a
geometric realization of a simplicial object in the heart. By the stable Dold-Kan correspondence, the homotopy groups
of ∣BarC∞(R)(C∞(X;R),C∞(X;R))●∣ as R-vector spaces are computed by the spectral sequence associated to the fil-
tered object determined by BarC∞(R)(C∞(X;R),C∞(X;R))● now viewed as a simplicial object in R-vector spaces,
which collapses at the first page to the unnormalized chain complex C(BarC∞(R)(C∞(X;R),C∞(X;R)))●. It thus suf-
fices to show that the higher homology groups of the normalized chain complex N(BarC∞(R)(C∞(X;R),C∞(X;R)))●
vanish. This will be accomplished by constructing for each cycle in degrees ≥ 1 an explicit boundary. Unraveling the
definitions, we need to show the following.

(∗) Let k ≥ 1 and let F (x, z1, . . . , zk, y) be a Whitney function on X ×Rk×X such that for all 1 < j ≤ k, the Whitney
function F (x, z1, . . . , zj , zj , . . . , zk−1, y) on X ×Rk−1 ×X vanishes (if j = k, then we have F (x, z1, . . . , zk−1, y, y)
i.e. we restrict the penultimate coordinate to X). If F (x,x, z2, . . . , zk, z) also vanishes, then there exists a
Whitney function F̂ (x, z1, . . . , zk+1, y) on X × Rk+1 ×X such that for all 1 ≤ j ≤ k + 1, the Whitney function
F̂ (x, z1, . . . , zj , zj , . . . , zk, y) vanishes and F̂ (x,x, z2, . . . , zk+1, y) = F .

Let F be a cycle of degree k and let ∆i ⊂ R ×Rk ×R for 0 ≤ i ≤ k denote the small diagonal

∆i ∶= {(x0, z1, . . . , zk, zk+1) ∈ R ×Rk ×R; zi = zi+1}.

Let f be any representative of F . Since F lies in the joint kernel of all face maps di for 0 < i ≤ k, the restriction f ∣∆i
is flat on X × Rk−1 ×X for all 0 < i ≤ k, and since the differential of the normalized chain is the 0’th face maps, we
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see that f ∣∆0 is also flat on X ×Rk−1 ×X. The inclusion ∆0 ⊂ R ×Rk ×R admits a smooth deformation retraction r
defined by

(z0, z1, . . . , zk, zk+1)z→ (1/2(z0 + z1), z2, . . . , zk, zk+1).
Pulling back functions along the composition

R ×Rk ×R rÐ→∆0 ↪Ð→ R ×Rk ×R

yields an operator r∗( )∣∆0 ∶ C∞(R ×Rk ×R) → C∞(R ×Rk ×R) that we denote ( )∆0 . By the vanishing properties
of F , the function f∆0 is flat on the closed subset

(X ×Rk ×X) ∩∆0 ≅X ×Rk−1 ×X.

Now we claim that the sets ∆0 and X × Rk ×X are regularly situated: indeed, for any p = (z0, z1, . . . , zk, zk+1), the
distance d(p,∆0) is 1/

√
2d(z0, z1) but if p ∈ X × Rk ×X, then d(p, (X × Rk ×X) ∩ ∆0) is also 1/

√
2d(z0, z1) which

immediately implies that two sets in question are regularly situated. Tougeron’s multiplier lemma provides a function
ϕ on R×Rk ×R∖ (X ×Rk ×X)∩∆0 that is 1 in a neighbourhood of ∆0 ∖ (X ×Rk ×X)∩∆0 and 0 in a neighbourhood
of X ×Rk ×X ∖ (X ×Rk ×X)∩∆0. The function ϕf∆0 is then a C∞ function on R×Rk ×R that is flat on X ×Rk ×X
and equals f on ∆0. Now consider the function f̃ ∶= f − ϕf∆0 , then the Whitney jet of f̃ is F and f̃ vanishes along
∆0. It follows from Hadamard’s lemma that f̃ may be written as

f̃ = (z0 − z1)g(z0, z1 . . . , zk, zk+1).

It follows from the construction of the Hadamard quotient g that g∣∆i is flat on X ×Rk−1 ×X for i ≥ 1. Now define
the function f̂ ∶ R ×Rk+1 ×R→ R via the formula

(z0, z1, . . . , zk+1, zk+2)z→ (z1 − z2)g(z0, z2, z3, . . . , zk+1, zk+2),

then one readily verifies that the Whitney jet of f̂ at X ×Rk+1 ×X is a cycle of degree k + 1 the boundary of which
is F .

Remark 4.1.6.15. In the next chapter, proposition 4.1.6.8 will play a crucial role in the computation of the cotangent
complex of C∞-rings of Whitney functions of the form C∞(X;Rn); it will follow rather trivially that the cotangent
complex of a simplicial C∞-ring of the form C∞(X;Rn) for X = ∏iXi with Xi ⊂ R closed (such as rings of smooth
functions on closed quadrants of the form C∞(Rn × Rk≥0)) is free on n generators. More precisely, the relative
cotangent complex of the map C∞(Rn)→ C∞(X;Rn) vanishes, which should be viewed as an articulation of the idea
that seen through the lens of deformation theory, the simplicial C∞-rings C∞(X;Rn) and C∞(Rn) are equivalent.
We will give a number of consequences of this result in the next chapter; for instance, we will deduce that the map
Hom(C∞(X;R),A) → Hom(C∞(R),A) of spaces is an inclusion of connected components, and if a map A → B of
simplicial C∞-rings exhibits B as an m-truncation of A, then the induced map

HomsC∞ring(C∞(X;Rn),A)Ð→ HomsC∞ring(C∞(X;Rn),B)

exhibits an m-truncation of spaces. Proofs will be provided in the next chapter. In fact, there unfortunately are
several instances in this chapter where we use that C∞(X;Rn) has a free cotangent complex. Since a detailed
discussion of the cotangent complex is not in order at this point, we ask the reader to tolerate a small amount of
nonlinear logical interdependency and recognize that no circular reasoning occurs.

We proceed with the proof of proposition 4.1.6.1. Recall the following definition.

Definition 4.1.6.16. A morphism f ∶ A → B of simplicial commutative R-algebras is flat (respectively faithfully
flat) if π0(f) is a flat (respectively faithfully flat) morphism of commutative R-algebras and f is strong. A morphism
f ∶ A→ B of simplicial C∞-rings is flat (respectively faithfully flat) if falg is flat (respectively faithfully flat).

We start by recording the following permanence properties of flat morphisms.

Proposition 4.1.6.17. Let Flat ⊂ Fun(∆1, sCringR) be the full subcategory spanned by flat morphisms. Then the
following hold.

(1) The full subcategory Flat ⊂ Fun(∆1, sCringR) is stable under composition.

(2) If f ∶ A→ B is flat, and g ∶ A→ C is any morphism in sCringR then the base change B → A⊗B C is flat.

(3) Flat ⊂ Fun(∆1, sCringR) is stable under filtered colimits.

(4) Flat ⊂ Fun(∆1, sCringR) is stable under retracts.
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(5) Flat ⊂ Fun(∆1, sCringR) is stable under finite products.

(6) If A is a coherent simplicial R-algebra, then the ∞-category FlatA is stable under arbitrary small products.

Proof. All of these assertions are standard. For instance, in the case of (3), we let f ∶ K → Fun(∆1, sCringR) be a
filtered diagram of flat morphisms. Let f ∶K⊳ → sCringR be a colimit diagram of the composition

K
fÐ→ Fun(∆1, sCringR)

ev0Ð→ sCringR,

then we have a commuting square

K Fun(∆1, sCringR)

K⊳ sCringR

f

ev0

f

of ∞-categories and it is easy to see that an ev0-colimit of this diagram is a colimit of f . All the fibres of the
coCartesian fibration ev0 admit colimits, and for each map g ∶ A → B, the coCartesian pushforward functor g! can
be identified with the base change functor along g which preserves colimits, so f admits an ev0-colimit. We may
compute this colimit by taking a coCartesian transformation F ∶ K ×∆1 → Fun(∆1, sCringR) such that F ∣K×{0} = f
and ev0 ○ F ∣K×{1} is constant on f(−∞), and taking the colimit of F ∣K×{1} in (sCringR)f(−∞)/

. Since base change

preserves flatness, F ∣K×{1} is a filtered diagram of flat morphisms, whose colimit may be computed in Modf(−∞)
;

it follows that this colimit is flat. Now (4) follows from (3) since the ∞-category Idem classifying idempotents is
filtered.

We have need of the following classical result of Malgrange.

Proposition 4.1.6.18 (Malgrange [Mal66]). Let {f1, . . . , fn} be a collection of real analytic functions on Rn, then
the finitely generated ideal (f1, . . . , fn) is closed.

As an immediate corollary, we have the following.

Corollary 4.1.6.19. Let x ∈ Rn, then the local morphism of local R-algebras Oan
x → C∞(Rn)x is faithfully flat.

Proposition 4.1.6.20. For every integer n ≥ 0, the map of R-algebras

R[x1, . . . , xn]Ð→ C∞(Rn)

determined by the n coordinate functions is flat.

Proof. Clearly, we may suppose that n ≥ 1. Consider the composition

ϕ ∶ R[x1, . . . , xn]Ð→ C∞(Rn)Ð→ ∏
x∈Rn

C∞(Rn)x

where the second map is induced by the quotient maps C∞(Rn)→ C∞(Rn)/mgx ≃ C∞(Rn)x sending a smooth function
to its germ at x as x ranges over Rn. We now prove the proposition under the assumption that the map ϕ is flat.
Let I be an ideal of R[x1, . . . , xn], then we should show that the top horizontal map in the commuting diagram

I ⊗R[x1,...,xn] C
∞(Rn) C∞(Rn)

I ⊗R[x1,...,xn]∏x∈Rn C
∞(Rn)x ∏x∈Rn C

∞(Rn)x

is injective. By assumption, the lower horizontal map is injective, so it suffices to show that the left vertical map is
injective. Unwinding the definitions, we observe that it suffices to show the following.

(∗) Let {Pi}i∈J and {fi}i∈J be finite collections of real polynomials in n variables and smooth functions in n variables
respectively. Suppose that there exist a finite index set K together with a K-indexed collection {Qik} of real
polynomials in n variables for each i ∈ J such that the following hold.

(a) ∑iQikPi = 0 for each k ∈K.

(b) For each x ∈ Rn there exists an open neighbourhood x ∈ Ux and a K-indexed collection {gxk} of smooth
functions on Ux such that fi = ∑k gxkQik on Ux.

Then there exists a K-indexed collection {gk} of smooth functions on Rn such that fi = ∑k gkQik.
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To prove (∗), let {ψx}x∈Rn be a partition of unity subordinate to the cover {Ux → Rn}x∈Rn , and define gk ∶=
∑x∈Rn ψxgxk , then it is easy to see that fi = ∑k gkQik holds for all i ∈ J . We are left to prove that ϕ is a flat morphism.
Since R[x1, . . . , xn] is Noetherian hence coherent, (6) of proposition 4.1.6.17 guarantees that it suffices to show that
for each x ∈ Rn, the map R[x1, . . . , x1] → C∞(Rn)x is flat. As localizations are flat, we only have to show that the
local homomorphism Oreg(Rn)x → C∞(Rn)x is flat, where Oreg(Rn)x is the local ring of regular functions at x. We
have a factorization

Oreg(Rn)x Ð→ Oan(Rn)x Ð→ C∞(Rn)x
of local ring homomorphisms where Oan(Rn)x is the local ring of real analytic functions on Rn at x. The first map is
a local morphism between Noetherian local rings that becomes an equivalence after formal completion at the maximal
ideals and is thus faithfully flat, and the second map is faithfully flat by corollary 4.1.6.19.

Remark 4.1.6.21. We will use corollary 4.1.6.19 again in the next section, to prove the more powerful result that the
unit of the relative spectrum functor sending a derived real analytic space to the corresponding derived C∞-scheme
is faithfully flat.

Remark 4.1.6.22. In the proof of proposition 4.1.6.20 we use that for every x ∈ Rn the map Oreg
x → C∞(Rn)x

is faithfully flat; beware however that the map R[x1, . . . , xn] → C∞(Rn) is not faithfully flat because R is not
algebraically closed. The maximal ideals of R[x1, . . . , xn] with residue field C, such as (x2

1 + 1, x2, . . . , xn), have the
property that multiplying such an ideal with the module C∞(Rn) recovers all of C∞(Rn) and therefore do not lie in
the image of the induced map on maximal ideal spectra.

The following proposition is yet another consequence of the resolution theorem for effective epimorphism.

Proposition 4.1.6.23. Let f ∶ A → B be an effective epimorphism of simplicial commutative R-algebras, then the
natural diagram

A B

FC
∞
(A)alg FC

∞
(B)alg

is a pushout in sCringR.

Proof. Applying the unit transformation sCringR ×∆1 → sCringR of the adjunction (FC
∞
⊣ ( )alg) yields a functor

Fun(∆1, sCringR)Ð→ Fun(∆1 ×∆1, sCringR)

carrying a map A→ B to the diagram

A B

FC
∞
(A)alg FC

∞
(B)alg.

As the comonad FC
∞
( )alg preserves sifted colimits, this functor preserves sifted colimits. Since the full subcategory

of Fun(∆1 ×∆1, sCringR) spanned by pushout diagrams is stable under colimits, proposition 4.1.2.3 asserts that we
may suppose that A→ B is a graph inclusion. We wish to show that the diagram

R[x1, . . . , xn, xn+1, . . . , xn+m] R[x1, . . . , xn]

C∞(Rn+m) C∞(Rn)

is a pushout in sCringR. It is not hard to see that as in the proof of lemma 4.1.3.5, an inductive argument reduces
us to the case m = 1. Then the horizontal maps in the diagram above are induced by the inclusion of the graph of a
polynomial P (x) ∶ Rn → R in n variables. The R-algebra R[x1, . . . , xn] has a projective resolution R[x1, . . . , xn, xn+1, ε]
with ∂ε = xn+1 − P (x) as a R[x1, . . . , xn, xn+1]-module, so using that the torsion spectral sequence of the pushout
collapses at the second page, we see that the homotopy groups of the pushout are given by the homology of the
complex C∞(Rn+1)[ε]. Lemma 4.1.3.4 asserts that the homology is indeed C∞(Rn), concentrated in degree zero.

Corollary 4.1.6.24. For every simplicial commutative R-algebra A, the unit map A→ FC
∞
(A)alg of the free C∞-ring

monad is flat.
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Proof. The class of simplicial commutative R-algebras which satisfies the conclusion of the corollary is stable under
filtered colimits, so we may suppose that A is of finite type over R. Invoking proposition 4.1.1.18, we can find an
effective epimorphism R[x1, . . . , xn]→ A, so that proposition 4.1.6.23 provides a pushout diagram

R[x1, . . . , xn] A

C∞(Rn) FC
∞
(A)alg

of simplicial commutative R-algebras. Since flatness is stable under base change, we are done by proposition 4.1.6.20.

Corollary 4.1.6.25. For every simplicial commutative ring A and for every maximal ideal m in π0(A) with residue

field R, the localization of the unit map Am → FC
∞
(A)alg

m is faithfully flat.

We proceed with the proof of proposition 4.1.6.2. We will need a prelimenary result that is of independent interest,
relating pushouts of simplicial C∞-rings with pushouts of simplicial commutative R-algebras.

Proposition 4.1.6.26. Let α ∶ Λ2
0 ×∆1 → sC∞ring be natural transformation from a diagram

A←ÐX Ð→ B

to a diagram
C ←Ð Y Ð→D.

Suppose that for each i ∈ Λ2
0, the map α∣{i}×∆1 ∶ ∆1 → sC∞ring is an effective epimorphism, then the natural diagram

Aalg ⊗Xalg Balg Calg ⊗Y alg Dalg

(A⊗∞X B)alg (C ⊗∞Y D)alg

in sCringR is a pushout.

Proof. In a coCartesian symmetric monoidal ∞-category C∐ that admits geometric realizations of simplicial objects,
the pushout X∐Y Z is a colimit of the two sided Bar construction BarY (X,Z)●. In simplicial degree n, the Bar
construction is given by

X∐Y ∐ . . .∐Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−times

∐Z

so in order to prove that the diagram given in the proposition is a pushout, it suffices to prove that diagrams of the
form

Aalg ⊗Xalg ⊗ . . .⊗Xalg ⊗Balg Calg ⊗ Y alg ⊗ . . .⊗ Y alg ⊗Dalg

(A⊗∞ X ⊗∞ . . .⊗∞ X ⊗∞ B)alg (C ⊗∞ Y ⊗∞ . . .⊗∞ Y ⊗∞ D)alg

are pushouts. With an easy inductive argument we may reduce to the case where the coproducts are binary, that
is, we may assume that X = Y = R. Denote the effective epimorphisms by α ∶ A → C and β ∶ B → D. Consider the
composition

φ ∶ Fun(∆1, sC∞ring) × {β}Ð→ Fun(∂∆1,Fun(∆1, sC∞ring))Ð→ Fun((∂∆1)⊳,Fun(∆1, sC∞ring)),

where the second functor is a functor taking colimits, a section of the trivial fibration provided by [Lur17b], prop.
4.3.2.15. Now consider the restriction functor

Fun(∂∆1 ⋆∆1,Fun(∆1, sCringR))Ð→ Fun((∂∆1)⊳,Fun(∆1, sCringR))

induced by the full subcategory inclusion i ∶ (∂∆1)⊳ = ∂∆1⋆∆{1} ⊂ ∂∆1⋆∆1. Let Fun′(∂∆1⋆∆1,Fun(∆1, sCringR)) ⊂
Fun(∂∆1 ⋆ ∆1,Fun(∆1, sCringR)) be the full subcategory spanned by functors which are left Kan extensions along
i. The restriction map Fun′(∂∆1 ⋆∆1,Fun(∆1, sCringR)) → Fun((∂∆1)⊳,Fun(∆1, sCringR)) is a trivial fibration by
[Lur17b], prop. 4.3.2.15. Choosing a section of this fibration and composing with the restriction ∆1 ⊂ ∂∆1⋆∆1 yields
a functor

χ ∶ Fun((∂∆1)⊳,Fun(∆1, sCringR))Ð→ Fun(∆1,Fun(∆1, sCringR)) ≅ Fun(∆1 ×∆1, sCringR).
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Composing ( )alg ○ φ with χ then gives a functor

Fun(∆1, sC∞ring)Ð→ Fun(∆1 ×∆1, sCringR)

which carries a map f ∶ R → S of simplicial C∞-rings to the diagram

Ralg ⊗Balg Salg ⊗Dalg

(R⊗∞ B)alg (S ⊗∞ D)alg

falg
⊗βalg

(f⊗∞β)alg

Note that this functor preserves sifted colimits and that the collection of pushout diagrams is closed under colimits in
Fun(∆1 ×∆1, sCringR). Invoking proposition 4.1.2.3, we see that it is sufficient to argue that the natural commuting
diagram

C∞(Rp+q)⊗Balg C∞(Rp)⊗Dalg

(C∞(Rp+q)⊗∞ B)alg (C∞(Rp)⊗∞ D)alg

is a pushout for every effective epimorphism C∞(Rp+q)→ C∞(Rp) induced by a smooth map Rp → Rq. Now we apply
this argument again to the effective epimorphism B →D to reduce to the case

C∞(Rp+q)⊗C∞(Rk+l) C∞(Rp)⊗C∞(Rk)

C∞(Rp+q+k+l) C∞(Rp+k)

By induction, we may assume that q = l = 1. The upper horizontal map is then induced by taking graphs of functions
f ∶ Rp → R and g ∶ Rk → R. Applying lemma 4.1.3.4, C∞(Rp) has a resolution C∞(Rp+1)[z1] as a C∞(Rp+1)-module,
and similarly C∞(Rk) has a resolution C∞(Rk+1)[z2] as a C∞(Rk+1)-module. Computing the torsion groups of the
pushout using this resolution shows that the homotopy groups of the pushout are given by the homology of the
complex C∞(Rp+k+1+1)[z1, z2], which is by lemma 4.1.3.4 isomorphic to the algebra of functions on the graph of the
function f × g ∶ Rp+k → R1+1, concentrated in degree zero.

Proof of proposition 4.1.6.2. We prove (1). Note that (b) ⇒ (a) is obvious. For the other direction, observe that
the functor sC∞ring × sC∞ring → Fun(∆1, sCringR) carrying a pair (A,B) to the map Aalg ⊗ Balg → (A ⊗∞ B)alg

preserves sifted colimits and that flat maps are stable under filtered colimits, so we may assume that both A and
B are finitely generated. Choose effective epimorphism C∞(Rn) → A and C∞(Rm) → B, then proposition 4.1.6.26
provides a pushout diagram

C∞(Rn)⊗C∞(Rm) Aalg ⊗Balg

C∞(Rn+m) (A⊗∞ B)alg

and we conclude by stability of flat morphisms under base change. We prove (2). For (a)⇒ (b), we repeat the proof
of (1) with C∞(Rm) in place of B. (b) ⇒ (c) and (c) ⇒ (d) are obvious. For (d) ⇒ (a), we note that if R is a
commutative ring and M is a (discrete) R-module, then M is flat if and only if TorR1 (M,R/I) ≅ 0 for every finitely
generated ideal I ⊂ R. Indeed, for any ideal I ⊂ R, we have a fibre sequence I → R → R/I of discrete R-modules, so
using the long exact sequence associated to the fibre sequence

I ⊗RM Ð→M Ð→ R/I ⊗RM

yields an exact sequence
0Ð→ TorR1 (M,R/I)Ð→ I ⊗RM Ð→M Ð→ R/I ⊗RM

and the vanishing of TorR1 (M,R/I) is equivalent to the injectivity of the map I ⊗RM → M . Applying this to the
C∞(Rn)-module C∞(Rn+m) for n,m ≥ 1, we deduce that in order to establish (1), it suffices to show that the derived
tensor product C∞(Rn+m)⊗C∞(Rn) C

∞(Rn)/I has vanishing first homotopy group for every finitely generated ideal
I. We can identify this derived tensor product with the pushout

C∞(Rn) C∞(Rn)/I

C∞(Rn+m) C∞(Rn+m)⊗C∞(Rn) C
∞(Rn)/I
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of simplicial commutative R-algebras. Using proposition 4.1.6.26, this pushout is equivalent to the underlying sim-
plicial commutative R-algebra of the coproduct C∞(Rn)/I ⊗∞C∞(Rm) of simplicial C∞-rings, which we assume has
vanishing first homotopy group.

We now turn to the proof of proposition 4.1.6.4. In the absence of a general flatness result, we proceed by
constructing, for certain ideals of C∞(Rn), small explicit resolutions that are acyclic for the base change induced
by a projection Rn+m → Rn onto the first n coordinates. The remainder of the results in this section hinges on the
following lemma, due to Tougeron (for a single manifold), and extended to the form below by Reyes-van Quê (who
attribute this generalization to Calderón).

Lemma 4.1.6.27 (Tougeron’s Flat Function Lemma). Let X ⊂M and Y ⊂ N be closed subsets of manifolds M and
N , and let Let I be a countable set and let {φi}i∈I be a set of functions on M ×N that lie in m∞

X×Y , that is, functions
that are flat on X × Y . Then there exists a characteristic function ϕX for M ∖X and a characteristic function ϕY
for N ∖ Y that are flat on X and Y respectively such that the functions {φi}i∈I are divisible by ϕX + ϕY .

Proof. See [Tou72] or [QR82].

The following lemma shows that flat ideals in C∞-rings of smooth functions on manifolds behave for many purposes
just as principal ideals.

Lemma 4.1.6.28. Let M and N be manifolds and let X ⊂M be a closed subset in a manifold. Denote by I ∶= m∞
X×N

the closed ideal of functions flat on X×N viewed as a C∞(M×N)-module, and let K ⊂ Subfg(I) be the full subcategory
of the filtered poset of finitely generated ideals contained in I spanned by principal ideals contained in I generated by
functions depending only on coordinates in M . Then K is filtered and the inclusion K ⊂ Subfg(I) is left cofinal.

Remark 4.1.6.29. As the C∞(M ×N)-module m∞
X×N is a colimit of the diagram Subfg(I), it follows that for every

closed X ⊂M , the diagram K⊳ →ModC∞(M×N) sending the cone to m∞
X×N is a colimit diagram.

Proof. We prove that the inclusion is left cofinal. According to [Lur17b], thm. 4.1.3.1, we need to show that the
poset KJ/ ∶=K ×Subfg(I) Subfg(I)J/ is weakly contractible for every finitely generated ideal J ⊂ I. It suffices to show
that KJ/ is filtered. Let {f1, . . . , fn} be a collection of functions that are flat on X generating the ideal J , then it
follows from Tougeron’s flat function lemma that there exists a function ϕX flat on X and strictly positive outside
X on M that divides each fi as a function on M × N , so that (f1, . . . , fn) ⊂ (ϕX) ⊂ I, that is, KJ/ is nonempty.

Similarly, if we have a finite collection of functions {ϕjX} such that I ⊂ (ϕjX) for all j, then we apply the flat function
lemma to the collection {ϕjX} to find a function ϕ′X such that (ϕjX) ⊂ (ϕ′X) for all j, so KJ/ is indeed filtered. The
same argument shows that K itself is filtered, which concludes the proof.

Proposition 4.1.6.30. Let I belong to either of the following classes of ideals of C∞(Rn).

(1) Principal ideals.

(2) Ideals of the form m∞
X for X ⊂ Rn closed.

Then as a C∞(Rn)-module, I is ( ⊗C∞(Rn) C
∞(Rn+m))-acyclic and the map

I ⊗C∞(Rn) C
∞(Rm)Ð→ C∞(Rn+m)

is a monomorphism, where the base change is induced by the projection Rn+m → Rn for any m ∈ Z≥0.

Proof. (1) Let g ∈ C∞(Rn) be nonzero, then hg = 0 if and only if h ∈ m0
Supp(g). Since Supp(g) ⊂ Supp(g)○, we have

the equality m0
Supp(g) = m∞

Supp(g), which establishes the fibre sequence

m∞
Supp(g) Ð→ C∞(Rn) 1↦gÐ→ (g)

of discrete C∞(Rn)-modules. From this fibre sequence, we obtain a fibre sequence

m∞
Supp(g) ⊗C∞(Rn) C

∞(Rn+m)Ð→ C∞(Rn+m)Ð→ (g)⊗C∞(Rn) C
∞(Rn+m)

of connective C∞(Rn+m)-modules, because base change is right t-exact. The long exact sequence associated to
this last fibre sequence yields equivalences

Tor
C∞(Rn)

k (m∞
Supp(g),C

∞(Rn+m)) ≅ Tor
C∞(Rn)

k+1 ((g),C∞(Rn+m))

for all k ≥ 1. Let k > 1 and suppose for the sake of induction that we have proven that for all 1 ≤ j < k and

all g′ ∈ C∞(Rn), the torsion group Tor
C∞(Rn)

j ((g′),C∞(Rn+m)) vanishes, then in view of lemma 4.1.6.28, the
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torsion groups Tor
C∞(Rn)

j (m∞
X ,C

∞(Rn+m)) also vanish for any X ⊂ Rn since the Tor functors commute with
filtered colimits. Taking X = Supp(g), the isomorphism above shows that also for j = k, the torsion group

Tor
C∞(Rn)

j ((g),C∞(Rn+m)) vanishes for all g ∈ C∞(Rn). It remains to prove the base case k = 1: we have an
exact sequence

0Ð→ Tor
C∞(Rn)

1 ((g),C∞(Rn+m))Ð→ m
∞
Supp(g)⊗C∞(Rn)C

∞(Rn+m)Ð→ C∞(Rn+m)Ð→ (g)⊗C∞(Rn)C
∞(Rn+m)Ð→ 0,

so it suffices to show that the map m∞
Supp(g) ⊗C∞(Rn) C

∞(Rn+m) → C∞(Rn+m) is a monomorphism, but lemma
4.1.6.28 implies that this map is a filtered colimit of maps of the form

(h)⊗C∞(Rn) C
∞(Rn+m)Ð→ C∞(Rn+m) (4.7)

for (h) a principal ideal of the commutative ring C∞(Rn). Since the collection of monomorphisms is stable under
filtered colimits in a Grothendieck abelian category, we are reduced to showing that each of the maps (4.7) is
a monomorphism. We are required to show that if h(x)f(x,y) = 0 as a function on Rn+m, then there exists a
decomposition f(x,y) = ∑i ki(x)li(x,y) such that ki(x)h(x) = 0. This follows at once from the flat function
lemma applied to m∞

Supp(h)×Rm .

(2) Combine (1), lemma 4.1.6.28 and the fact that acyclic modules are stable under filtered colimits, as are monomor-
phism in a Grothendieck abelian category.

Proof of proposition 4.1.6.4. Let I be an ideal of C∞(Rn) of the form given in the statement of the proposition, then
we claim that the following diagram

C∞(Rn) C∞(Rn)/I

C∞(Rn+m) C∞(Rn+m)/I

of simplicial C∞-ring is a pushout. The upper horizontal map is an effective epimorphism, so it suffices to show that
the associated diagram of simplicial R-algebras is a pushout. Clearly, the diagram above becomes a pushout after
taking the 0’th truncation, so it suffices to show that the higher homotopy groups of the pushout C∞(Rn)/I⊗C∞(Rn)

C∞(Rn+m) vanish. We have a fibre sequence

I Ð→ C∞(Rn)Ð→ C∞(Rn)/I

of discrete C∞(Rn)-modules, so we get a fibre sequence

I ⊗C∞(Rn) C
∞(Rn+m)Ð→ C∞(Rn+m)Ð→ C∞(Rn)/I ⊗C∞(Rn) C

∞(Rn+m)

of connective C∞(Rn+m)-modules. By proposition 4.1.6.30, Tor
C∞(Rn)
n (I,C∞(Rn+m)) vanishes for all n ≥ 1 and

the map Tor
C∞(Rn)

0 (I,C∞(Rn+m)) → C∞(Rn+m) is a monomorphism, so the long exact sequence associated to the

fibre sequence above guarantees the vanishing of Tor
C∞(Rn)
n (C∞(Rn)/I,C∞(Rn+m)) for all n ≥ 1. Using the pushout

diagram just established, we see that the coproduct C∞(Rn)/I ⊗∞ C∞(Rm)/J fits into a pushout diagram

C∞(Rn+m) C∞(Rn+m)/I

C∞(Rn+m)/m∞
Rn×Y C∞(Rn)/I ⊗∞ C∞(Rm)/m∞

Rn×Y

By unramifiedness, this is also a pushout in sCringR. Since I is principal or flat, we have the acyclic resolution

. . .Ð→ 0Ð→ 0Ð→ I Ð→ C∞(Rn+m)Ð→ C∞(Rn+m)/I

so it suffices to show that the map

I ⊗C∞(Rn+m) C
∞(Rn+m)/m∞

Rn×Y Ð→ C∞(Rn+m)/m∞
Rn×Y

is a monomorphism (i.e. injective). Using lemma 4.1.6.28, we may reduce to the case where I = (h) is principal,
with h(x,y) = h(x). To show injectivity, we take some object h(x) ⊗ f(x,y) ∈ I ⊗C∞(Rn+m) C

∞(Rn+m)/m∞
Rn×Y

(since (h) has a generator, all objects in the tensor product over C∞(Rn+m) are pure tensors) and suppose that
h(x)f(x,y) ∈ m∞

Rn×Y . Then every iterated derivative Dα
yf of f with respect to the y-coordinates also has the property

that h(x)Dα
yf(x,y) ∈ m∞

Rn×Y , and a straightforward inductive argument reveals that every iterated derivative of f
with respect to the x-coordinates vanishes on Supp(h) × Y . Thus, we conclude that f(x,y) ∈ m∞

Supp(h)×Y which
implies by the flat function lemma that f(x,y) can be written as g(x,y)(ϕ(x) + ϕ′(y)) with ϕ(x) ∈ m∞

Supp(h) and
ϕ′(y) ∈ m∞

Y . Then h(x)⊗ f(x,y) = h(x)ϕ(x)⊗ g(x,y) + h(x)⊗ g(x,y)ϕ′(y) = 0.
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4.1.7 Variant: derived real analytic geometry

It follows from proposition 4.1.6.20 that for any pair A,B of simplicial commutative rings, the n’th homotopy group of
the coproduct FC

∞
(A)⊗∞FC

∞
(B) is isomorphic to πn(A⊗B)⊗π0(A)⊗π0(B)F

C∞(π0(A)⊗∞ π0(B)). In this section,
we extend this result to the case where the simplicial C∞-ring are dual to derived C∞-schemes free on derived real
analytic spaces. We will give (a sketch of) a proof of the following result.

Definition 4.1.7.1. Let TAnR be the ∞-category defined as the nerve of the category of open subsets of Euclidean
space and real analytic maps between them. We endow this ∞-category with the structure of a pregeometry as
follows.

(1) A map f ∶ U → V of open submanifolds of Euclidean spaces is admissible if f is equivalent to an open inclusion
of real analytic manifolds.

(2) A family of admissibles {Ui → V }i generates a covering sieve if and only if the topological spaces underlying the
real analytic manifolds Ui cover the topological space underlying V The admissible coverings define a pretopology
on TAnR whose associated topology we call the étale topology.

Let Gder
AnR denote a geometric envelope for TAnR .

Definition 4.1.7.2. A derived real analytic space is a 0-localic Gder
AnR -scheme locally of finite presentation.

Remark 4.1.7.3. Let (X ,OX ) be a derived real analytic space, then there exists an effective epimorphism∐Ui → 1X
such that

Remark 4.1.7.4. We cannot follow [Lur11a] in the complex analytic setting and define a real analytic space as a
TAnR -structured ∞-topos (X ,OX ) such that there exists an effective epimorphism ∐iUi → 1X satisfying the following
conditions.

(1) For each i, the ∞-topos X/Ui is the ∞-topos of sheaves on a topological space Xi.

(2) For each i, (Xi, π0(OX ∣Ui)) is a real analytic space,

(3) for each n ≥ 0, πn(OX ∣Ui) is a coherent sheaf of π0(OX ∣Ui)-modules.

The reason for this is the fact that Oka’s coherence theorem fails for real analytic spaces (while it holds true for
real analytic manifolds), which has the effect that the full subcategory of RTop(TAnR) spanned by the objects just
described is not stable under finite limits.

Remark 4.1.7.5. The failure of Oka’s coherence theorem can be controlled by conditions on the analytic ideals in
question. Let X be a germ of an analytic set at 0 defined by an ideal I ⊂ Oan(Rn)0, then X is coherent at X if
and only if the ideal IC∞(Rn)x ≅ I ⊗Oan(Rn)0

C∞(Rn)x (the isomorphism follows from flatness of C∞(Rn)0 over
Oan(Rn)0) coincides with the ideal m0

X of germs of functions at 0 vanishing on X.

There is an obvious transformation of pregeometries TAnR → TDiff which induces a transformation of geometries

ϕAnR ∶ G
der
AnR Ð→ G

der
Diff .

We denote by SpecDiff
AnR

the associated spectrum functor. The first goal of this section is to prove the following
theorem.

Proposition 4.1.7.6. Let (X ,OX ) be a derived real analytic space. Then the unit map

(X ,OX )Ð→ ϕ∗AnRSpecDiff
AnR

(X ,OX )

is a faithfully flat map of E∞-ringed ∞-topoi.

The techniques in this section are similar to the ones used in the previous section with the additional complication
that we have to work relative over the ∞-category of ∞-topoi, because we do not have a convenient description of
the geometric envelope GAnR .

Remark 4.1.7.7. A treatment of derived real analytic geometry proper as in [Lur11a] will necessitate using the
results of sections 2 and 3 of loc. cit., some proofs of which do not seem to be correct as stated. We will gloss over
this point since we do not doubt that the results are true.
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Proof of proposition 4.1.7.6. It is not hard to see that for a derived real analytic space (X ,OX ), the unit map

(X ,OX )Ð→ ϕ∗AnRSpecDiff
AnR

(X ,OX )

induces an equivalence on the underlying ∞-topoi. This implies, together with the fact that the question of flatness
is local, that it suffices to show that for each local Gder

AnR -structure O on S, the unit O → GF (O) of the adjunction

Strloc
TDiff

(S) Strloc
TAnR

(S)
G

F

determines a faithfully flat map of local simplicial commutative R-algebras. In fact, both ∞-categories in this
adjunction are presentable and projectively generated: the locality condition on morphisms in both ∞-categories is
always satisfied since any morphisms between local R-algebras with residue field R is local. Now the full subcategory
of StrT (S) spanned by local T -structures is presentable as a consequence of the factorization system constructed in
section 1.3 of [Lur11b]. Proposition of 3.3.1 of [Lur11b] asserts that the composition

Strloc
T (S) ⊂ Fun(T ,S)Ð→ ∏

v∈T

S,

which is obviously conservative, preserves limits and sifted colimits so we conclude that Strloc
TDiff

(S) and Strloc
TAnR

(S)
are projectively generated. It also follows from proposition 3.3.1 of [Lur11b] that the functor G preserves limits and
sifted colimits, and is thus by proposition 4.1.1.3 determined by a functor between Lawvere theories. Now one can use
the resolution theorem for effective epimorphisms 4.1.2.3 in Lawvere theories and apply the arguments of proposition
4.1.6.23 and corollary 4.1.6.24 to reduce to the case of rings of germs of analytic functions on Rn, which follows from
corollary 4.1.6.19.

Now we wish to show the following.

Theorem 4.1.7.8. Let A and B be local simplicial C∞-rings in the image of the functor F from the proof above, that
is, A and B are local simplicial C∞-rings of germs of affine Gder

AnR -schemes, then the canonical map A⊗B Ð→ A⊗∞B
is strong.

Since we can identify A⊗∞B with F (A′∐B′) for some pair A′,B′ ∈ Strloc
TAnR

(S), it suffices to show that the map

A′ ⊗B′ Ð→ A′∐B′

is faithfully flat. To see this, we can repeat the proof of proposition 4.1.6.26 for the Lawvere theory Strloc
TAnR

(S) to

reduce to the case where A′ and B′ are rings of germs of real analytic functions on Cartesian spaces, that is, we
should show that the map

O(Rn)0 ⊗O(Rm)0 Ð→ O(Rn+m)0

is faithfully flat, but this is a consequence of the fact that O(Rn)0 is coherent.

Corollary 4.1.7.9. Let I ⊂ C∞(Rn) and J ⊂ C∞(Rm) be ideals of analytic functions, then the sheafified homotopy
groups of C∞(Rn)/I ⊗∞ C∞(Rm)/J vanish.

We give no further indication of the flatness or nonflatness of the map C∞(Rn)⊗C∞(Rm)→ C∞(Rn+m), but we
believe that the tools used in the preceding sections can be extended to larger classes of ideals. Recall the following
notion.

Definition 4.1.7.10. A finitely generated ideal I = (f1, . . . , fk) ∈ C∞(Rn) is a Lojasiewicz ideal if either of the
following equivalent conditions are satisfied.

(1) m∞
Z(I) ⊂ I.

(2) The function f2
1 + . . .+ f2

k satisfies Lojasiewicz inequality : for all compact K ⊂ Rn there exists a constant C ∈ R>0

and a constant α ∈ R≥0 such that

f2
1 (x) + . . . + f2

k(x) ≥ Cd(x,Z(I))α, ∀x ∈K

where d(x,Z(I)) is the Euclidean distance between x and Z(I).
It follows immediately from characterization (1) and Whitney’s spectral theorem that finitely generated closed

ideals are Lojasiewicz. In fact a finitely generated ideal of C∞(R) is closed if and only if it is Lojasiewicz, and in this
case it can be shown that the ideal in question is necessarily principal. It is possible to show that if I ⊂ C∞(Rn) is
Lojasiewicz, then the map

I ⊗C∞(Rn) C
∞(Rn+m)Ð→ C∞(Rn+m)

is injective.
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Conjecture 4.1.7.11. Let I ⊂ C∞(M) be a Lojasiewicz ideals and let Y ⊂ N be a closed subset, then the unit map

C∞(M)/I ⊗∞ C∞(N)/m∞
Y Ð→ τ≤0(C∞(M)/I ⊗∞ C∞(N)/m∞

Y )

is an equivalence.

4.1.8 Corners and logarithmic structures

In this section we use the results of the previous subsections to define derived manifolds with corners and study their
basic properties. We define derived manifolds with corners along the lines of our initial definition of derived manifolds
(without corners) and derived real analytic spaces, in accordance with the general philosophy outlined in the previous
subsection.

Definition 4.1.8.1. The ∞-category of derived manifold with corners locally of finite presentation is the full sub-
category of RTop(TDiffc) that contains the essential image of the spectrum functor SpecTDiffc ∶ TDiffc ↪ RTop(TDiffc)
and is stable under finite limits and retracts, and is also stable under colimits in the ∞-category RTop(TDiffc)−1−et.

The goal in this subsection will be the introduction of a tractable geometry Gder
Diffc that yields the same structured

spaces, such that ∞-category of 0-localic Gder
Diffc-schemes of finite presentation coincides with that of the ∞-category

of derived manifolds with corners described above. To construct such a geometry, it seems natural to consider the
∞-category sC∞ringpc of algebras for the Lawvere theory of Cartesian spaces with corners. In the 1-categorical
setting, such a theory has been developed by Joyce and Francis-Staite [JF19].

Remark 4.1.8.2. For technical reasons, the geometry we will construct does not come equipped with a functor
TDiffc → Gder

Diffc exhibiting a geometric envelope. We will instead introduce another pregeometry T ′Diffc together with
functors

TDiffc ←Ð T ′Diffc ↪Ð→ Gder
Diffc

where the left arrow is a Morita equivalence of pregeometries and the right arrow exhibits a geometric envelope.

At first glance, one might be tempted to define Gder
Diffc as the compact objects of sC∞ringpc, exactly analogous to

how Gder
Diff was introduced, but this turns out to be too naive: the functor

(C∞( ),C∞
b ( )) ∶ TDiffc Ð→ sC∞ringoppc

does not preserve pullbacks along open inclusions. Consider, for instance, the following pullback

R R

R≥0 R

exp exp

in TDiffc. The vertical maps are admissible, so the diagram

(C∞(R),C∞
b (R)) (C∞(R≥0),C∞

b (R≥0))

(C∞(R),C∞
b (R)) (C∞(R),C∞

b (R))
exp∗ exp∗

should be a pushout diagram in sC∞ringpc. Let C denote the pushout of the diagram above, and let ϕ ∶ C →
(C∞(R),C∞

b (R)) be the canonical morphism; we should verify whether or not this morphism is an equivalence. Corol-
lary 4.1.6.6 shows that the map C∞(R)→ evR(C) is an equivalence of spaces. Since evaluation at R≥0 preserves sifted
colimits, the space evR≥0(C) may be computed as the colimit of the simplicial object BarC∞

b
(R)(C∞

b (R),C∞
b (R≥0))●

which takes the form

. . . C∞
b (R ×R2 ×R≥0) C∞

b (R ×R1 ×R≥0) C∞
b (R ×R≥0).

In each simplicial level, we have the space of interior b-maps on a manifold of the form R ×Rn ×R≥0, which has one
connected boundary component whose defining function is the last coordinate. All face maps preserve this boundary
defining function, so it follows from lemma 4.1.8.37 that this simplicial object may be written as a product

Z≥0 × ( . . . C∞
>0(R ×R2 ×R≥0) C∞

>0(R ×R1 ×R≥0) C∞
>0(R ×R≥0) ) .
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where Z≥0 is a constant simplicial object. The simplicial object in parentheses is equivalent to

. . . C∞(R ×R2 ×R≥0) C∞(R ×R1 ×R≥0) C∞(R ×R≥0),

whose colimit can be identified with the pushout C∞(R) ⊗∞C∞(R) C
∞(R≥0) ≃ C∞(R). Since sifted colimits commute

with products, we find that evR≥0(C) ≃ Z≥0 × C∞
>0(R), and the map evR≥0(ϕ) is identified with the projection Z≥0 ×

C∞
>0(R) → C∞

>0(R) = C∞
b (R), which is not an equivalence. We could correct for the fact that the pullback diagram

above is not preserved simply by localizing at the morphism ϕ ∶ (C∞(R),C∞
b (R)) → C, but for the purposes of

defining a transformation of pregeometries TDiffc → Gder
Diffc this appears too myopic; it seems we have to localize at

all comparison maps arising from applying (C∞( ),C∞
b ( )) to admissible pullbacks TDiffc. Fortunately, it turns out

that localizing at ϕ already yields the correct ambient ∞-category. It will be convenient to introduce a different but
equivalent localization.

Definition 4.1.8.3. Consider the image of the map

R>0 ↪Ð→ R≥0

under the functor (C∞( ),C∞
b ( )) ∶ T opDiffc ↪ sC∞ringpc. Denote by ε the counit ε ∶ ιc!ι∗c → id and define an object

A ∈ sC∞ringpc together with a map φ ∶ ιc!ι∗c(C∞(R>0),C∞
b (R>0))→ A via the pushout diagram

ιc!ι
∗
c(C∞(R≥0),C∞

b (R≥0)) (C∞(R≥0),C∞
b (R≥0))

ιc!ι
∗
c(C∞(R>0),C∞

b (R>0)) A.

ε

φ

We let S = {φ}, the one element set containing the morphism φ. The ∞-category of simplicial C∞-rings with corners,
denoted sC∞ringc, is the presentable ∞-category of S-local objects of sC∞ringpc.

Remark 4.1.8.4. Unraveling the definition, a simplicial C∞-ring with pre-corners (A,Ac) is S-local just in case the
upper horizontal map in the pullback diagram

Ac ×A≥0 A>0 A>0

Ac A≥0

of spaces is an equivalence, where we use the notationA≥0 ∶= HomsC∞ring(C∞(R≥0),A) andA>0 ∶= HomsC∞ring(C∞(R>0),A)
for A a simplicial C∞-ring. This subsection will be concerned with the simplicial commutative monoid structure on
the space A≥0 induced by the homotopy coherent C∞-operations. To this end, it turns out to be crucial to establish,
as we will in a moment, that the right vertical map A>0 → A≥0 -an inclusion of connected components- coincides with
the largest subgroup contained in the simplicial commutative monoid A≥0. Contrary to the 1-categorical case, this
is not immediate and depends on a computation of the cotangent complex of C∞(R≥0) which is deferred to the next
chapter (see remark 4.1.6.15).

Remark 4.1.8.5. On (C∞(R),C∞
b (R)) and (C∞(R>0),C∞

b (R>0)), the counit ιc!ι
∗
c → id is an equivalence, so for

each (A,Ac) ∈ sC∞ringpc, there is a diagram

Ac ×A≥0 A>0 A>0 A>0

Ac A≥0 A

Here, the right square is a pullback. Let S′ = {ϕ}, the one element set containing the map ϕ ∶ (C∞(R),C∞
b (R))→ C

from the discussion above. Unwinding the definitions, we see that (A,Ac) is S-local if and only if it is S′-local.

Since the forgetful functor ι∗c ∶ sC∞ringpc → sC∞ring preserves colimits and carries the counit ε ∶ ιc!ι∗c → id to the
identity, ι∗c carries the map φ of definition 4.1.8.3 to an equivalence. From the universal property of cocontinuous
localizations, we deduce that ι∗c factors via a left adjoint sC∞ringc → sC∞ring. This functor coincides with the
composition sC∞ringc ↪ sC∞ringpc → sC∞ring, which is a right adjoint. Note that both adjoints of this functor are
fully faithful, so the argument of proposition 4.1.6.7 grants the following result.

Proposition 4.1.8.6. The functor sC∞ringc → sC∞ring is a presentable fibration. Moreover, the inclusion sC∞ringc ↪
sC∞ringpc preserves Cartesian edges, and the localization L ∶ sC∞ringpc → sC∞ringc preserves coCartesian edges.
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Remark 4.1.8.7. As corollary 4.1.8.33 asserts, the localization sC∞ringc ⊂ sC∞ringpc is ω-accessible, that is,
sC∞ringc ⊂ sC∞ringpc is stable under filtered colimits. In particular, every compact object in sC∞ringc is a re-
tract of an object in the image of L. Since ιc!L is equivalent to L and idempotents may be lifted along coCartesian
fibrations, we deduce that for any compact object (A,Ac) in sC∞ringc, there is some A′

c such that (A,A′
c) is compact

in sC∞ringpc.

We will use the ∞-category sC∞ringc to define a derived geometry generated by manifolds with corners. To this
end, we first make an observation concerning finitely generated and compact objects in sC∞ringpc.

Proposition 4.1.8.8. The following hold true.

(1) The functor ι∗c carries finitely generated objects of sC∞ringpc to finitely generated objects of sC∞ring.

(2) The functor ι∗c carries finitely presented objects of sC∞ringpc into the full subcategory sC∞ringfair ⊂ sC∞ring.

Proof. For (1), we need to show that the right adjoint ιc∗ preserves colimits of filtered diagrams consisting only of
monomorphisms. From the general theory of algebraic theories it is enough to check that the functors evRn×Rk≥0

ιc∗ ∶
sC∞ring → S have this property, but these functors are corepresented by the finitely generated objects C∞(Rn×Rk≥0).
For (2), we suppose that (A,Ac) is finitely presented in sC∞ringpc. Consider a finite presentation of (π0(A), π0(Ac)),
that is, a coequalizer diagram

(C∞(Rp ×Rq≥0),C∞
b (Rp ×Rq≥0)) (C∞(Rn ×Rm≥0),C∞

b (Rn ×Rm≥0)) (π0(A), π0(Ac)).

As ι∗c ∶ C∞ringc → C∞ring preserves colimits, we have a coequalizer diagram

C∞(Rp ×Rq≥0) C∞(Rn ×Rm≥0) π0(A).

Since we have an epimorphism of C∞-rings C∞(Rp+q)→ C∞(Rp ×Rq≥0), we also have a coequalizer diagram

C∞(Rp+q) C∞(Rn ×Rm≥0) π0(A)

which shows that π0(A) is finitely presented over C∞(Rn × Rm≥0) as a C∞-ring. Since the latter object is free in
sC∞ringpc, the map C∞(Rn × Rm≥0) → π0(A) lifts to a map f ∶ C∞(Rn × Rm≥0) → A in sC∞ring, and as we have
just verified, π0(f) is finitely presented. It follows from corollary 5.0.0.3 that the cotangent complexes of both
C∞(Rn × Rm≥0) and A are perfect, so Lf is also perfect. Invoking proposition 5.1.1.8, we deduce that A is finitely
presented over C∞(Rn ×Rm≥0). Invoking proposition 4.1.3.32, we deduce that A admits a presentation as a retract of
a finite good cell object over C∞(Rn ×Rm≥0). Since sC∞ringfair is stable under retracts, we may suppose that A is a
finite good cell object over C∞(Rn ×Rm≥0), that is, in the model category C∞dga, the object A admits a presentation
as

C∞(Rn ×Rm≥0)[ε11, . . . , ε1n1
, . . . , εk1 , . . . , ε

k
nk

]

with ∣εji ∣ = j and some differential. Now considering this Koszul complex and its truncations as sheaves over Rn ×Rm≥0,
the same argument as the one used in proposition 4.1.3.33 shows that the homotopy groups of A are complete
π0(A)-modules.

Recall that fairness implies that if (A,Ac) is a compact object of sC∞ringpc, then the underlying simplicial C∞-
ring A has the property that π0(A) is finitely generated and germ determined, and for each n ≥ 1, the object πn(A)
has the property that module of global sections of the sheafification of the presheaf

Ua z→ πn(A)⊗π0(A) π0(A)[a−1]

coincides with πn(A). More briefly, for (A,Ac) compact, the unit map

AÐ→ ΓSpecA

is an equivalence.

Definition 4.1.8.9. Let Gder
Diffc be the opposite of the full subcategory of sC∞ringopc spanned by compact objects.

We define the notions of an admissible morphism and admissible covering in Gder
Diffc as follows.

(1) A morphism f ∶ Spec (A,Ac) → Spec (B,Bc) is admissible if and only if there exists some b ∈ π0(B) such that
the underlying map B → A of simplicial C∞-rings exhibits A as a localization of B by b and f is a coCartesian
morphism for the fibration sC∞ringc → sC∞ring.
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(2) A collection of morphisms {Spec (Bi,Bic)→ Spec (B,Bc)} generates a covering sieve if and only if the underlying
collection {SpecBi → SpecB} of morphisms among fair (cf. proposition 4.1.8.8 and the preceding remark)
simplicial C∞-rings generates a covering sieve for the étale topology on sC∞ringopfair ≃ dC∞Afffair.

Let T ′Diffc ⊂ Gder
Diffc be the smallest full subcategory of Gder

Diffc that contains the objects (C∞(Rn),C∞
b (Rn)) for all n and

satisfies the following condition: should f ∶ Spec (A,Ac)→ Spec (B,Bc) be admissible and Spec (B,Bc) ∈ T ′Diffc, then
also Spec (A,Ac) ∈ T ′Diffc (hence we require that the inclusion T ′Diffc ⊂ Gder

Diffc is a categorical fibration).

Remark 4.1.8.10. Suppose that (A,Ac) → (B,Bc) is (the opposite of) an admissible morphism in sC∞ringc, then
it might not be a priori clear that (B,Bc) is a compact object of sC∞ringc. To see this is the case, we note that
the assumption that A → B is a localization of simplicial C∞-rings provides a map C∞(R) → A and an equivalence
B ≃ C∞(R ∖ {0})⊗∞C∞(R) A. We have an adjoint map Lιc!(C∞(R))→ (A,Ac) and we can form the pushout

Lιc!(C∞(R)) Lιc!(C∞(R ∖ {0}))

(A,Ac) (C,Cc).

Since sC∞ringc → sC∞ring preserves colimits, the map A → C coincides with A → B. Because the upper horizontal
map is coCartesian by the description of coCartesian edges in proposition 4.1.6.7, the lower horizontal map is co-
Cartesian as well, as all colimits in sC∞ringc are relative colimits. It follows that (C,Cc) ≃ (B,Bc), that is, being
admissible in sC∞ringc is equivalent to fitting into a pushout diagram as above, which shows that (B,Bc) is compact
if (A,Ac) is, since Lιc! preserves compact objects.

The main results of this subsection are summarized in the following theorem.

Theorem 4.1.8.11. (i) The ∞-category sC∞ringc is compactly generated, that is, the canonical functor Pro(Gder
Diffc)→

sC∞ringopc is an equivalence.

(ii) Definition 4.1.8.9 furnishes the structure of a geometry on Gder
Diffc and the structure of a pregeometry on T ′Diffc

such that the inclusion T ′Diffc ⊂ Gder
Diffc is a transformation of pregeometries.

(iii) The geometry Gder
Diffc 2-represents the functor

Funad(T ′Diffc, ) ∶ Catlex,Idem
∞ Ð→ Cat∞.

(iv) The functor (C∞,C∞
b ) ∶ TDiffc → RTop(Gder

Diffc) is fully faithful and preserves pullbacks along admissible maps.

(v) Denote by Specc the functor SpecG
der
Diffc , then Specc ∶ T ′Diffc → RTop(Gder

Diffc) takes values in the essential image
of (C∞,C∞

b ) and determines a Morita equivalence of pregeometries

T ′Diffc Ð→ TDiffc.

The proof of this theorem will require a number of prelimenaries. First observe that the geometry structure
on Gder

Diffc makes reference to the coCartesian morphisms of ι∗c , which involve the formation of certain pushouts in
sC∞ringc and are more difficult to characterize explicitly than its Cartesian morphism, which are obtained by taking
certain pullbacks in sC∞ringc and are therefore detectable on the underlying spaces. To improve our understanding of
the fibres of sC∞ringc → sC∞ring and its coCartesian morphisms, we will establish a structural result of independent
interest which relates simplicial C∞-rings with corners to an algebraic model for C∞-geometry with corners and more
general singularities. The latter theory is a derived and differential geometric version of logarithmic geometry in the
sense of Fontaine-Illusie, Kato and Ogus [Kat89; Ogu18].

Remark 4.1.8.12. While we make no use of this perspective, the theory of positive logarithmic C∞-geometry we
expose in this subsection could have been developed entirely in a model categorical setting, as is done by Sagave,
Schürg and Vezzosi and Bhatt [SSV16; Bha12], at the cost of rendering many arguments significantly more cumber-
some. In particular, it is not hard to see that the equivalence of theorem 4.1.8.24 is induced by a Quillen equivalence
between combinatorial model categories. We leave it as an exercise for the sufficiently industrious reader to make the
necessary translations.

Remark 4.1.8.13. Apart from the works of Sagave-Schürg-Vezzosi and Bhatt, the derived antecedents of this section
include the work on logarithmic structures for E∞-ring spectra and applications to THH of Rognes, Sagave and
Schlichtkrull [Rog09; RSS15]. In differential geometry, the origins of logarithmic ideas trace back to the b-geometry
of Melrose [Mela], made explicit in the work of Kottke-Melrose [KM11], and especially that of Gillam-Molcho [GM15].
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Notation 4.1.8.14. As in our notation, the set N does not contain 0, we write Z≥0 for the free commutative monoid
on one generator. The commutative product in a generic commutative monoid is written additively ( + ), while the
product in a commutative monoid coming from a commutative algebra is written multiplicatively (by juxtaposing
the elements being multiplied).

Construction 4.1.8.15. Let CartSp≥0 ⊂ CartSpc be the full subcategory spanned by the objects of the form Rn≥0;
this determines a (1-sorted) Lawvere theory. Recall the notation FCMon for the category of finitely generated and
free commutative monoids. We define a functor θ ∶ FCMonop → CartSp≥0 as follows.

(1) θ carries the free commutative monoid Zn≥0 to Rn≥0.

(2) θ carries a morphism f ∶ Zn≥0 ← Zm≥0 determined by an m-tuple {(ki1, . . . , kin) ∈ Zn}1≤i≤m to the smooth map
Rn≥0 → Rm≥0 given by

(x1, . . . , xn)z→
⎛
⎝ ∏

1≤j≤n

x
k1
j

j , . . . , ∏
1≤j≤n

x
kmj
j

⎞
⎠
.

Restricting along θ induces a product preserving functor θ∗ ∶ Fun(N(CartSp≥0),S)→ Fun(N(FCMonop),S), resulting
in a functor

θ∗ ∶ Funπ(N(CartSp≥0),S)Ð→ sCMon

which fits into a commuting diagram

Funπ(N(CartSp≥0),S) sCMon

S.

θ∗

evR≥0
evZ≥0

The diagonal morphisms in this diagram are conservative and preserve limits and sifted colimits, so the same is true
for θ∗. Composing θ∗ with the functor induced by the product preserving full subcategory inclusion ι≥0 ∶ CartSp≥0 ↪
CartSpc yields a limit and sifted colimit preserving functor θ∗ι∗≥0 ∶ sC∞ringpc → sCMon. Corollary 4.1.6.6 provides
a right adjoint ιc∗ to the functor ι∗c ∶ sC∞ringpc → sC∞ring induced by the inclusion ιc ∶ CartSp ↪ CartSpc. The
composite functor θ∗ι∗≥0ιc∗ carries simplicial C∞-rings to simplicial commutative monoids, and we will denote this
functor by ( )≥0 ∶ sC∞ring → sCMon. We define the presentable ∞-category of positive prelog simplicial C∞-rings as
the cone in the pullback diagram

sC∞PLog Fun(∆1, sCMon)

sC∞ring sCMon

ev1

( )≥0

among presentable ∞-categories and functors that admit left adjoints between them. An object of sC∞PLog consists
of a pair (A,M → A≥0) where A is a simplicial C∞-ring and M → A≥0 is a map of simplicial commutative monoids.
We define a functor sC∞ringpc → sC∞PLog as follows. Composing the unit transformation id → ιc∗ι

∗
c with θ∗ι∗≥0

yields a functor
sC∞ringpc Ð→ Fun(∆1, sC∞ringpc)Ð→ Fun(∆1, sCMon)

which participates as the top horizontal map in the strictly commuting diagram

sC∞ringpc Fun(∆1, sCMon)

sC∞ring sCMon

ι∗c ev1

( )≥0

among ∞-categories; hence we obtain an induced functor

sC∞ringpc sC∞PLog

sC∞ring
ι∗c

Ξ

p

which is given on objects by the assignment (A,Ac) ↦ (A,Ac → A≥0). From the description of ι∗c -Cartesian edges
in proposition 4.1.6.7 and the fact that sC∞ringpc → sCMon preserves limits we immediately deduce that Ξ carries
ι∗c -Cartesian edges to p-Cartesian edges.
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Remark 4.1.8.16. The functor Ξ of construction 4.1.8.15 does not take ι∗c -coCartesian edges to p-coCartesian edges
and therefore merely induces a lax natural transformation between straightened functors St+,co(ι∗c)⇒ St+,co(p). By
the results of [Hau+20], straightening/unstraightening yields equivalences

Fun(C,Cat∞)lax ≃ biCart(co)lax
C

≃ Fun(Cop,Cat∞)colax.

For each map A→ B of simplicial C∞-rings, requisite the 2-morphism is given by the Beck-Chevalley transformation.

To aid our analysis, we recall some facts about simplicial abelian groups and simplicial commutative monoids.

Lemma 4.1.8.17. Consider sCMon with its coCartesian symmetric monoidal structure and S with its Cartesian
symmetric monoidal structure, then the forgetful functor sCMon → S induced by evaluation at Z≥0 has a canonical
symmetric monoidal structure.

Proof. We sketch two proofs. According to [Lur17a], thm. 2.3.4.18, the functor f ∶ sCMon→MonE∞ classifies an ∞-
operad map sCMon∐ → S× lifting the functor evaluating at Z≥0. Unwinding the definitions, this functor is symmetric
monoidal if and only if f preserves finite coproducts, which is the case.
For another argument, it is not hard to see that the functor of 1-categories FCMon→ Set has a canonical symmetric
monoidal structure, and the relevant symmetric monoidal functor can be obtained by symmetric monoidal left Kan
extension.

Proposition 4.1.8.18. A simplicial commutative monoid A is grouplike if the commutative monoid π0(A) is a
(necessarily abelian) group. Let sCMongp denote the full subcategory spanned by the grouplike commutative monoids.

(1) The full subcategory inclusion sCMongp ⊂ sCMon admits a right adjoint (that we will denote ( )×, the ∞-group
of units).

(2) The full subcategory inclusion sCMongp ⊂ sCMon admits a left adjoint (that we will denote ( )gp, the group
completion).

(3) Let FAb ⊂ sCMongp denote the full subcategory spanned by finitely generated free abelian groups, which is an
idempotent complete Lawvere theory. Let sAb be the ∞-category of algebras for this theory, then the inclusion
FAb ⊂ sCMongp induces an equivalence of ∞-categories sAb ≃ sCMongp.

(4) There is a functor Spcn → sAb in PrL
Proj fitting into a pushout diagram

MonE∞ sCMon

Spcn sAb

( )
gp ( )

gp

in PrL
Proj.

Proof. (1) To see that the inclusion sCMongp ⊂ sCMon admits a right adjoint, let π0(A)× ⊂ π0(A) be the submonoid
on the invertible elements of π0(A), that is, the largest subgroup contained in π0(A), and consider the pullback
diagram

A× A

π0(A)× π0(A),

in sCMon, then A× is clearly grouplike and for each grouplike simplicial commutative monoid B, the map of
spaces

HomsCMon(B,A×)Ð→ HomsCMon(B,A)

is a pullback of the map of sets

HomCMon(π0(B), π0(A)×)Ð→ HomCMon(π0(B), π0(A)),

which is a bijection as the operation ( )× ∶ CMon → Ab is right adjoint to the inclusion of abelian groups into
commutative monoids. Thus, the inclusion of connected components A× → A exhibits a colocalization.
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(2) Consider the full subcategory sCMon≥1 ⊂ sCMon spanned by objects A for which the underlying space is 1-
connective, which is stable under colimits. It follows from the previous lemma that the underlying space functor
sCMon → S carries the initial object to a final object, but as the underlying space functor reflects limits, we
conclude that sCMon is pointed, so we have a suspension/looping adjunction

sCMon sCMon.
Σ

Ω

It follows from the previous lemma that the underlying space of ΣA is the colimit of the Bar construction
∣BarA(∗,∗)●∣ which is 1-connective. Unwinding the definitions, we can identify the functor

sCMonÐ→ Fun(N(∆op),S), Az→ BarA(∗,∗)●
with the composition

sCMonÐ→MonE∞ Ð→MonE1 ⊂ Fun(N(∆op),S).
We conclude that A is a grouplike simplicial commutative monoid if and only if the simplicial object BarA(∗,∗)●
is a group object. Since all groups are effective in S and in sCMon, the augmented simplicial object ∣BarA(∗,∗)●∣
is a Čech nerve. The functor Ω factor as

sCMon
≃Ð→ Fun(N(∆op

+ ), sCMon)′ ⊂ Fun(N(∆op
+ ), sCMon)

ev[1]Ð→ sCMon,

where Fun(N(∆op
+ ), sCMon)′ denotes the full subcategory spanned by Čech nerves U● such that U0 ≃ ∗. The

first equivalence restricts to one sCMon≥1 ≃ Grp+(sCMon) between 1-connective objects and Čech nerves U● with
U0 ≃ ∗ that are colimit diagrams. Let U● be a Čech nerve with U0 ≃ ∗, then U●∣N(∆op) is a group object in
sCMon; then π0(U1) is a group so that U1 is grouplike, since group object in commutative monoids are abelian
groups by the classical Eckmann-Hilton argument. It follows that the adjunction (Σ ⊣ Ω) restricts to give an
adjunction

sCMongp sCMon≥1Σ

Ω

which is an equivalence: if A is grouplike, then the Bar construction U● ∶= BarA(∗,∗)● is a Čech nerve so the
canonical map A = U1 → ∗ ×U−1 ∗ is an equivalence. Conversely, let B be a 1-connective object and V● the Čech
nerve of ∗ → B, then we should show that the canonical map ΣV1 → B is an equivalence. Let V ′

● denote a right
Kan extension of the diagram W ∶ N(∆op

+ )≤1 → sCMon given by

V1 ∗ ΣV1

along the inclusion N(∆op
+ )≤1 ⊂ N(∆op

+ ), then we have an induced map α ∶ V ′
● → V● which restricts to the identity

on N(∆op)≤1. Because V1 is grouplike, the diagram W is a right Kan extension of W ∣N(∆
op
+ )≤0 , which implies by

[Lur17b], prop. 4.3.2.8 that V ′
● is a Čech nerve. We conclude that α∣N(∆op) is a morphism of group objects such

that α1 is the identity, but this implies that α is an equivalence. It follows that the composition

sCMon
ΣÐ→ sCMon≥1 ΩÐ→

≃
sCMongp

is a left adjoint to the inclusion.

(3) It follows from (1), (2) and [Lur17a], prop. 7.1.4.12 that it suffices to argue that the essential image of ( )gp

on FCMon consists of finitely generated free abelian groups. On underlying spaces, we can identify the map
ΣZ≥0 → ΣZ induced by the inclusion Z≥0 → Z with the map β ∶ BC → BD of classifying spaces, where C and
D are the single object categories with space of morphisms Z≥0 and Z respectively. We can identify the fibre
product C ×D D∗/ with the poset category Z, which has contractible classifying space, so we deduce that β is an
equivalence by Quillen’s theorem A. It follows that the unit of the group completion Z≥0 → (Z≥0)gp is equivalent
to Z≥0 → Z.

(4) Consider the functor sCMon → MonE∞ induced by the transformation of algebraic theories F → N(FCMon),
then A ∈ sCMon is grouplike if and only if the associated E∞-space is grouplike, but we have an equivalence
Mongp

E∞ ≃ Spcn (by [Lur17a], rmk. 5.2.6.26 for instance), so we have a pullback diagram

sAb sCMon

Spcn MonE∞

of ∞-categories and conservative functors preserving limits and colimits.
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Remark 4.1.8.19. We have seen that for any simplicial C∞-ring A, the space A≥0 ∶= HomsC∞ring(C∞(R≥0),A)
admits a natural structure of a simplicial commutative monoid. The simplicial C∞-ring A evidently also admits the
structure of a simplicial commutative monoid; the requisite forgetful functor ( )Mon ∶ sC∞ring → sCMon can be defined
in two (naturally equivalent) ways: we can define a functor FCMonop → CartSp via the same formulae that appear

in construction 4.1.8.15, or we can take the composition sC∞ring
( )

alg

→ E∞Algcn
R → sCMon where the second functor

is induced by the lax monoidal functor Modcn
R → S. The functors ( )≥0 and ( )Mon may be combined by defining a

functor Θ ∶ FCMonop ×∆1 → CartSpc as follows.

(1) Θ carries the object (Zn≥0,0) to Rn≥0 and the object (Zm≥0,1) to Rm.

(2) Θ carries a morphism f ∶ (Zn≥0,0) ← (Zm≥0,0) determined by an m-tuple {(ki1, . . . , kin) ∈ Zn}1≤i≤m to the map
Rn≥0 → Rm≥0 given by

(x1, . . . , xn)z→
⎛
⎝ ∏

1≤j≤n

x
k1
j

j , . . . , ∏
1≤j≤n

x
kmj
j

⎞
⎠
.

The morphisms (Zn≥0,1) ← (Zm≥0,1) and (Zn≥0,0) ← (Zm≥0,1) are carried to morphisms Rn → Rm and Rn≥0 → Rm
respectively, defined by the same formula.

Composing ιc∗ with Θ∗ ∶ Fun(N(CartSpc),S)→ Fun(N(FCMonop)×∆1,S) yields a natural transformation sC∞ring →
Fun(∆1, sCMon) that lifts, for each A ∈ sC∞ring, the map of spaces A≥0 → A induced by the map C∞(R)→ C∞(R≥0)
to a map of simplicial commutative monoids A≥0 → AMon. In remark 4.1.6.15 we argued that the natural map

π0(A≥0)Ð→ π0(A)≥0 = HomC∞ring(C∞(R≥0), π0(A))

is an equivalence. Since the map C∞(R) → C∞(R≥0) is a regular epimorphism of C∞-rings, we have an injection
π0(A)≥0 ↪ π0(A), which is obtained by applying the functor taking connected components to the map A≥0 → A and
the isomorphism π0(A≥0) ≅ π0(A)≥0. We conclude that the commutative monoid structure on π0(A) restricts to one
on the subset π0(A≥0), and this latter structure then coincides with the one coming from the simplicial commutative
monoid structure on A≥0 defined in construction 4.1.8.15. We use this observation to identify the group of units of
π0(A≥0): the group π0(A)× ↪ π0(A) of invertible elements coincides with the map HomC∞ring(C∞(R ∖ {0}),A) →
HomC∞ring(C∞(R),A) by definition of the localization. Thus, if x ∈ π0(A≥0) is invertible as an element in π0(A) we
have a commuting diagram

C∞(R) C∞(R≥0)

C∞(R ∖ {0}) π0(A)

x

of C∞-rings, so the map classifying x factors through the pushout C∞(R>0)→ π0(A), which shows that the inverse of x
lies in the submonoid π0(A≥0). It follows that the group of units π0(A≥0)× is given by a pullback π0(A≥0)×π0(A)π0(A)×,
so the monomorphism A×

≥0 → A≥0 fits as the left vertical map into a pullback diagram

A×
≥0 HomsC∞ring(C∞(R ∖ {0}),A)

A≥0 HomsC∞ring(C∞(R),A).

As a result, this map coincides with the map HomsC∞ring(C∞(R>0),A) → HomsC∞ring(C∞(R≥0),A). Thus, the map
A>0 → A≥0 of remark 4.1.8.4 coincides with the inclusion of the ∞-group of units A×

≥0 ↪ A≥0.

Remark 4.1.8.20. We give one more application of remark 4.1.6.15. Abusing notation, we denote ( )≥0 ∶ C∞ring →
CMon for the functor given by A ↦ HomC∞ring(C∞(R≥0),A), and define a category C∞PLog as the pullback
C∞ring ×CMon Fun(∆1,CMon). We have a diagram

N(C∞ring) N(CMon)

sC∞ring sCMon

( )≥0

( )≥0

which commutes up to canonical homotopy, determining a fully faithful functor g ∶ N(C∞PLog) → sC∞PLog. The
vertical maps admit left adjoint functors denoted by π0 and the associated Beck-Chevalley transformation at an
object A ∈ sC∞ring is obtained by applying π0 to the map of simplicial commutative monoids f ∶ A≥0 → π0(A)≥0

induced by the unit map A → A≥0. It follows from remark 4.1.6.15 that f exhibits a 0-truncation, so we have an
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equivalence π0(( )≥0) ≃ π0( )≥0 which provides a left adjoint π0 ∶ sC∞PLog → N(C∞PLog) to g. This adjunction is
equivalent to the 0’th truncation τ≤0. To see this, it suffices to show that an object (A,M → A≥0) is 0-truncated if
and only if it lies in the essential image of g which is easily seen to consist of those objects (B,N → B≥0) where B is a
0-truncated simplicial C∞-ring and N is a 0-truncated simplicial commutative monoid. The ‘only if’ direction follows
immediately from the fact that both p ∶ sC∞PLog → sC∞ring and sC∞PLog → Fun(∆1, sCMon) preserve limits. For
the ‘if’ direction, we suppose that A and M are 0-truncated, then we have for any (B,N → B≥0) ∈ sC∞PLog and any
map f ∶ B → A a fibre sequence

Hom(sCMon)/B≥0
(N,M ×A≥0 B≥0)Ð→ HomsC∞PLog((B,N → B≥0), (A,M → A≥0))Ð→ HomsC∞ring(B,A)

since p ∶ sC∞PLog → sC∞ring is a Cartesian fibration. To conclude that HomsC∞PLog((B,N → B≥0), (A,M → A≥0))
is 0-truncated, it suffices to argue that the base and the fibre spaces are 0-truncated. As A is 0-truncated, the base
space is also 0-truncated and as M → A≥0 is a 0-truncated morphism, the map M ×A≥0 B≥0 → B≥0 is too so the fibre
is also 0-truncated.
Using an analogous argument, it can be shown that Ξ ∶ sC∞ringpc → sC∞PLog takes n-truncations to n-truncations
for all n ≥ 0, that is, the relevant Beck-Chevalley map provides an equivalence τ≤n ○ Ξ ≃ Ξn ○ τ≤n, where Ξn is the
functor τ≤nsC

∞ringpc → τ≤nsC
∞PLog induced by Ξ.

Definition 4.1.8.21. Let A be a simplicial commutative monoid and let M ∈ (sCMon)/A be a prelog structure on
A, then M is a log structure on A if the upper horizontal map in the pullback diagram

M ×A A× A×

M A

is an equivalence, where the right vertical map is the counit of the coreflective embedding sAb ⊂ sCMon, that is,
the inclusion of connected components determined by the invertible elements in the commutative monoid π0(A).
We denote by LogA ⊂ (sCMon)/A the full subcategory spanned by log structures and sC∞Log ⊂ sC∞PLog the full
subcategory spanned by objects (A,M → A≥0) such that the prelog structure M is a log structure on A≥0.

Remark 4.1.8.22. A prelog structure M → A is a log structure if and only if the canonical maps M× → A× and
M× →M ×A A× are both equivalences.

The following proposition is an immediate consequence of remarks 4.1.8.4 and 4.1.8.19.

Proposition 4.1.8.23. The functor Ξ ∶ sC∞ringpc → sC∞PLog restricted to sC∞ringc takes values in sC∞Log.
Denoting the resulting functor sC∞ringc → sC∞PLog by ΞLog, the commuting diagram

sC∞ringc sC∞Log

sC∞ringpc sC∞PLog

ΞLog

Ξ

is a homotopy pullback diagram of ∞-categories.

The construction (A,Ac) ↦ (A,Ac → A≥0) implemented by the functors Ξ and ΞLog is obviously conservative.
Ξ and ΞLog also preserve limits and sifted colimits (as we will show shortly) so we might like to interpret them as
forgetful functors. The notion of a simplicial C∞-ring with corners appears prima facie strictly more structured
than a positive prelog simplicial C∞-ring, as Ξ forgets the C∞ information contained in Ac. When we restrict to
logarithmic structures however, we see that there is no loss of information at all.

Theorem 4.1.8.24. The functor ΞLog ∶ sC∞ringc → sC∞Log is an equivalence of ∞-categories.

As we will see, this result grants us control over the coCartesian morphisms of ι∗c , which reduces the computation
of limits and colimits in sC∞ringc to limits and colimits in sC∞ring and in ∞-categories of log structures. The proof
of theorem 4.1.8.24 requires a few prelimenaries. Our first order of business is to understand the relative left adjoint
to the inclusion sC∞Log ⊂ sC∞PLog. The following result is familiar from the usual theory of log structures on
monoids, albeit that the proof is somewhat more involved since we do not take recourse to point-set arguments.

Proposition 4.1.8.25. Denote by pLog the composition sC∞Log ⊂ sC∞PLog
p→ sC∞Log.

(1) The functor pLog is a Cartesian fibration and the inclusion sC∞Log ↪ sC∞PLog carries Cartesian edges to
Cartesian edges.
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(2) For each simplicial commutative monoid A, the fully faithful inclusion LogA ⊂ (sCMon)/A preserves sifted colimits
and admits a left adjoint.

(3) The inclusion sC∞Log ⊂ sC∞PLog admits a left adjoint relative to sC∞ring.

Proof. The proof of (1) amounts to the assertion that if M → A is a log structure on a simplicial commutative monoid
A and B → A is any morphism of simplicial commutative monoids, then B ×AM is a log structure on B, which is a
straightforward check. For (2), let M → A be a log structure, and consider the pushout diagram of prelog structures
over A:

M ×A A× A×

M N.
f

It suffices to show that N is a log structure over A and that restriction along the morphism f induces, for each log
structure M ′ → A, an equivalence

Hom(sCMon)/A(N,M ′) ≃Ð→ Hom(sCMon)/A(M,M ′).

The following assertion will enjoy verification at the end of the proof.

(∗) The diagram

0 0

N A.

is a pullback square of simplicial commutative monoids.

We have a diagram

N× N ×A A× A×

N N A.

g h

Both maps N× → N and N ×A A× → N are inclusions of connected components, so the map N× → N ×A A× is one as
well. We first show that the map h ○ g ∶ N× → A× is an equivalence. Consider the diagram

0 0 0

N× N ×A A× A×

N A.

The right upper square is a pullback diagram since the right outer rectangle is one, by (∗). Because the map
N× → N ×A A× is an inclusion of connected components, the upper rectangle is also a pullback diagram of simplicial
abelian groups, and therefore also a pullback diagram of connective spectra. Since the map N× → A× is an effective
epimorphism (i.e. 0-connective), the upper rectangle is also a pullback diagram of spectra. Then it is a pushout
diagram, so the map N× → A× is an equivalence. It follows that A× is a retract of N ×A A×. Choose an element
x ∈ π0(N ×AA×), then h(x) is invertible in π0(A×) so admits an inverse y. Consider the element z ∶= g((h○g)−1(y)) ∈
π0(A), then h(x + z) = h(x) + h(g((h ○ g)−1(y))) = h(x) + y, which is the unit. By (∗), we have h−1(0) = 0, so z is an
inverse of x. It follows that g and therefore also h is an equivalence. We now proceed by showing that the map on
morphism spaces induced by restricting along f induces an equivalence for each log structure M ′ → A. The relevant
map is the the upper horizontal one in a pullback diagram

Hom(sCMon)/A(N,M ′) Hom(sCMon)/A(M,M ′)

Hom(sCMon)/A(A×,M ′) Hom(sCMon)/A(M ×A A×,M ′)

of spaces, so it suffices to argue that the lower horizontal map is an equivalence. In fact, we claim that both the
domain and codomain of this map are weakly contractible. Note that both A× and M ×A A× lie in the image of
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the functor (sCMon)/A× → (sCMon)/A. From the adjunction (sCMon)/A× ⇆ (sCMon)/A we have for any L → A× an
equivalence Hom(sCMon)/A(L,M ′) ≃ Hom(sCMon)/A× (L,M

′ ×A A×). As M ′ is a log structure, the map M ′ ×A A× → A×

is an equivalence, so M ′ ×A A× is a final object in the ∞-category of prelog structures over A×, which proves our
claim. We have constructed a left adjoint to the inclusion LogA ⊂ (sCMon)/A, so (2) follows from the observation
that this inclusion is stable under sifted colimits, as sifted colimits are universal in sCMon.
It is an immediate consequence of (1), (2) and HA. prop. 7.3.2.6 that the inclusion sC∞Log ⊂ sC∞PLog admits a
left adjoint relative to sC∞ring.
We are left to prove assertion (∗). The diagram

M ×A A× A×

M A

of simplicial commutative monoids induces an M×AA×-bilinear (in the sense of [Lur17a], section 4.4.4) map M×A× →
A which is encoded by the simplicial object BarM×AA

×(M ×A A×,A×)● being equipped with an augmentation to A.
The map N → A can be identified with the canonical map ∣BarM×AA

×(M ×A A×,A×)●∣ → A. We have morphisms of
simplicial objects

BarM×AA
×(M,A×)●

α←Ð BarM×AA
×(M ×A A×,A×)●

βÐ→ BarM×AA
×(M ×A A×,0)●

induced by the (M ×A A×)-module morphisms M ×A A× →M and A× → 0; in particular, for each [n] ∈ ∆, we have
maps of spaces

M × (M ×A A×)×n ×A× ←ÐM ×A A× × (M ×A A×)×n ×A× Ð→M ×A A× × (M ×A A×)×n × ∗,

where the left map is an inclusion of connected components and the right map projects away the factor A×. The map
α ∶ BarM×AA

×(M ×A A×,A×)● → BarM×AA
×(M,A×)● fits as the left vertical map into a diagram

BarM×AA
×(M ×A A×,A×)● A×

BarM×AA
×(M,A×)● A.

α

Since both vertical maps are inclusions of connected components in each simplicial level, it follows from an easy check
on connected components that this diagram is a pullback diagram of simplicial objects. Since colimits are universal
in spaces, it suffices to show that the colimit of the simplicial object defined as the cone in the pullback diagram

BarM×AA
×(M ×A A×,A×)● ×A× 0 0

BarM×AA
×(M ×A A×,A×)● A×

of simplicial objects is contractible. The map A× → 0 induces a commuting diagram

BarM×AA
×(M ×A A×,A×)● A×

BarM×AA
×(M ×A A×,0)● 0.

β

Since the left vertical map projects away the factor A× in each simplicial level, this diagram is a pullback diagram.
It follows that the composite map

BarM×AA
×(M ×A A×,A×)●×A× Ð→ BarM×AA

×(M ×A A×,0)●

is an equivalence, as it is a pullback along the map 0 → 0. We conclude by observing that the augmented simplicial
object BarM×AA

×(M ×A A×,0)● → 0 is a colimit diagram.
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Remark 4.1.8.26. The proof above gives an explicit description of the value of the left adjoint sC∞PLog → sC∞Log
on a prelog structure M → A≥0 as the pushout

M ×A≥0 A×
≥0 A×

≥0

M N.
f

If a log structure N → A≥0 fits into a pushout diagram as above, we say that f exhibits N as a logification of M (with
respect to some simplicial commutative monoid A≥0). We denote the resulting left adjoint, the logification functor
by LLog ∶ sC∞PLog → sC∞Log. Also note that in virtue of theorem 4.1.8.24, a map (A,Ac)→ (B,Bc) is coCartesian
precisely if Ac → Bc exhibits a logification in the ∞-category of prelog structures over B≥0.

At this point, we give criteria for the recognition of limits and colimits in sC∞PLog. we need the following lemma
concerning pushforwards of relative colimits along coCartesian edges.

Lemma 4.1.8.27. Let p ∶ C → D be a categorical fibration, let K be a simplicial set and let J 0 ∶K⊳ → C be a p-colimit
diagram. Denote D = pJ 0(∞) and let e ∶ D → D′ be a map in D, which induces a diagram h ∶ K ⋆ ∆1 → D since
the projection D/e → D/D is a trivial Kan fibration. Denote by J the restriction J 0∣K and suppose we are given a
diagram

K C

K ⋆∆1 D.

J

p

h

J

such that J ∣K⋆∆{0} = J 0. Then the diagram J 1 ∶= J ∣K⋆∆{1} ∶ K⊳ → C is a p-colimit diagram if and only if J ∣∆1 is a
p-coCartesian lift of e starting at J 0(∞).

Remark 4.1.8.28. This result is somewhat orthogonal to proposition 4.1.3.9 of [Lur17b], where instead the cone
point is fixed and the diagram K → C is moved.

Proof. Since we have isomorphisms of simplicial sets K ×K⋆∆1 K ⋆∆1
/i ≅K for i ∈ ∆1 and the functors

K⊳ =K ⋆∆{0} ↪Ð→K ⋆∆1 JÐ→ C

and

K⊳ =K ⋆∆{1} ↪Ð→K ⋆∆1 JÐ→ C

coincide with the functors J 0 and J 1 respectively, we see that J is a p-left Kan extension of J if and only if J 1 is
a p-colimit diagram. By transitivity of p-left Kan extensions ([Lur17b], prop. 4.3.2.8), J is a p-left Kan extension of
J if and only if J is a p-left Kan extension of J 0, which in turn is equivalent to the diagram

K⊳ C

(K⊳)⊳ D.

J 0

p
J

being a p-colimit diagram. Since the inclusion ∆0 ↪ K⊳ of the cone point is left cofinal, we deduce that the right
square in the diagram

∆0 K⊳ C

∆1 (K⊳)⊳ D.

J 0

p
J

is a p-colimit diagram if and only if the outer rectangle is, which corresponds precisely to the edge J ∣∆1 ∶ ∆1 → C
being p-coCartesian.

Lemma 4.1.8.29. The following hold true.

(1) The functor p ∶ sC∞PLog → sC∞ring preserves all limits and colimits.
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(2) The functor

evPLog ∶ sC∞PLog Ð→ Fun(∆1, sCMon)
ev{0}Ð→ sCMon

preserves all limits and colimits.

Proof. Only the statements involving colimits are not immediate. Since p is a presentable fibration over a presentable
base, p preserves colimits. Now choose a small diagram f ∶ K → sC∞PLog, then we wish to show that the map
colim evPLog ○f → evPLog(colim f) is an equivalence. Let G denote the functor sC∞PLog → Fun(∆1, sCMon). Since an

edge ∆1 → Fun(∆1, sCMon) is ev{1}-coCartesian if and only if the composition ∆1 → Fun(∆1, sCMon)
ev{0}→ sCMon is

an equivalence, we are required to show that the map colimGf → G(colim f) is a coCartesian edge of Fun(∆1, sCMon).
Choose a colimit diagram pf ∶K⊳→sC∞ring extending K

f→ sC∞PLog
p→ sC∞ring and choose an ev{1}-colimit as the

dotted lift in the diagram

K Fun(∆1, sCMon)

K⊳ sCMon,

Gf

ev{1}Ĝf

( )≥0pf

then the induced diagram

K sC∞PLog

K⊳ sC∞ring,

f

p

pf

is a p-colimit diagram and, since pf is a colimit diagram, the dotted lift is also a colimit diagram extending f . Choose
a colimit diagram Gf ∶ K⊳ → Fun(∆1, sCMon), then we have a diagram K ⋆ ∆1 → Fun(∆1, sCMon), unique up to
contractible ambiguity, such that the restriction to K equals Gf and the restriction to ∆1 is a map Gf(∞)→ Ĝf(∞)
which we can identify with the canonical map colimGf → G(colim f). Moreover, as ev{1} preserves colimits, the

diagram ev{1}Gf is a colimit diagram, so Gf is an ev{1}-colimit diagram as well. We obtain a commuting diagram

K Fun(∆1, sCMon)

K ⋆∆1 sCMon.

Gf

ev{1}

such that the diagonal map becomes an ev{1}-colimit diagram when restricted to both K ⋆ ∆{0} and K ⋆ ∆{1}, so
lemma 4.1.8.27 guarantees that the diagonal map restricted to ∆1 is an ev{1}-coCartesian edge.

Corollary 4.1.8.30. The functor p × evPLog ∶ sC∞PLog → sC∞ring × sCMon is conservative and preserves all limits
and colimits.

Corollary 4.1.8.31. The inclusion sC∞Log ⊂ sC∞PLog preserves filtered colimits; in other words, the localization
LLog is ω-accessible.

Proof. Let J ∶K → sC∞Log be filtered diagram and denote by (A,M → A≥0) a colimit of J . According to the proof
of lemma 4.1.8.29, we have a commuting diagram

colim i∈JMi M

colim i∈J (Ai)≥0 A≥0

≃

in sCMon. Since the functor sCMon/(A×≥0→A≥0)
→ sCMon/A≥0 is fully faithful and for each i ∈ K, the composition

(Ai)×≥0 → A≥0 factors through A×
≥0, there is a map colim i∈J (Ai)×≥0 → A×

≥0 fitting into a commuting diagram

colim iMi ×(Ai)≥0 (Ai)×≥0 colim i(Ai)×≥0 A×
≥0

colim iMi colim i(Ai)≥0 A≥0

≃

γ
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where the indicated map γ is an inclusion of connected components. Here, the upper left map is a colimit of
equivalences and therefore an equivalence. As filtered colimits commute with finite limits in sCMon, the left square
is a pullback. It suffices to show that the right square is a pullback and that the upper right map is an equivalence.
Using the natural transformation A≥0 → A of remark 4.1.8.19, we deduce the existence of a commuting diagram

colim i(Ai)×≥0 A×
≥0

colim i(Ai)≥0 A≥0

colim iAi A

γ

δ

As the composition δ ○ γ is also an inclusion of components, it is clear that the outer square is a pullback so that the
upper horizontal map is an equivalence. We will be done once we show that x ∈ colim i(Ai)≥0 lies in the image of γ
if and only if x is invertible in A. Suppose x factors through some (Ai)≥0. The ‘only if’ direction is obvious, and in
the other direction we see that there must be some j such that x−1 ∈ Aj . Choose an upper bound k for {i, j} ⊂ K,
then x is invertible in Ak and therefore also in (Ak)≥0 since we have (Ak)×≥0 ≃ (Ak)≥0 ×Ak A×

k, so x lies in the image
of γ as required.

Proposition 4.1.8.32. The functor Ξ of construction 4.1.8.15 has the following properties.

(1) Ξ is conservative.

(2) Ξ preserves limits and sifted colimits.

(3) Ξ is monadic.

(4) Let Υ be a left adjoint to Ξ, then for each (A,M → A≥0), the unit map (A,M → A≥0)→ ΞΥ(A,M → A≥0) maps
to an equivalence under p.

(5) Ξ is a left Kan extension and a p-left Kan extension of its restriction to the image of j ∶ CartSpopc ↪ sCringc.

Proof. Consider the functor ρ ∶ sC∞PLog → S × S obtained by taking the product of the functors

sC∞PLog
pÐ→ sC∞ring

ev{R}Ð→ S

and

sC∞PLog
evPLogÐ→ sCMon

evZ≥0Ð→ S.
Then ρ is conservative and preserves limits and sifted colimits by lemma 4.1.8.29. We have a commuting diagram

sC∞ringpc sC∞PLog

S × S

Ξ

evR×evR≥0
ρ

of ∞-categories. Since the left diagonal map is conservative and preserves limits and sifted colimits, we deduce (1)
and (2). Note that (3) is an immediate consequence (1) and (2), the presentability of both sC∞ringpc and sC∞PLog
and Lurie’s Barr-Beck theorem. To prove (4), [Lur17a], prop. 7.3.2.6 guarantees that it suffices to show that for each
A ∈ sC∞ring, the functor ΞA between the fibres at A admits a left adjoint since Ξ preserves Cartesian edges. Suppose
q ∶ C → D is a presentable fibration and D ∈ D an object, then a diagram K⊳ → CD where K is weakly contractible is
a colimit diagram if and only if it is a q-colimit diagram if and only if it is a colimit diagram in C. As Ξ preserves
sifted colimits, it follows that ΞA also preserves sifted colimits for each A ∈ sC∞ring. To conclude that ΞA admits
a left adjoint, it suffices to prove that ΞA preserves limits, by the adjoint functor theorem and the presentability of
the fibres. This follows from the following relative version of assertion (∗∗) of proposition 4.1.6.7, the proof of which
uses the same techniques and is left to the reader.

(∗) Let p ∶ C → D and q ∶ C′ → D be coCartesian fibrations among ∞-categories and let f ∶ C → C′ be a morphism
in coCartD. Let K be a simplicial set and let g ∶ K → CD be a diagram in the fibre over some object D ∈ D.
Let iD ∶ CD ⊂ C denote the inclusion, and suppose that the induced diagram iDg ∶ K → C admits a colimit and
that p and f preserve the colimit of iDg. Then the diagram g admits a colimit and the functor fD ∶ CD → C′D
preserves this colimit.
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Note that (5) follows immediately from [Lur17b], prop. 5.5.8.15.

Corollary 4.1.8.33. The localization sC∞ringc ⊂ sC∞ringpc is an ω-accessible localization. In particular, sC∞ringc
is compactly generated.

Proof. It suffices to show that the inclusion sC∞ringc ⊂ sC∞ringpc preserves filtered colimits. To see this, combine
propositions 4.1.8.23 and 4.1.8.32 and corollary 4.1.8.31.

The functor ( )≥0 ∶ sC∞ring → sCMon does not preserve filtered colimits (it only preserves κ-filtered colimits
for regular cardinals κ for which C∞(R≥0) is κ-compact in sC∞ring; such a cardinal is necessarily uncountable
by Tougeron’s flat function lemma), so we cannot conclude that sC∞PLog is compactly generated solely from the
knowledge that it arises as a pullback of compactly generated presentable ∞-categories. Nevertheless, we have the
following result.

Proposition 4.1.8.34. The ∞-category sC∞PLog is the ∞-category of algebras for a 2-sorted Lawvere theory (in
particular, sC∞PLog is compactly generated). More precisely, consider the wide subcategory CartSp⊳c ⊂ CartSp whose
morphisms are interior b-maps f ∶ Rn ×Rk≥0 → Rm ×Rj≥0 that satisfy the following condition.

(∗) f pulls back every boundary defining function of Rm × Rj≥0 to a product of boundary defining functions on

Rn ×Rk≥0.

We may repeat construction 4.1.8.15 for CartSp⊳c , which results in a functor Ξ⊳. Then the functor Ξ⊳ induces an
equivalence

sC∞ring⊳pc
≃Ð→ sC∞PLog.

Proof. It follows from proposition 4.1.1.3 that the ∞-category sC∞ring × sCMon is the ∞-category of algebras for
the 2-sorted Lawvere theory CartSp × FCMonop. It follows from corollary 4.1.8.30 and [Lur17a], prop. 7.1.4.12 that
sC∞PLog is generated under sifted colimits by the essential image of the map

N(CartSp)op ×N(FCMon) j
↪Ð→ sC∞ring × sCMon

FÐ→ sC∞PLog,

which consists of compact projective objects, where F is a left adjoint to p × evPLog. Let Top ⊂ sC∞PLog denote
this essential image which is equivalent to its full subcategory spanned by objects of the form (C∞(Rn≥0 ×Rk),Zn≥0 →
C∞
≥0(Rn≥0 × Rk)), then T is a 2-sorted Lawvere theory and the full subcategory inclusion Top ⊂ sC∞PLog induces

an equivalence sTAlg ≃ sC∞PLog. We are left to show that the functor Ξ⊳ is an equivalence. Since Ξ⊳ is a right
adjoint that preserves sifted colimits, its left adjoint V ∶ sC∞PLog → sC∞ring⊳pc carries Top into the full subcategory
C0 ⊂ sC∞ring⊳pc spanned by compact projective objects, which contains N(CartSp⊳). It suffices to show that the
resulting functor T→ Cop0 factors through N(CartSp⊳) as an equivalence. To see it is essentially surjective, note that
the diagram

sC∞ring⊳pc sC∞PLog

sC∞ring × sCMon.
ι∗c×evR≥0

Ξ⊳

p×evPLog

induces a diagram

Cop0 T

N(CartSp) ×N(FCMonop).

so we conclude using that N(CartSp) ×N(FCMonop) → Cop0 factors through N(CartSp⊳c) as an essentially surjective
functor. For fully faithfulness, we note that proposition 4.1.8.32 establishes that Ξ⊳ is a right adjoint relative to
sC∞ring, so we have a natural equivalence ι∗c ○ V ≃ p which yields for each pair of objects A ∶= (C∞(Rn ×Rk≥0),Zk≥0 →
C∞
≥0(Rn ×Rk≥0)) and B ∶= (C∞(Rm ×Rj≥0),Z

j
≥0 → C∞

≥0(Rm ×Rj≥0)) a commuting diagram

HomsC∞ring⊳c(j(R
n ×Rk≥0), j(Rm ×Rj≥0)) HomsC∞PLog(A,B)

HomsC∞ring(C∞(Rn ×Rk≥0),C∞(Rm ×Rj≥0))

of 0-truncated spaces (the upper right space is 0-truncated by remark 4.1.8.20). The result will thus be established
if we can argue that on connected components, both diagonal maps are injective and have the same image, which is
a direct inspection.
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Remark 4.1.8.35. In view of proposition 4.1.8.34, the functor Ξ ∶ sC∞ringpc → sC∞PLog can be identified with the
functor sC∞ringpc → sC∞ring⊳pc given by the subcategory inclusion CartSp⊳c → CartSpc.

Remark 4.1.8.36. The reasoning applied in this subsection is valid in algebraic (derived) logarithmic geometry
as well, showing that the ∞-category of simplicial prelog rings over some commutative ring k is also projectively
generated.

The main observation not of formal nature underlying theorem 4.1.8.24 is contained in the following lemma.

Lemma 4.1.8.37. Let M be a manifold with faces and let H1(M) be the set of connected boundary components.

Consider the map eM ∶ ZH1(M)

≥0 → C∞
≥0(M) of commutative monoids induced by the map of sets H1(M) → C∞

≥0(M)
carrying the boundary component S to a function defining S. Then eM takes values in the submonoid of interior
b-maps and the commuting triangle

ZH1(M)

≥0 C∞
b (M)

C∞
≥0(M)

eM

exhibits C∞
b (M) ⊂ C∞

≥0(M) as the logification of eM ∶ ZH1(M)

≥0 → C∞
≥0(M).

Proof. Clearly, functions defining boundary components on M are interior b-maps. Consider the diagram

0 C∞
>0(M) C∞

>0(M)

ZH1(M)

≥0 C∞
b (M) C∞

≥0(M)

of commutative monoids. It is easy to see that both squares are pullbacks, so it suffices to show that the left
square is also a pushout of simplicial commutative monoids; that is, the maps Z

H1(M)

≥0 → C∞
b (M) and C∞

>0(M) →
C∞
b (M) exhibit C∞

b (M) as a coproduct of ZH1(M)

≥0 and C∞
>0(M). The symmetric monoidal structure on sCMon is

coCartesian and the symmetric monoidal structure on S is Cartesian, so after unwinding definitions, we are reduced
to producing an equivalence of spaces C∞

b (M) ≃ ZH1(M)

≥0 × C∞
>0(M) (which is just a bijection of sets in this case)

such that the induced maps C∞
>0(M) → C∞

>0(M) and ZH1(M)

≥0 → ZH1(M)

≥0 are equivalent to the identity, and the maps

C∞
>0(M) → ZH1(M)

≥0 and ZH1(M)

≥0 → C∞
>0(M) are equivalent to the zero morphism. We get the desired bijection of

sets C∞
b (M) ≅ ZH1(M)

≥0 × C∞
>0(M) from the observation that every interior b-map f ∶ M → R≥0 can be written as

hm1
S1

. . . hmnSn g with a unique g ∈ C∞
>0(M) and a unique tuple (hS)H1(M) ∈ ZH1(M)

≥0 , the indicated coefficients associated
to the {Sj} being the only ones that are nonzero.

Corollary 4.1.8.38. The composition sC∞ringpc
Ξ→ sC∞PLog

LLog→ sC∞Log preserves all colimits.

Proof. As LLog preserves colimits and Ξ preserves sifted colimits, the composition LLogΞ is a left Kan extension of its
restriction to the essential image of the Yoneda embedding j ∶ N(CartSpc)op ↪ sC∞ringpc, so it suffices to show that
the composition LLogΞj preserves coproducts. Contemplate the commuting diagrams

(C∞(Rn≥0 ×Rk),Zn≥0 → C∞
≥0(Rn≥0 ×Rk)) (C∞(Rn+m≥0 ×Rk+l),Zn+m≥0 → C∞

≥0(Rn+m≥0 ×Rk+l))

(C∞(Rn≥0 ×Rk),C∞
b (Rn≥0 ×Rk)→ C∞

≥0(Rn≥0 ×Rk)) (C∞(Rn+m≥0 ×Rk+l),C∞
b (Rn+m≥0 ×Rk+l)→ C∞

≥0(Rn+m≥0 ×Rk+l))

α

γ

α′

and

(C∞(Rn+m≥0 ×Rk+l),Zn+m≥0 → C∞
≥0(Rn+m≥0 ×Rk+l)) (C∞(Rm≥0 ×Rl),Zm≥0 → C∞

≥0(Rm≥0 ×Rl))

(C∞(Rn+m≥0 ×Rk+l),C∞
b (Rn+m≥0 ×Rk+l)→ C∞

≥0(Rn+m≥0 ×Rk+l)) (C∞(Rm≥0 ×Rl),C∞
b (Rm≥0 ×Rl)→ C∞

≥0(Rm≥0 ×Rl)).

γ

β

β′

We wish to show that the maps α′ and β′ exhibit a coproduct in sC∞Log. Using corollary 4.1.8.30, we deduce
that the maps α and β exhibit a coproduct in sC∞PLog as the underlying diagram of C∞-rings and the underlying
diagram of (finitely generated free) simplicial commutative monoids exhibit a coproduct. In virtue of lemma 4.1.8.37,
the vertical maps in the diagrams above exhibit logifications, so we conclude by observing that logification, as a left
adjoint, preserves coproducts.
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Lemma 4.1.8.39. The composition

sC∞ring
ιc!Ð→ sC∞ringpc

ΞÐ→ sC∞PLog
LLogÐ→ sC∞Log

is equivalent to the composition

sC∞ring
sÐ→ sC∞PLog

LLogÐ→ sC∞Log,

where s is a left adjoint to p ∶ sC∞PLog → sC∞ring.

Proof. Consider the full subcategory C ⊂ FunsC∞ring(sC∞ring, sC∞Log) spanned by sections F satisfying the following
conditions.

(1) F preserves sifted colimits.

(2) For each n ≥ 0, F carries the object C∞(Rn) to an initial object in the fibre over C∞(Rn).

Sections satisfying (1) are precisely left Kan extensions of their restriction along the full subcategory inclusion
N(CartSp)op ⊂ sC∞ring so this restriction induces an equivalence between C and the full subcategory of

FunN(CartSp)op(N(CartSp)op,N(CartSp)op ×sC∞ring sC
∞Log)

spanned by sections f that carry each object of N(CartSp)op to an initial object in the fibre. The projection
q ∶ N(CartSp)op ×sC∞ring sC

∞Log → N(CartSp)op is a Cartesian fibration, so each such functor is a left adjoint to q.
It follows that the set of equivalence classes of objects of C consists of a single element. We conclude by observing
that both functors in the statement of the lemma satisfy (1) and (2).

Lemma 4.1.8.40. The functor ΞLog ∶ sC∞ringc → sC∞Log preserves all colimits.

Proof. It suffices to argue that LLogΞ carries the set S = {φ} of definition 4.1.8.3 into the set of equivalences of sC∞Log,
as it then follows from the universal property of cocontinuous localizations that the functor LLogΞ factors through
sC∞ringc as a colimit preserving functor. Since Ξ restricted to sC∞ringc takes values in sC∞Log, we consequently
deduce that ΞLog is equivalent to LLogΞ and therefore preserves colimits.
The functor LLogΞ ∶ sCringpc → sC∞Log preserves colimits by corollary 4.1.8.38 so it carries the pushout diagram

ιc!ι
∗
c(C∞(R≥0),C∞

b (R≥0)) (C∞(R≥0),C∞
b (R≥0))

ιc!ι
∗
c(C∞(R>0),C∞

b (R>0)) A

ε

of definition 4.1.8.3 to a pushout diagram in sC∞Log. It follows from lemma 4.1.8.39 that the pushout diagram above
is carried to a pushout diagram

(C∞(R≥0),C∞
≥0(R≥0)× → C∞

≥0(R≥0)) (C∞(R≥0),C∞
b (R≥0)→ C∞

≥0(R≥0))

(C∞(R>0),C∞
≥0(R>0)× → C∞

≥0(R>0)) LLogΞ(A),

where the left vertical map is a coCartesian morphism between initial log structures. Since the functor sC∞Log →
sC∞ring preserves colimits, the map on underlying simplicial C∞-ring of the lower horizontal map in the diagram
above is an equivalence. Since the left vertical map is a pLog-coCartesian edge and the diagram is a pLog-pushout,
the right vertical map is also pLog-coCartesian. Therefore, we are reduced to verifying that the logification of
(C∞(R>0),C∞

b (R≥0)→ C∞
≥0(R>0)) is the initial log structure. Consider the pullback diagram

M C∞
>0(R>0)

C∞
b (R≥0) C∞

≥0(R>0).

Recalling the description of the logification functor, we wish to show that the map C∞
>0(R>0)→ C∞

>0(R>0)∐M C∞
b (R≥0)

is an equivalence. It is sufficient to argue that the left vertical map in the diagram above is an equivalence, which
is equivalent to the assertion that if f ∶ R≥0 → R≥0 is an interior b-map, then the restriction f ∣R>0 factors through
R>0 ↪ R≥0, but this holds by definition of interior b-maps.
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Proof of theorem 4.1.8.24. Let F denote a left adjoint to ΞLog. Since ΞLog is conservative, it suffices to argue that
the unit transformation id → ΞLogF is an equivalence. Since both ΞLog and F preserve colimits and the objects
LLog(C∞(Rn≥0 ×Rk),Zn≥0 → C∞

≥0(Rn≥0 ×Rk)) generate sC∞Log under sifted colimits, we need only check that the unit
is an equivalence on this collection of objects. It follows from (the proof of) lemma 4.1.8.40 that Ξ carries the strong
saturation S of the set S = {φ} to the set of maps in sC∞PLog that become an equivalence after applying LLog. In
particular, for any localization X → L(X) in sC∞ringpc, the map Ξ(X) → ΞL(X) ≃ ΞLogL(X) in sC∞PLog, whose
codomain lies in sC∞Log, becomes an equivalence upon logifying and is therefore also a localization, that is, the
diagram

sC∞ringc sC∞Log

sC∞ringpc sC∞PLog

ΞLog

Ξ

is vertically left adjointable. Then the resulting commuting diagram

sC∞ringc sC∞Log

sC∞ringpc sC∞PLog

ΞLog

Ξ

L LLog

is tautologically vertically right adjointable, and therefore also horizontally left adjointable, that is, the logification
functor carries unit transformations of the lower adjunction to unit transformations of the upper one. It follows from
proposition 4.1.8.34 that the object (C∞(Rn≥0 ×Rk),C∞

b (Rn≥0 ×Rk)) together with the triangle

Zn≥0 C∞
b (Rn≥0 ×Rk)

C∞
≥0(Rn≥0 ×Rk)

en

is a unit transformation at (C∞(Rn≥0 ×Rk),Zn≥0 → C∞
≥0(Rn ×Rk)). This map exhibits a logification by lemma 4.1.8.37

and is therefore carried to an equivalence by LLog.

We now turn to the proof of theorem 4.1.8.11.

Lemma 4.1.8.41. Let T be a Lawvere theory and let sTAlg be the associated ∞-category of algebras. Let S be
small set of morphisms in sTAlg and denote by sTAlg[S−1] ⊂ sTAlg the strongly reflective full subcategory spanned by
S-local objects. Let C be an idempotent complete ∞-category that admits finite limits and denote by Funπ(T,C)[S−1] ⊂
Funπ(T,C) the full subcategory spanned by functors F ∶ T→ C for which the following condition is satisfied.

(∗) For each object C ∈ C, the composition

T
FÐ→ C HomC(C, )Ð→ S

is S-local in sTAlg.

Suppose that the inclusion sTAlg[S−1] ⊂ sTAlg preserves filtered colimits, then restriction along the functor Top
j↪

sTAlg
L→ sTAlg[S−1] induces an equivalence

Funlex(sTAlg[S−1]opfp ,C)
≃Ð→ Funπ(T,C)[S−1].

Proof. The Yoneda embedding j ∶ C ↪ PShv(C) induces a commuting diagram

Fun′(sTAlg[S−1]op,C) Funlex(sTAlg[S−1]opfp ,C) Funπ(T,C)

Fun′(sTAlg[S−1]op,PShv(C)) Funlex(sTAlg[S−1]opfp ,PShv(C)) Funπ(T,PShv(C))(Lj)∗

where Fun′(sTAlg[S−1]op,C) and Fun′(sTAlg[S−1]op,PShv(C)) denote full subcategories of functors preserving small
limits. As PShv(C) admits small limits and the ∞-category sTAlg[S−1] is compactly generated in virtue of the
assumption that the inclusion sTAlg[S−1] ⊂ sTAlg preserves filtered colimits, the lower left horizontal restriction

Fun′(sTAlg[S−1]op,PShv(C)) ≃Ð→ Funlex(sTAlg[S−1]opfp ,PShv(C))
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is an equivalence after remark 4.1.1.23. The composition Fun′(sTAlg[S−1]op,PShv(C)) → Funπ(T,PShv(C)) factors
via the restriction

r ∶ Fun′S(sTAlg,PShv(C))Ð→ Funπ(T,PShv(C)),

where Fun′S(sTAlg,PShv(C)) is the full subcategory spanned by limit preserving functors F ∶ sTAlgop → PShv(C) car-
rying the set S to into the set of equivalences of PShv(C). This is the case for such a functor F if and only if for each C ∈
C, the functor evC ○F ∶ sTAlgop → S carries the set S into the set of equivalences in S, but since evC ○F preserves limits
and is therefore representable, this corresponds to the associated representing object A ∈ sTAlg being S-local. Let
Funπ(T,PShv(C))[S−1] be the full subcategory spanned by limit preserving functors F such that evC○F ∶ sTAlgop → S
carries the set S into the set of equivalences in S. Since the representing object A of evC ○ F may be identified with
the functor evC ○F ○ j, we conclude that the restriction r takes values in Funπ(T,PShv(C))[S−1] and determines an
equivalence Fun′S(sTAlg,PShv(C)) ≃ Funπ(T,PShv(C))[S−1]. It follows that the restriction (Lj)∗ factors up to homo-
topy through Funπ(T,PShv(C))[S−1] and is an equivalence onto its essential image, but as Funπ(T,PShv(C))[S−1] ⊂
Funπ(T,PShv(C)) is a replete full subcategory, (Lj)∗ itself factors through Funπ(T,PShv(C))[S−1] and determines
an equivalence Funlex(sTAlg[S−1]opfp ,PShv(C)) ≃ Funπ(T,PShv(C))[S−1]. Since we have an isomorphisms of simpli-

cial sets Funπ(T,PShv(C))[S−1] ×Funπ(T,PShv(C)) Funπ(T,C) ≅ Funπ(T,C)[S−1], we deduce that restriction along jL
induces the top horizontal map in the commuting diagram

Funlex(sTAlg[S−1]opfp ,C) Funπ(T,C)[S−1]

Funlex(sTAlg[S−1]opfp ,PShv(C)) Funπ(T,PShv(C))[S−1].≃

By assumption on C, the essential image of the Yoneda embedding is stable under finite limits and retracts in
PShv(C), so using that every object of sTAlg[S−1]opfp is a retract of a finite limit of objects in the essential image of

T→ sTAlg
L→ sTAlg[S−1] we conclude that the top horizontal map is an equivalence.

Proof of theorem 4.1.8.11 (i), (ii), (iii). We verify the claims made in the statement of the theorem.

(i) The ∞-category sC∞ringc is compactly generated. This was checked in corollary 4.1.8.33.

(ii) Definition 4.1.8.9 determines the structure of a geometry on Gder
Diffc. We need to check that admissible morphisms

are stable under pullbacks, retracts and that, if g is admissible and h another map with codomain the domain
of g, then h is admissible if and only if g ○ h is admissible. Since localizations are stable under pushouts
of simplicial C∞-rings and the functor ι∗c preserves colimits, it suffices to show that a pushout in sC∞ringc
along a ι∗c -coCartesian morphism is again ι∗c -coCartesian. This is the case since all colimits in sC∞ringc
are ι∗c -colimits. Similarly, we know that localizations of morphisms of simplicial C∞-rings are stable under
retracts, so we conclude that admissible morphisms in Gder

Diffc are stable under retracts from the observation
that coCartesian morphisms are (which in turn follows from the fact that pullback squares are stable under
retracts). Repeating this line of argument once more, we obtain the last verification from the corresponding
verification for localizations, together with [Lur17b], prop. 2.4.1.7.

(iii) The inclusion T ′Diffc → Gder
Diffc exhibits a geometric envelope. Choose an idempotent complete ∞-category admit-

ting finite limits, then we have a commuting diagram

Funad(T ′Diffc,C)

Funlex(Gder
Diffc,C) Funπ(N(CartSpc),C)[S−1].

θ′′θ

θ′

Note that the restriction functor θ′′ indeed takes values in Funπ(N(CartSpc),C)[S−1]: composing with the
functor HomC(C, ) ∶ C → S, we may replace C by S and Funπ(N(CartSpc),C)[S−1] by sC∞ringc. We note that
Funad(T ′Diffc,S) is an ω-accessible localization of PShv(T ′opDiffc) and that restriction along N(CartSpc) → T ′Diffc

induces the functor θ′′ ∶ Funad(T ′Diffc,S) → sC∞ringpc which preserves limits and filtered colimits. To conclude
that θ′′ factors through sC∞ringc, we need to show that its left adjoint F carries S′ of remark 4.1.8.5 into the
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set of equivalences of Funad(T ′Diffc,S). We have a commuting diagram

N(CartSp)op T
′op

Diffc

PShv(N(CartSp)op) PShv(T
′op

Diffc)

sC∞ringpc Funad(T ′Diffc,S)

j j

F

where the lower square is obtained by passing to left adjoints in the square

PShv(N(CartSp)op) PShv(T
′op

Diffc)

sC∞ringpc Funad(T ′Diffc,S)

where the horizontal functors are induced by pulling back along N(CartSp) → T ′Diffc. It follows that F carries
the map in S′ to the lower horizontal one in the pushout diagram

j(R) j(R≥0)

j(R) A,

j(exp)

φ

but the Yoneda embedding j ∶ T ′opDiffc → Funad(T ′Diffc,S) preserves pushouts along admissible maps, so φ is indeed
an equivalence. It follows from lemma 4.1.8.41 that the functor θ′ is an equivalence, so it suffices to show that
the functor θ′′ is an equivalence. By replacing C with the ∞-category of presheaves on C, we may suppose that
C is an ∞-topos. Invoking [Lur17b], prop. 4.3.2.15, it suffices to show the following.

(1) The right Kan extension of each functor F ∈ Funπ(N(CartSpc),X )[S−1] along N(CartSpc) ↪ T ′Diffc is a
T ′Diffc-structure.

(2) Every T ′Diffc-structure is a right Kan extension of its restriction to N(CartSpc).

In fact, (2) is obvious from the definition of T ′Diffc. To establish (1), consider the diagram

N(CartSpc) X

T ′Diffc

sC∞ringopc

sC∞ringoppc

F

F̂

where F̂ is a right Kan extension of F along the vertical inclusion. It follows from lemma 4.1.8.41 that F̂

preserves limits and carries S into the set of equivalences of X , so the composition T ′Diffc ↪ sC∞ringpc
F̂→ X is

a T ′Diffc-structure. Since the vertical maps are fully faithful, this functor is also a right Kan extension of F .

Before we complete the proof of theorem 4.1.8.11, we remark on the discrepancy between TDiffc and T ′Diffc. The
pregeometry T ′Diffc is not equivalent to TDiffc, nor does the functor (C∞( ),C∞

b ( )) ∶ TDiffc → sC∞ringc take values in
(Gder

Diffc)op. Indeed, we have the following alternative.

Lemma 4.1.8.42. Let M be a manifold with faces, then (C∞(M),C∞
b (M)) is a compact object in sC∞ringc if and

only if M has finitely many connected boundary components.
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Proof sketch. First, consider M a manifold with faces with infinitely many boundary components. Lemma 4.1.8.37
shows that there is an equivalence C∞

b (M) ≅ ZM1(M)∐C∞
≥0(M)×, where M1(M) is the set of connected boundary

components of M . It follows that the sharpening of C∞
b (M) is infinitely generated so, as the simplicial commutative

monoid associated to any finitely generated simplicial C∞-rings with corners has finitely generated sharpening, the
object (C∞(M),C∞

b (M)) cannot be compact in sC∞ringc. The converse follows from the following assertions.

(∗) For every manifold with faces M , there exists an interior b-map M ↪ Rn × Rk≥0 which is a a p-embedding of
manifolds with corners (see [Mela]).

(∗∗) Let S ⊂M be a p-embedded submanifold, then S admits a tubular neighbourhood.

To prove (∗), we use the boundary flowout map M ↪M○ to embed M into its interior, and then apply the Whitney
embedding theorem to embed M○ into Rn for some n >> 1 resulting in a closed embedding f ∶ M ↪ Rn. Choose a
finite complete set of boundary defining functions {ρH}H∈M1(M), then the map f∏H∈M1(M) ρH ∶M → Rn ×Rk≥0 with
k = ∣M1(M)∣ is a embedding. The fact that every p-embedded submanifold admits a tubular neighbourhood is proven
verbatim as in the case without corners.

Remark 4.1.8.43. A similar argument as the one presented in the previous lemma yields that every object
(C∞(U),M → C∞

≥0(U)) in T ′Diffc must have finitely generated sharpening, but it is certainly possible that as an
open subset U ⊂ Rn≥0 ×Rk has infinitely many boundary components, so admissible morphisms in Gder

Diffc may not ‘cre-
ate’ sufficiently many boundary defining functions. Both these issues disappear when we apply the spectrum functor
Specc, since every manifold with faces may always be covered by opens that admit an embedding U → Rn≥0 ×Rk onto
a connected open subset.

To complete the proof of theorem 4.1.8.11, we investigate the spectrum functor associated to the geometry Gder
Diffc.

We note that the results in this subsection hold for any truncation of sC∞ringc; in particular, the category C∞ringc
is compactly generated and the functor C∞ringc → C∞ring is a presentable fibration equivalent to C∞Log → C∞ring.
Let GDiffc be the opposite of the category N(τ≤0sC

∞ringc)fp ≃ N(C∞ringc)fp, and endow GDiffc with the structure of
a geometry according to definition 4.1.8.9 (this indeed defines a geometry by the proof of theorem 4.1.8.11 (ii)). The
truncation functor

τ≤0 ∶ Gder
Diffc Ð→ GDiffc

exhibits a 0-stub: this follows from lemma 4.1.8.41 and the following result.

Lemma 4.1.8.44. Let (A,Ac) be a simplicial C∞-ring with corners, then the functor

(sC∞ringopc )ad
/(A,Ac) Ð→N(C∞ringopc )ad

/π0(A,Ac)

is an equivalence.

Proof. By definition of admissible morphisms in sC∞ringc and C∞ringc, we have a commuting diagram

(sC∞ringopc )ad
/(A,Ac)

N(C∞ringopc )ad
/π0(A,Ac)

(sC∞ringop)ad
/A N(C∞ringop)ad

/π0(A)

among ∞-categories. The lower horizontal functor is an equivalence by corollary 4.1.3.15, and the vertical functors
are Cartesian fibrations with contractible fibres.

Corollary 4.1.8.45. (1) The functor T ′Diffc ↪ GDiffc exhibits a 0-truncated geometric envelope.

(2) The functor LTop(GDiffc) → LTop(Gder
Diffc) is fully faithful and its essential image consists of those (X ,OX ) for

which

OX ∶ Gder
Diffc Ð→ X

is a local Gder
Diffc-structure taking 0-truncated values in X .

(3) The relative spectrum SpecGDiffc

Gder
Diffc

admits the following description: given a T ′Diffc-structure OX , consider the

T ′Diffc-structure τX≤0OX , then the map

(X ,OX )Ð→ (X , τX≤0OX )

is a unit transformation.
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Remark 4.1.8.46. For (A,Ac) a simplicial C∞-ring with corners and (X ,OX ) its spectrum, the object (X , τX≤0OX )
can be identified with the value of the spectrum functor constructed by Joyce and Francis-Staite in [JF19] on
(π0(A), π0(Ac)).

Proof of theorem 4.1.8.11 (iv), (v). We can identify the full subcategory of RTop(Gder
Diffc) spanned by objects (X ,OX )

such that X is the category of sheaves on a topological space and (X ,OX ) is 0-truncated with the 1-category of
topological spaces equipped with sheaves of local C∞-rings with corners, and the 1-category TDiffc admits a fully
faithful embedding into this 1-category via the assignment

M z→ (Shv(M),C∞
M ,C

∞
b (M)).

The nontrivial part of the proof consists in showing that the functor TDiffc → RTop(Gder
Diffc) preserves pullbacks along

admissible maps. Since this is local question, it suffices to consider admissible maps of the form U ⊂ Rn ×Rk≥0, where
U is a connected open subsets. Unwinding the definitions, it is enough to show that for such connected open subsets,
the map

(C∞(Rn ×Rk≥0),C∞
b (Rn ×Rk≥0))Ð→ (C∞(U),C∞

b (U))
is a coCartesian morphism in sC∞ringc. It follows from theorem 4.1.8.24 that it suffices to show that the morphism
is a logification. This follows from the fact that the composite map

Zk≥0 Ð→ C∞
b (Rk)Ð→ C∞

b (U)

where the first functor exhibits a logification and specifies the boundary defining functions, factors via a projection
Zk≥0 → ZS≥0, where S ⊂ {1, . . . , k} is the subset determining the boundary defining functions on U (which indeed form
a subset as U is connected).
The spectrum functor Specc restricted to T ′Diffc factors through the full subcategory TDiffc, since each object Spec(U)
is a pullback of some Rn ×Rk≥0 along R∖ {0}↪ R and TDiffc is stable under pullbacks by admissible maps, as we have
just verified. Thus, we have a functor

Specc ∶ T
′

Diffc Ð→ TDiffc

which is now clearly a transformation of pregeometries. Let T be the categorical mapping cylinder of the functor
Specc defined as follows.

(1) An object of T is either an object of T ′Diffc or an object of TDiffc.

(2) Morphism sets are given by

HomT (M,N) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

HomT ′
Diffc

(M,N) M,N ∈ T ′Diffc

HomTDiffc(M,N) M,N ∈ TDiffc

HomTDiffc(Specc(M),N) M ∈ T ′Diffc, N ∈ TDiffc

∅ M ∈ TDiffc, N ∈ T ′Diffc.

There are obvious full subcategory inclusions i ∶ T ′Diffc ⊂ T and j ∶ TDiffc ⊂ T . Note that the latter admits a retraction
r ∶ T → TDiffc such that r ○ i = Specc defined on objects by r(M) = M if M ∈ TDiffc and r(M) = Specc(M) if
M ∈ T ′Diffc. Let Fun′(T ,X ) ⊂ Fun(T ,X ) be the full subcategory spanned by functors F ∶ T → X such that

(a) For each M ∈ T ′Diffc, the map F (M)→ F (Specc(M)) is an equivalence in X .

(b) The restriction F ∣TDiffc is a local TDiffc-structure on X .

We note that (a) is equivalent to the assertion that F is a right Kan extension of F ∣TDiffc , so it follows from [Lur17b],
prop. 4.3.2.15 that the restriction

Fun(T ,X )Ð→ Fun(TDiffc,X )
induces a trivial Kan fibration Fun′(T ,X ) → Strloc

TDiffc
(X ). Choose a section s of this trivial fibration, then the map

Strloc
TDiff

(X )→ Fun(T ′Diffc,X ) factors as

Strloc
TDiff

(X ) sÐ→ Fun′(T ,X )Ð→ Fun(T ′Diffc,X )

where the second functor is induced by restriction along i. Thus, our work will be done once we show that the
restriction

Fun(T ,X )Ð→ Fun(T ′Diffc,X )
induces a trivial fibration Fun′(T ,X )→ Strloc

T ′
Diffc

(X ). In view of [Lur17b], prop. 4.3.2.15, it suffices to show that
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(i) A functor F ∶ T → X lies in Fun′(T ,X ) if and only if its restriction F ∣T ′
Diffc

is a local T ′Diffc-structure and F is

a left Kan extension of F ∣T ′
Diffc

.

(ii) Every functor F0 ∈ Strloc
T ′

Diffc
(X ) admits a left Kan extension along i ∶ T ′Diffc ↪ T .

We note that the (essential) smallness of T and the presentability of X guarantee that (ii) is satisfied, so we show
(i). We first show the ‘if’ direction. Let F ∶ T → X be a left Kan extension of its restriction to T ′Diffc, which we
assume is a T ′Diffc-structure. Let M ∈ T ′Diffc, then we are required to show that the map F (M) → F (SpeccM) is
an equivalence. Consider the full subcategory C ⊂ T ′Diffc ×T ′

Diffc
T/SpeccM

spanned by pairs (N,SpeccN → SpeccM)
for which the counit map ΓSpeccN → N is an isomorphism. Since F ∣T ′

Diffc
is a local T ′Diffc-structure and there is a

covering sieve , it follows from [Lur17b], prop. 4.3.2.7 that the object F (SpeccM) is a colimit of C → X . Since F (M)
is a colimit of C/M , it suffices to show that the projection C/M → C is left cofinal, but this functor is an equivalence.
We wish to show that F ∣TDiffc is a local TDiffc-structure, but this follows from [Lur11b], lemma 1.2.14. Conversely, we
assume that F ∈ Fun′(T ,X ), then F ∣T ′

Diffc
is clearly a local T ′Diffc-structure since T ′Diffc → TDiffc is a transformation of

pregeometries, so we need only show that F is a left Kan extension of F ∣T ′
Diffc

. This follows from the same cofinality
argument just given.

Remark 4.1.8.47. It is an immediate consequence of theorem 4.1.8.11 (and the general theory of geometries and
pregeometries) that there are preferred equivalences between

(i) The ∞-category RTop(TDiffc) of ∞-topoi equipped with local TDiffc-structures.

(ii) The ∞-category RTop(Gder
Diffc) of ∞-topoi equipped with local Gder

Diffc-structures.

(iii) The ∞-category of ∞-topoi equipped with local simplicial C∞-rings with corners.

(iv) The ∞-category of ∞-topoi equipped with local sheaves of positive log simplicial C∞-rings.

These equivalence restrict to one between the ∞-category of derived manifolds with corners locally of finite presen-
tation and the ∞-category of 0-localic Gder

Diffc-schemes locally of finite presentation. A 1-categorical version of this
result was obtained by Francis-Staite in her recent thesis [Fra19]; she compared the positive log differentiable spaces
of Gillam-Molcho with interior C∞-schemes with corners; both classes of objects form full subcategories of all of the
equivalent four ∞-categories described above.

Remark 4.1.8.48. In applications to moduli theory, such as the construction of representing stacks for elliptic
moduli problems later in this work, derived manifolds with corners will usually be locally given by a retract of the
zero set of a section of a vector bundle over a manifold with faces. Such derived manifolds with corners will have the
simplest possible nontrivial corners/log structures: they have free sharpening.

In the introduction to this chapter, we made the following claim: given any ∞-topos X , the functor StrTDiffc(X )→
StrTDiff (X ) induced by the obvious transformation of pregeometries is a presentable fibration and under the equiv-
alence StrTDiff (X ) ≃ ShvsC∞ring(X ), the fibre over OX can be identified with the ∞-category of sheaves of log
structures on (OX )≥0. We now substantiate that claim. Consider the left adjoint to the presentable fibration
pLog ∶ sC∞Log → sC∞ring, a section of pLog which carries each A ∈ sC∞ring to the object (A,A>0). We have already
seen that (A,A>0) is compact in sC∞ringc if A is compact in sC∞ring and it follows immediately from the definitions
that the assignment A↦ (A,A>0) determines a transformation of geometries

sc ∶ Gder
Diff Ð→ Gder

Diffc.

We will end this subsection with an analysis of this transformation of geometries and its associated relative spectrum

functor Spec
G

der
Diffc

Gder
Diff

, which completes our discussion of the structure theory of derived C∞-geometry with corners.

Proposition 4.1.8.49. (1) The functor s∗c ∶ Strloc
Gder

Diffc
(X ) → Strloc

Gder
Diff

(X ) induced by composition with sc is a pre-

sentable fibration. The fibre over a Gder
Diff-structure OX can be identified with the ∞-category of log structures on

(OX )≤0.

(2) The functor s∗c admits a left adjoint carries each OX to an initial object in the fibre over OX .

(3) The functor LTop(Gder
Diffc) → LTop(Gder

Diff) is a presentable fibration. The fibre over a Gder
Diff-structured ∞-topos

(X ,OX ) can be identified with the ∞-category of log structures on (OX )≤0.

(4) The relative spectrum Spec
G

der
Diffc

Gder
Diff

may be identified with the section of LTop(Gder
Diffc) → LTop(Gder

Diff) that carries

each (X ,OX ) to an initial object in the fibre over (X ,OX ); in particular, Spec
G

der
Diffc

Gder
Diff

is fully faithful.
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Proof. (1) It is an immediate consequence of definition of the geometry structure on Gder
Diffc that a Gder

Diff -structure OX
is a local if and only if s∗c(OX ) is local, and a morphism f ∶ OX → O′

X is local if and only if s∗c(f) is local; in
other words, the functor s∗c fits into a pullback diagram

Strloc
Gder

Diffc
(X ) StrGder

Diffc
(X )

Strloc
Gder

Diff
(X ) StrGder

Diff
(X )

s∗c s∗c

among ∞-categories. It follows from [Lur17b], rmk. 5.2.6.4 and theorem 4.1.8.24 that the functor s∗c ∶ StrGder
Diffc

(X )→
StrGder

Diff
(X ) can be identified with the functor pLog ∶ ShvsC∞Log(X )→ ShvsC∞ring(X ) given by composing with pLog.

This functor is a presentable fibration with fibres given by Log((OX )≥0).

(2) Since s∗c is a presentable fibration, it admits a left adjoint carrying each OX to an initial object in the fibre.

(3) We have a commuting diagram

LTop(Gder
Diffc) LTop(Gder

Diff)

LTop

r

qGder
Diffc

qGder
Diff

where qGder
Diffc

and qGder
Diff

are coCartesian fibrations and r is an inner fibration. To prove that r is a coCartesian

fibration, we employ lemma 1.4.14 of [Lur09] and show that for each algebraic morphism f∗ ∶ X → Y, the induced
functor ShvsC∞ringc(X )→ ShvsC∞ringc(Y) carries coCartesian morphisms to coCartesian morphisms. By theorem
4.1.8.24, this amounts to the verification that f∗ takes logifications to logifications. Recalling the explicit form
of the logification functor, this follows easily from the fact that algebraic morphisms preserve finite limits and
colimits

(4) Since the functor r is a presentable fibration, it admits a left adjoint carrying each (X ,OX ) to an initial object
in the fibre LTop(Gder

Diffc)(X ,OX ) ≃ Log((OX )≥0).

4.2 Derived C∞-Stacks

Our study of the relation between simplicial C∞-rings and derived geometry in the axiomatic setup of pregeometries
has yielded the geometry Gder

Diff which controls derived C∞-geometry. The constructions of section 4.1 provide us with
several 0-localic Gder

Diff -scheme theories and Gder
Diffc-scheme theories.

Proposition 4.2.0.1. The following ∞-categories are saturated 0-localic Gder
Diff-scheme theories:

(1) The ∞-category TDiff of manifolds.

(2) The ∞-category dC∞Afffp ≃ sC∞ringopfp .

(3) The ∞-category dC∞Affafp ≃ sC∞ringopafp.

(4) The ∞-category dC∞Afffair ≃ sC∞ringopfair.

Proof. It is clear that L1 and L4 are satisfied for these full subcategories, so it remains to check condition L2′.
Suppose that we have a (−1)-étale map (X/U ,OX ∣U)→ (X ,OX ), where (X ,OX ) = SpecA for A fair, then the object
U ∈ Sub(1X ) corresponds to some localization A→ A[1/a]. Applying the spectrum functor to this map yields a (−1)-
étale map (Y,OY)→ (X ,OX ) associated to the same object U . The ∞-category of (−1)-étale maps over (X ,OX ) is
equivalent to the poset Sub(1X ) so we have an equivalence (X/U ,OX ∣U) ≃ (Y,OY). By theorem 4.1.3.22, the map
A[1/a]→ Γ(OY) exhibits a reflection onto the fair simplicial C∞-rings so that (Y,OY) ≃ SpecΓ(OY) is an affine fair
derived C∞-scheme. If A is (almost) finitely presented, then A[1/a] ≃ Γ(OY) is also (almost) finitely presented. If A
is the ring of smooth functions on a manifold, then so is A[1/a].

Remark 4.2.0.2. Suppose that L is a Gder
Diff -scheme theory, then the ∞-category L is also a Gder

Diff -scheme theory via

the relative spectrum Spec
G

der
Diffc

Gder
Diff

and the two étale topologies L inherits (as a Gder
Diff -scheme theory and a Gder

Diffc-scheme

theory) coincide.

178



Proposition 4.2.0.3. The following ∞-categories are saturated 0-localic Gder
Diffc-scheme theories:

(1) The ∞-category TDiff of manifolds.

(2) The ∞-category dC∞Afffp.

(3) The ∞-category dC∞Affafp.

(4) The ∞-category dC∞Afffair.

(5) The ∞-category TDiffc of manifolds with faces and interior b-maps among them.

(6) The ∞-category dC∞Afffpc = Specc(sC∞ringfpc).

Proof. We view the first four ∞-categories as Gder
Diffc-scheme theories by identifying them with their essential image

under the fully faithful functor Spec
G

der
Diffc

Gder
Diff

. It is again clear that L1 and L4 are satisfied for these full subcategories.

The same argument employed in the proof of proposition 4.2.0.1 may be used to show that L2′ holds for these four
∞-categories.

The theory of higher geometric stacks may be applied to these good scheme theories, and the stacks thus obtained
are the main objects of interest in this work.

Notation 4.2.0.4. The ∞-topos Shv(dC∞Afffp) of sheaves on the site of affine derived manifolds of finite presentation
is denoted dC∞Stlfp. The objects in this ∞-topos are called derived C∞-stacks locally of finite presentation. Similarly,
we denote the ∞-topoi Shv(dC∞Affafp) and Shv(dC∞Afffpc) by dC∞Stlafp and dC∞Stlfpc. The objects in these ∞-
topos are called derived C∞-stacks locally almost of finite presentation and derived C∞-stacks with corners locally of
finite presentation. We also have the ∞-category Shv(dC∞Afffair) (which is not accessible and so not an ∞-topos) of
locally fair derived C∞-stacks. We will often abbreviate ‘locally of finite presentation’ with lfp and ‘locally almost of
finite presentation’ with lafp.

We now extract several consequences of the general theory of G-scheme theories we have set up in chapter 2.

Proposition 4.2.0.5. The sheaf ∞-topoi associated to all of the scheme theories considered in proposition 4.2.0.3
have enough points.

Proof. This is an immediate consequence of proposition 3.2.1.32 and the fact that the sheaf topoi of the underlying
topological spaces of affine derived fair C∞-schemes are locally of finite homotopy dimension and therefore have
enough points by [Lur17b], cor. 7.2.1.17.

In particular all these ∞-topoi are hypercomplete and Postnikov towers converge.
The general theory of chapter 2 allows us to compare different Gder

Diffc-scheme theories. For instance, we have a
commuting square of fully faithful embeddings

TDiff GDiff

TDiffc Gder
Diffc

sc

ι

sc

ιc

Proposition 4.2.0.6. The square above induces a square of fully faithful left adjoint functors

SmSt dC∞Stlfp

SmStc dC∞Stlfpc.

sc!

ι

sc!

ιc!

Proof. This is an immediate consequence of proposition 3.2.1.29.

Remark 4.2.0.7. The functor sc! on the right is left exact and thus an algebraic morphism. The functors ι! and ιc!
are not algebraic morphisms; if they were, they would be essentially surjective and therefore equivalences, which is
not possible. According to proposition 3.1.0.29 and theorem 4.1.4.6 however, ι! and ιc! do preserve pullbacks along
strongly étale and strongly submersive maps in SmSt and SmStc with respect to the pregeometry structures on TDiff

and TDiffc.
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Remark 4.2.0.8. In the sequel, we will restrict to the 0-localic Gder
Diff -scheme theories obtained in proposition 4.2.0.1,

hence we will only consider schemes and stacks which are at least locally finitely generated (recall that the fairness
condition does not play a deep role in the theory; it is just a byproduct of the fact that taking the global sections of
the spectrum of a module over a C∞-ring is a localization, but need not be an equivalence). There are two reasons
for this choice:

(1) The real spectra of finitely generated C∞-rings are locally of finite homotopy dimension, which implies that the
t-structures on the ∞-categories of sheaves of modules are particularly well behaved (they are excellent in the
sense of [Lur11c], definition 6.9, by proposition 2.2.5.19).

(2) The inverse function theorem holds for morphisms f ∶ A → B with π0(f) finitely presented if A (and therefore
also B) is finitely generated (theorem 5.1.3.17).

In the next subsections, we will give some distinguished families derived C∞-stacks. We will treat geometric
(i.e. Artin and Deligne-Mumford stacks), but also nongeometric examples such as the geometric stack classifiers and
mapping stacks.

4.2.1 Geometric C∞-stacks

In what follows, we will use the 0-localic scheme theory (Gder
Diff ,L) for notational convenience, but the definitions below

make sense for all the 0-localic scheme theories in Gder
Diffc we have constructed.

We introduce two geometric contexts for the pairs (Gder
Diff ,dC

∞Afffp).

Definition 4.2.1.1. (1) A map f ∶ SpecA→ SpecB of affine derived fair C∞-schemes is étale if it is an equivalence,
up to localization on A and B. More precisely, f is étale if there is an admissible covering {Ui → SpecA}i∈I of
A such that for each i ∈ I, the composition Ui → SpecB is admissible.

(2) A map f ∶ SpecA → SpecB of affine derived fair C∞-schemes is submersive if there is an admissible covering
{Ui → SpecA}i∈I of A such that for each i ∈ I there is an admissible map Vi → SpecB and an equivalence
Ui ≃ Vi ×Rn such that the diagram

Ui SpecA

Vi SpecB

f

commutes, where the left vertical map is the projection Ui ≃ Vi ×Rn → Vi.

Proposition 4.2.1.2. Let Pet be the subcategory of dC∞Aff spanned by étale morphisms, and let Plis be the subcate-
gory of dC∞Aff spanned by submersive morphisms. These subcategories define geometric contexts (Gder

Diff ,dC
∞Afffp,Pet)

and (Gder
Diff ,dC

∞Afffp,Plis) in the sense of definition 3.2.2.3.

Proof. We only have to check that conditions G1, G2 and G3 are satisfied. For Pet, G1 follows by the stability
of admissible maps under pullbacks, and G2 and G3 are obvious. For Plis, G1 is a consequence of [Lur11b], prop.
3.1.8, and G2 and G3 are again obvious.

Definition 4.2.1.3. A derived n-Deligne-Mumford C∞-stack locally of finite presentation is an n-geometric stack
for the geometric context (Gder

Diff ,dC
∞Afffp,Pet). A derived n-Artin C∞-stack locally of finite presentation is an

n-geometric stack for the geometric context (Gder
Diff ,dC

∞Afffp,Plis).

Remark 4.2.1.4. Usually, it will be understood that the underlying ∞-site is dC∞Afffp or one of its variants. When
this is the case, we sometimes abuse terminology and call a derived C∞-stack just a derived stack.

In the next subsection, we discuss how Gder
Diff -schemes of higher locality may be interpreted as geometric C∞-stacks.

4.2.2 Localic Gder
Diff-schemes and Deligne-Mumford stacks

In this subsection, we establish a claim we made in the introduction: higher Deligne-Mumford C∞-stacks, defined
inductively as sheaves on dC∞Aff, can equivalently by described as Gder

Diff -schemes, if we allow for schemes whose
underlying ‘spaces’ are ∞-topoi that are not simply sheaves on a topological space. Recall that an ∞-topos is n-
localic for 0 ≤ n ≤ ∞ if for every n-topos Y, the natural restriction map Fun∗(Y,X ) → Fun∗(τ≤n−1Y, τ≤n−1X ) is an
equivalence.

Definition 4.2.2.1. For G a geometry, we say that a G-scheme (X ,OX ) is n-localic if the underlying ∞-topos X is
n-localic. We write Schn−loc

fp (Gder
Diff) for the ∞-categories of n-localic Gder

Diff -schemes locally of finite presentation.
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Remark 4.2.2.2. We establish the results in this section only for derived Deligne-Mumford C∞-stacks locally of
finite presentation without corners, but this is only for notational convenience; the results hold for all the Gder

Diffc-scheme
theories considered in this section.

We need the following prelimenary result.

Proposition 4.2.2.3. Let (X ,OX ) be a Gder
Diff-scheme, and denote X ∶= jSch(X ,OX ). Then for all n ≥ 0, the following

are equivalent.

(1) For every finitely presented discrete simplicial C∞-ring A, X(A) is n-truncated.

(2) The ∞-topos X is n-localic.

Proof. (1) ⇒ (2). It suffices to show that each U ∈ X such that (X/U ,OX ∣U) is an affine derived manifold of finite
presentation is (n− 1)-truncated, by proposition 2.2.3.3. Let X0 ⊂ X be the full subcategory spanned by those V ∈ X
such that HomX (V,U) is (n − 1)-truncated, then we should show that X0 = X . Since X0 is stable under colimits,
we may suppose that (X/V ,OX ∣V ) is an affine derived manifold of finite presentation. Consider the truncation
(X/V , τ≤0OX ∣V ), then the space HomX (V,U) can be identified with the fibre of the map

HomLTop(Gder
Diff

)((X/U ,OX ∣U), (X/V , τ≤0OX ∣V ))Ð→ HomLTop(Gder
Diff

)((X ,OX ), (X/V , τ≤0OX ∣V ))

at the morphism

(X ,OX )Ð→ (X/V ,OX ∣V )Ð→ (X/V , τ≤0OX ∣V )

where the first map is étale and the second map exhibits a truncation. The space HomLTop(Gder
Diff

)((X/U ,OX ∣U), (X/V , τ≤0OX ∣V ))
is 0-truncated because (X/U ,OX ∣U) is affine, and the space HomLTop(Gder

Diff
)((X ,OX ), (X/V , τ≤0OX ∣V )) coincides with

X(Γ(X/V , τ≤0OX ∣V )) which is n-truncated by assumption, so we conclude that HomX (V,U) is indeed (n − 1)-
truncated.
(2)⇒ (1). Let A be 0-truncated, then we have a fibre sequence

HomStrloc

Gder
Diff

(SpecRA)(f
∗OX ,OSpecA)Ð→ HomLTop(Gder

Diff
)((X ,OX ),SpecA)Ð→ HomLTop(X ,SpecRA)

where the fibre is 0-truncated because A is, and the space HomLTop(X ,SpecRA) is n-truncated because X is n-
localic.

Lemma 4.2.2.4. Let X be a derived n-Artin C∞-stack locally of finite presentation. Then for each finitely presented
discrete simplicial C∞-ring A, the space X(A) is (n + 1)-truncated.

Proof. This is proven by induction on the degree of geometricity. If X is (−1)-geometric, X is representable by a 0-
localic Gder

Diff -scheme, in which case proposition 4.2.2.3 yields the desired statement. Suppose that X is an n-Artin stack
for n ≥ 0. Clearly, it suffices to show that all connected components of X(A) are (n + 1)-truncated. Differently put,
we should show that for each x ∈ hX(A) = π0(X(A)), the homotopy fibre at x of the projection p ∶X(A)→ π0(X(A))
is (n+ 1)-truncated. Since X is a sheaf, a choice of cover {SpecAi → SpecA} allows us to write the homotopy fibre
p−1(x) as a limit limi∈J Ki, where each Ki is the connected component of x in a space of the formX(Ai1⊗∞A . . .⊗∞AAin).
There is an effective epimorphism ∐j Uj →X defining an n-submersive atlas on X, so, using that k-truncated spaces
are stable under limits, we may assume that the map SpecA → X defining x ∈ π0(X(A)) factors through ∐j Uj .
Now the fibre of ∐j U(A) → X(A) at x is equivalent to the fibre of ∐j Uj ×X SpecA(A) → HomC∞ring(A,A) at
the identity, which is n-truncated because the induction hypothesis asserts that ∐j Uj ×X SpecA(A) is n-truncated.
Using the long exact sequence, we find that the connected component of x ∈X(A) is (n + 1)-truncated.

Theorem 4.2.2.5. For n ≥ 0, the fully faithful functor jSch ∶ Schlfp(Gder
Diff)→ Fun(sC∞ringfp,S) induces an equivalence

Schn−loc
lfp (Gder

Diff) ≃ dSmDMn−1
fp

Proof. This is proven by induction on the degree of geometricity. We prove the first equivalence; the proof for the
second equivalence is the same. For n = 0, the equivalence is definitional. We assume that the equivalence holds for
0 ≤ k < n. Let (X ,OX ) be an n-localic Gder

Diff -scheme locally of finite presentation. Choose an effective epimorphism

∐iUi → 1X such that each (X/Ui ,OX ∣Ui) is equivalent to the spectrum of a finitely presented simplicial C∞-ring.
Since X is equivalent to the ∞-category of sheaves on an n-category, we may choose for each Ui a small collection of
morphisms {Vβi → Ui} such that

∐
βi

Vβi Ð→ Ui
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is an effective epimorphism and each Viβ is (n − 1)-truncated in X. Since (X/Ui ,OX ∣Ui) is the spectrum of a finitely
presented simplicial C∞-ring A, there exists for each Vβi a small collection of morphisms {Wγβi

→ Vβi} such that

∐
γβi

Wγβi
Ð→ Vβi

is an effective epimorphism (in X and in X/Ui), each map Wγβi
→ Vβi is a (−1)-truncated and each (X/Wγβi

,OX ∣Wγβi )
is equivalent to the spectrum of a finitely presented simplicial C∞-ring. Replacing the collection {Ui} by {Wγβi

}, we

may suppose that each Ui is an (n − 1)-truncated object in X. Taking the Čech nerve of the morphism

h ∶∐
i

(X/Ui ,OX∣Ui)Ð→ (X ,OX )

yields an effective groupoid in Sch(Gder
Diff)et which is carried to an effective groupoid in dC∞Stlafp by the functor

jSch. The object in simplicial degree 1 is a coproduct of objects of the form jSch(X/Ui×Uj ,OX∣Ui×Uj ). Since Ui and
Uj are (n − 1)-truncated, the morphism Ui × Uj → Ui is (n − 1)-truncated. Since the ∞-topos X/Ui is 0-localic,
the ∞-topos X/Ui×Uj is (n − 1)-localic. The inductive hypothesis now guarantees that the object jSch(Č(h)1) is an

(n − 1)-Deligne-Mumford stack locally of finite presentation. Since jSch carries étale maps between Gder
Diff -schemes to

étale maps of Deligne-Mumford stacks, the simplicial object jSch(Č(h)●) is an a n-étale groupoid presentation of the
object jSch(X ,OX ).
We are left to show that every (n − 1)-Deligne-Mumford stack X is represented by an n-localic Gder

Diff -scheme locally
of finite presentation. Choose an (n − 1)-étale atlas h ∶ ∐iUi → X, then the Čech nerve of h is a simplicial diagram
consisting of (n− 2)-Deligne-Mumford stacks and étale face maps between them, so the induction hypothesis implies
that there is a simplicial diagram C● in Schafp(Gder

Diff) and an equivalence jSch(C●) ≃ Č(h)●. Using once again that
jSch preserves colimits of the simplicial diagram C●, we find that X is representable by a Gder

Diff -scheme locally of finite
presentation. Since X is (n−1)-Artin, X(A) is n-truncated for any discrete simplicial C∞-ring A of finite presentation
by lemma 4.2.2.4, so proposition 4.2.2.3 asserts that X is representable by an n-localic Gder

Diff -scheme locally of finite
presentation.

Proposition 4.2.2.6. Let n ≥ −1 and let X be a derived C∞-stack locally of finite presentation. Then the following
are equivalent.

(1) X is a derived n-Deligne-Mumford C∞-stack.

(2) There exists a collection of n-Deligne-Mumford stacks {Ui}i∈I and a collection of n-étale morphisms {fi ∶ Ui →
X}i∈I such that ∐i∈I Ui →X is an effective epimorphism, and for each pair i, j ∈ I, the map Ui ×X Uj → Ui is an
open substack inclusion.

(3) There exists a collection of n-Deligne-Mumford stacks {Ui}i∈I and a collection of n-étale morphisms {fi ∶ Ui →
X}i∈I such that ∐i∈I Ui → X is an effective epimorphism, and for each pair i ∈ I, the map Ui ×X Ui → Ui is an
open substack inclusion.

(4) There exists a collection of n-Deligne-Mumford stacks {Ui}i∈I and a collection of n-étale morphisms {fi ∶ Ui →
X}i∈I such that ∐i∈I Ui → X is an effective epimorphism, and for each pair i ∈ I, the map Ui ×X Ui → Ui is an
equivalence.

Proof. (1)⇒ (2) follows if we take the covering Ui →X to consist of the single map id ∶X →X and clearly (2)⇒ (3).
We have a retraction

Ui Ð→ Ui ×X Ui Ð→ Ui

which implies that the second map is an effective epimorphism. An open substack inclusion is a monomorphism in
the ∞-topos dC∞Stlafp, which implies that the second map is an equivalence, and this establishes (3)⇒ (4).
We turn to the proof of (4)⇒ (1). Since ∐iUi is an n-Deligne-Mumford stack, the object X is an (n + 1)-Deligne-
Mumford stack. It suffices to show that for each discrete simplicial C∞-ring A of finite presentation, the space X(A)
is n-truncated. Since X is a sheaf, we may suppose that SpecA → X factors through some Ui, then the homotopy
fibre of Ui(A) → X(A) at x may be identified with the homotopy fibre of Ui(A) ×X(A) Ui(A) Ð→ X(A) which is an
equivalence by assumption. It follows that X(A) is n-truncated.

Remark 4.2.2.7. Since hypercompleteness is a local property on any ∞-topos, every derived Deligne-Mumford
C∞-stack is hypercomplete.
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4.2.3 Moduli of geometric stacks

In the previous subsections, we have constructed ∞-categories dC∞DMn and dC∞Arn of Deligne-Mumford and Artin
stacks. Now we show that these ∞-categories can be enhanced to sheaves of ∞-categories on affine derived manifolds.

Lemma 4.2.3.1. Let G be a geometry and L a small G-scheme theory. Let P be a property of morphisms in Shv(L)
stable under pullbacks and arbitrary small coproducts, and denote by OPL ⊂ Fun(∆1,Shv(L)) the full subcategory
spanned by P , which determines a Cartesian fibration OPL → Shv(L). Let OPL ∶ Shv(L)op → Ĉat∞ be the straightening
of this fibration, then the following are equivalent.

(1) P is stable under small coproducts, and for any morphism f ∶X → Y , if for all morphisms j(Y)→ Y with Y ∈ L
the morphism j(Y) ×Y X →X has the property P , then f has the property P .

(2) The functor OPL preserves limits.

Proof. It follows from [Lur17b], lem. 6.1.3.5 that (2) is equivalent the following condition: suppose α ∶ f → g is a
Cartesian transformation between diagrams f, g ∶ K → Shv(L) and suppose that α(k) has the property P for each
k ∈K, then colim f → colim g has the property P . This is a reformulation of (1).

Example 4.2.3.2. Let P be the property of being an n-representable morphism for the submersive/étale geometric
context, then P satisfies condition (1) of lemma 4.2.3.1 and therefore induces Ĉat∞-valued sheaves

dC∞Arn/dC∞DMn ∶ dC∞Aff lfp Ð→ Ĉat∞

which carry an affine SpecA to the slice categories (dC∞Arn)/SpecA/(dC∞DMn)/SpecA.

Example 4.2.3.3. Let P be the property of being n-representable and locally of finite presentation in dC∞Stfair,
then P satisfies condition (1) of lemma 4.2.3.1 and there induces a Ĉat∞-valued sheaf dC∞Arnlfp.

Sheaves of the form OPL are generically obtained via the following result.

Lemma 4.2.3.4. Let P be a property of morphisms of affine derived manifolds (of finite presentation, with or without
corners...) that is stable under pullbacks and local on the target with respect to the étale topology. Say that a morphism
f ∶ X → Y of dC∞Stlfp (dC∞Stlfpc,...) has the property n-P if f is n-representable and for each map SpecA → Y ,
the pullback SpecA ×Y X admits an n-submersive atlas ∐iUi → SpecA ×Y X such that for each i, the composite
map Ui → SpecA has the property P . Then the property n-P is stable under pullbacks and satisfies condition (1) of
lemma 4.2.3.1.

Remark 4.2.3.5. Note that for a property P of morphisms in dC∞Aff lfp that is stable under pullbacks and local on
the target, the property (−1)-P of the lemma above does not in general coincide with P ; this is true precisely if P is
also local on the source.

Example 4.2.3.6. Let P be the property of being an n-representable submersion, then P satisfies condition (1) of
lemma 4.2.3.1 and therefore induces a functor

Mfds ∶ dC∞Aff lfp Ð→ Ĉat∞,

the moduli space of manifolds.

Remark 4.2.3.7. In the previous subsection, we have considered a variety of properties of morphisms stable under
base change and local on the target for the étale topology on a G-scheme theory L. These properties were in fact
local on the target by design: it is possible to show the following variant of lemma 4.2.3.1: let P be a property
of morphisms stable under pullback and let P be the smallest property of morphisms containing P that is stable

under pullback and satisfies condition (1) of lemma 4.2.3.1, then the full subcategory inclusion OPL ⊂ OPL induces a

morphism OPL → OPL of Ĉat∞-valued presheaves on L that exhibits OPL as a sheafification of OPL .

4.2.4 Weil restrictions

Let C be a presentable ∞-category such that colimits are universal in C (which is the case, for instance, if C is an
∞-topos). Given a morphism f ∶X → Y in C, we have an adjunction

C/Y C/X
f∗

f!

where f∗ takes pullbacks along f and f! composes with f . Under the assumption that colimits in C are universal, it
follows from the adjoint functor theorem that f∗ admits a right adjoint f∗, which takes a morphism Z → X to an
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object f∗(Z) → Y which comes equipped with a map α ∶ f∗(Z) ×Y X → Z in C/X satisfying the universal property
that for each Y ′ → Y , composition with α induces an equivalence

HomC/Y (Y ′, f∗(Z)) ≃ HomC/X (Y ′ ×Y X,Z)

of spaces. In this situation, the object f∗(Z) is known as the Weil restriction of Z along f . The following example
is central to the construction of moduli spaces.

Example 4.2.4.1 (Mapping stacks). Let X ∈ dC∞Stlfp and let f ∶X → ∗ be the canonical map to the final object in
dC∞Stlfpc, then we denote by MapX(X, )dC∞ ∶ (dC∞Stlfp)/X → dC∞Stlfp the Weil restriction along f . For p ∶ Y →X
a map, we call the object MapX(X,Y )dC∞ the mapping stack of sections of p. By construction, it comes equipped
with an evaluation functor ev ∶ MapX(X,Y )dC∞ ×X → Y . Composing the functor f∗ with the mapping stack of
sections yields a functor

Map(X, )dC∞ ∶ dC∞Stlfp Ð→ dC∞Stlfp

right adjoint to the composition f!f
∗ which takes products with X. One readily verifies that for each p ∶ Y →X, the

mapping stack of sections fits into a pullback diagram

MapX(X,Y )dC∞ ∗

Map(X,Y )dC∞ Map(X,X)dC∞

id

where the lower horizontal map is obtained by adjunction from the map Map(X,Y ) ×X ev→ Y
p→X.

We may also consider the Weil restriction along maps f ∶ X → Z. It is a consequence of corollary 2.2.0.13 that for
each map p ∶ Y →X, the cone in the pullback diagram

MapX(Y,Y )dC∞ ∗

Map(Y,Y )dC∞ Map(Y,X)dC∞

id

is an associative algebra object of dC∞Stlfp.

Remark 4.2.4.2. For the ∞-topoi SmSt, SmStc and dC∞Stlfpc, we denote the mapping stack of sections by
MapX(X, )Sm, MapX(X, )Smc and MapX(X, )dC∞c respectively. Note that the functors ι! and ιc! do not com-
mute with taking mapping stacks. In fact, determining when ι! (and ιc!) takes the mapping stack MapX(X,Y )Sm to
Mapι!(X)(ι!(X), ι!(Y ))dC∞ is of crucial importance in the construction of differential geometric moduli spaces.

The following example is the central geometric input in the construction of virtual fundamental cycles [BF97;
Kha19; DJK21].

Example 4.2.4.3 (Deformation to the normal bundle). Let X ∈ dC∞Stlfp, then the map ∗ 0↪ R induces a closed
immersion i ∶ X ↪ X ×R. Let f ∶ Y → X be a map, then we denote the Weil restriction of f along i by DY /X . This
object comes equipped with a map DY /X → X ×R. The basic properties of this stack are summarized thus (a proof
will appear in upcoming work).

(1) Suppose that f is n-representable, then the map DY /X → Y ×R is (n + 1)-representable. If f is a locally closed
immersion, then this map is n-representable.

(2) For every object Y ∈ dSmSt/X and any map X ′ →X, the canonical map

DY ×XX′/X′ Ð→DY /X ×X×R X
′ ×R

in (dC∞Stlfp)/Y ′×R is an equivalence.

(3) The object DY /X ×X×R X ×R ∖ {0} is equivalent to Y ×R ∖ {0}.

(4) The object DY /X ×X×R X × {0} is equivalent to T[1]Y /X, the shifted normal bundle stack V(LY /X[−1]), the
linear stack over X defined by the looped relative cotangent complex.

The stack DY /X sometimes coincides with a more classical object. For instance, when N ↪M is a closed embedding
of manifolds, the stack DN/M is representable by a manifold that can be explicitly constructed using a tubular
neighbourhood of N inside M , or by choosing local coordinates for M and N and constructing the deformation to the
normal bundle out of local data as in Kashiwara-Schapira [KS90]. On the other hand, if Y → X is the map M → ∗
for M a manifold, then the map DM → R is a smooth 0-Artin stack that is represented by the tangent groupoid of
M , introduced by Connes [Con94].
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The next example is familiar from the formal and synthetic geometry of differential equations.

Example 4.2.4.4 (Jet spaces). Let M be a manifold, viewed as an object in dC∞Stlfp, then, as we show in chapter
5, one can construct an effective epimorphism M →MdR that fits into a pullback diagram

M̂ ×M M

M MdR

π1

π2

π

π

where M̂ ×M is the formal completion of M ×M along the diagonal ∆ ⊂M ×M which may be represented by the
C∞-ring of Whitney functions C∞(M ×M)/m∞

∆ . Let f ∶X →M be an arbitrary map of derived C∞-stacks, then the
infinite Jet bundle J∞M(X) of f is the pullback along π of the Weil restriction of X along π, that is, J∞M(X) ≃ π∗π∗X.

Remark 4.2.4.5. In the examples above, we considered Weil restrictions in dC∞Stlfp, but one can evidently perform

these constructions in larger ∞-topoi as well. If f∗ ∶ X → Y is a geometric morphism, and X → Y
θ→ Z are morphisms

in X , then f∗ carries the Weil restriction θ∗(X) of X along θ to the Weil restriction of f∗(X) along f∗(θ). In
particular, Weil restrictions in dC∞Stlfp are obtained from Weil restrictions in dC∞Stlfpc, and even dC∞Stfair.

In (derived) algebraic geometry, there are satisfactory conditions which guarantee that Weil restrictions are
representable by derived Artin stacks, based on Lurie’s version of Artin’s representability theorem. For instance,
if θ ∶ X → Y is a strongly proper morphism of derived Deligne-Mumford stacks of finite Tor amplitude and locally
almost of finite presentation and U → X is a morphism of derived Deligne-Mumford stacks locally almost of finite
presentation, then the Weil restriction θ∗(U) is a derived Artin stack. In differential geometry, the state of affairs
is somewhat more complicated: the mapping stacks of example 4.2.4.1 are only representable in very trivial cases,
when the source and target are both representable and one of which is a 0-dimensional manifold, for instance. On
the other hand, as asserted in example 4.2.4.3, the operation D always carries n-representable morphisms to (n+1)-
representable morphisms. When E →M is a surjective submersion of manifolds, the infinite jet space J∞M(E) is not
quite representable, but it is a limit of the finite jet spaces JkM(E) which are.
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4.3 Quasi-Coherent Modules

In this section, we define modules for simplicial C∞-rings and simplicial C∞-rings with corners and sheaves of modules
of such. We adhere to the philosophy that the theory of modules of objects in any presentable ∞-category C should
be given by the ∞-category of parametrized stable objects of C (see [Lur17a], chapter 7.3). This perspective allows
for a uniform treatment of C∞-derivations and log C∞-derivations and the associated cotangent modules that we
explore in the next chapter.

Definition 4.3.0.1. Let A ∈ sC∞ring be a simplicial C∞-ring. The ∞-category sC∞ring/A is presentable, so we
may consider its stabilization Sp(sC∞ring/A). We write ModA for this ∞-category and call it the ∞-category of
A-modules.

Remark 4.3.0.2. The functor Ω∞ ∶ ModA → sC∞ring/A given by evaluation at the 0-sphere is accessible and preserves
small limits, so it admits a left adjoint Σ∞

+ . In the next section, we will identify the A-module Σ∞
+ (B→A) with the

(absolute) cotangent complex LB ⊗B A of A. As part of this identification, it will become clear that the infinite loop
space Ω∞(M) should be considered as the split square-zero extension of A by M . For this reason, we will write
Ω∞(M) = A ⊕M ; while the direct sum notation does not strictly make sense in simplicial C∞-rings, we actually
do have a coproduct of the underlying R-modules. Mapping A into a trivial square zero extension A ⊕M over A
is equivalent to giving a derivation from A into M ; this is well known in the discrete case of commutative algebras
for instance, where one can check this via explicit formulae. In the case of homotopy algebras, it becomes unwieldy
to write down equational presentations of derivations that take into account higher coherence data, so the space of
derivations DerA(M) is taken to be HomsC∞ring/A(A,A ⊕M) by definition. With these interpretations in place, we
automatically have the equivalence

DerA(M) ≃ HomModA(LA,M),
showing that the cotangent complex corepresents linear C∞-derivations.

Before moving on to more tractable notions of A-modules for a simplicial C∞-ring A, we need some concepts from
the calculus of functors.

Definition 4.3.0.3. Let C and D be ∞-categories with finite limits, and let F ∶ C → D and f ∶ Sp(C) → Sp(D)
be functors. A natural transformation α ∶ F ○ Ω∞

C → Ω∞
D ○ f exhibits f as a (Goodwillie) derivative of F if for each

g ∶ Sp(C)→ Sp(D), composition with α induces a homotopy equivalence

HomFun(Sp(C),Sp(D))(f, g)
≃Ð→ HomFun(Sp(C),Sp(D))(F ○Ω∞

C ,Ω
∞
D ○ g)

of Kan complexes. In this situation, f is determined up to equivalence by F , and we denote this functor by ∂F .

The following is [Lur17a], prop. 6.2.1.9.

Proposition 4.3.0.4. Let C be an ∞-category that has finite colimits, let D be a differentiable ∞-category, and let
F ∶ C → D be reduced functor that preserves filtered colimits. Then F admits a Goodwillie derivative ∂F ∶ Sp(C) →
Sp(D) given by the formula colimmΩmD ○ F ○ΣmC .

It will turn out to be convenient to characterize the (fibrewise) stabilization by a universal property.

Definition 4.3.0.5. Let D be a presentable ∞-category. A categorical fibration v ∶ D′ → D exhibits D′ as a stable
envelope of D if the following conditions are satisfied.

(1) D′ is stable and presentable.

(2) v admits a left adjoint.

(3) For every stable presentable ∞-category E , composition with v induces an equivalence

FunR(E ,D′) ≃Ð→ FunR(E ,D),

where for each pair of ∞-categories C,C′, FunR(C,C′) denotes the full subcategory of Fun(C,C′) spanned by those
functors that admit a left adjoint.

Let p ∶ E → C be a presentable fibration. A commuting diagram

E ′ E

C

r

q p

of ∞-categories where r is a categorical fibration exhibits r as a stable envelope of p if the following conditions are
satisfied.

186



(1) q is a presentable fibration.

(2) r sends q-Cartesian edges to p-Cartesian edges.

(3) For each C ∈ C, the induced map E ′C → EC on the fibres exhibits E ′C as a stable envelope of EC .

Remark 4.3.0.6. A stable envelope of a presentable ∞-category C is determined up to equivalence, and unsurpris-
ingly, the stabilization Sp(C) is a stable envelope. Indeed, the stabilization of a presentable ∞-category is presentable,
and the suspension spectrum functor Σ∞

+ is a left adjoint to the functor Sp(C) → C. The universal property follows
at once from [Lur17a], prop. 1.4.4.5. It now follows from the construction of the fibrewise stabilization that Sp(p) is
a stable envelope of the presentable fibration p ∶ E → C.

The stable envelope of a presentable fibration enjoys the following universal property ([Lur17a], prop. 7.3.1.7).

Proposition 4.3.0.7. Let p ∶ E → C be a presentable fibration, and let r ∶ E ′ → E be a stable envelope of p. Then for
each presentable fibration D → C whose fibres are stable, composition with r induces an equivalence

FunRC (D,E ′)
≃Ð→ FunRC (D,E),

where FunRC (D,E ′) denotes the full subcategory spanned by those functors D → E ′ over C that preserve Cartesian edges
and admit a left adjoint on each fibre, and similarly for FunRC (D,E) .

4.3.1 Comparisons of notions of modules

The goal of this subsection is to prove that the rather abstractly defined stable ∞-category ModA = Sp(sC∞ring/A) is

equivalent to the ∞-category of Aalg-modules, which admits much more concrete descriptions. This is familiar in the
1-categorical setting, where we have an equivalence Mod♡Aalg ≃ Ab(C∞ring/A), where the left hand side is the category

of abelian group objects of C∞ring/A. The equivalence is exhibited by sending an Aalg-module to the trivial square
zero extension of A by M . This C∞-ring has as underlying R-module the object A ⊕M , and the C∞-operations
are the more or less obvious ones that satisfy the requirement that on M , the kernel of the augmentation morphism
A⊕M → A, they be square zero. We proved the following in chapter 1.

Lemma 4.3.1.1. Let T be a multisorted Lawvere theory, let A be a simplicial T-algebra, and consider the stabilization
Sp(sTAlg/A) endowed with the accessible t-structure of remark 2.1.4.9. There is a canonical equivalence

Sp(sTAlg/A)
♡ ≃ Ab(τ≤0sTAlg/π0(A))

of categories.

We will construct an ∞-categorical equivalence between ModAalg and Sp(sC∞ring/A) using the calculus of functors
of [Lur17a], chapter 6 via the functor taking the free C∞-ring of an A-module and the functor taking the augmentation
ideal of a simplicial C∞-ring over A. Along the way, we find a very concrete model for the cotangent complex, which
will be the central object of study in the next section.
In this section we will write the suspension functor on (sCringR)B//B as ΣB and the loop functor as ΩB . The forgetful

functor ( )alg ∶ sC∞ringA//A Ð→ (sCringR)Aalg//Aalg has a left adjoint that we denote

FC
∞

A ∶ (sCringR)Aalg//Aalg Ð→ sC∞ringA//A,

which is given by the composition

(sCringR)Aalg//Aalg
FC

∞

Ð→ sC∞ringF (Aalg)//F (Aalg)

ε!Ð→ sC∞ringA//A

where FC
∞

is the left adjoint of ( )alg ∶ sC∞ring → sAlgR and ε! is the functor taking pushouts along the counit
map ε ∶ F (Aalg)→ Aalg ([Lur17b], prop 5.2.5.1). The following result is straightforward using unramifiedness and the
Barr-Beck theorem.

Proposition 4.3.1.2. Let A be a simplicial C∞-ring, then the functor

( )alg ∶ sC∞ringA//A Ð→ (sCringR)Aalg//Aalg

induces an equivalence

Sp (sC∞ringA//A) ≃ Sp ((sCringR)Aalg//Aalg)
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Proof. Using [Lur17a], cor. 6.2.2.17, it suffices to show that ( )alg is conservative and preserves sifted colimits (so
that ( )alg exhibits sC∞ringA//A as monadic over (sCringR)Aalg//Aalg ) and that the unit map induces an equivalence

∂ id → ∂(( )alg ○ FC
∞

A ). The first two assertions are immediate using [Lur17b], lem 1.2.13.8, lemma 4.1.1.29 and the
fact that sifted ∞-categories are weakly contractible. To prove the last assertion, we note that it suffices to show that
the unit induces an equivalence on the essential image of ΣAalg , since the unit map will then induce equivalences

ΩiAalg ○ΣiAalg ≃ ΩiAalg ○ ( )alg ○ FC
∞

A ○ΣiAalg

for all i ≥ 1, which proves the proposition. We may write any simplicial commutative Aalg-algebra as a good Aalg-cell
object: a sequential colimit

Aalg = Aalg
−1 Ð→ Aalg ⊗R Sym●(V−1) = Aalg

0 Ð→A
alg
1 Ð→A

alg
2 Ð→ . . .

of pushouts of maps of the form
ϕk ∶ Aalg ⊗R ΣkRSym●(Vk)Ð→ Aalg

for Vk a vector space and k ≥ 0. Since ΣAalg preserves colimits, the functor ⊗R A
alg intertwines ΣR and ΣAalg

which implies that the essential image of ΣAalg consists of good Aalg-cell objects with Aalg
0 = Aalg

−1 = Aalg and

Aalg
1 = Aalg ⊗ΣRSym●(V ). Sequential colimits are preserved by FC

∞
A and ( )alg, and the functor FC

∞
A takes the map

ϕk to the map
A⊗∞ ΣkC∞(V ∨)Ð→ A

which is an effective epimorphism, so pushouts along this map are also preserved by ( )alg by unramifiedness. It
follows that we need only check that the unit is an equivalence on objects of the form Aalg ⊗R ΣkRSym●(V ) for k ≥ 1.
This follows from lemma 4.1.3.38 and unramifiedness applied to the effective epimorphism R→ ΣkC∞(V ∨).

We have equivalences (sCringR)A//A ≃ (E∞Algcn
R )A//A ≃ (E∞Algcn

A )aug so that we have the A-augmentation ideal
functor

IA ∶ (sCringR)A//A Ð→Modcn
A

with left adjoint Sym●
A.

Proposition 4.3.1.3. Let A be a simplicial commutative R-algebra, then the functor

IA ∶ (sCringR)A//A Ð→Modcn
A

induces an equivalence
Sp ((sCringR)A//A) ≃ Sp (Modcn

A )

Proof. Using [Lur17a], cor. 6.2.2.17, it suffices to show that IA is conservative and preserves sifted colimits and that
the unit map induces an equivalence ∂ id → ∂(IA ○ Sym●

A). Since the inclusions (E∞Algcn
R )A//A → (E∞AlgR)A//A and

Modcn
A ↪ModA are conservative and preserve colimits, it suffices to check that the functor

IA ∶ E∞Algaug
A Ð→ModA

(the augmentation ideal functor on possibly nonconnective A-augmented A-algebras) is conservative and preserves
sifted colimits. This follows from [Lur17a], lem. 7.3.4.12, since the functor IA is the composition of the forgetful
functor (E∞Alg)aug

A →ModA, which is conservative and preserves sifted colimits, with the pullback functor along the
unit map 0 → A, which is also conservative and preserves sifted colimits by [Lur17a], lem. 7.3.4.11. To prove that
the unit induces an equivalence on derivatives, we recall that the unit map is given by

id = Sym1
A Ð→∐

n≥1

Symn
A.

[Lur17a], lem. 7.3.4.8 implies that natural transformation ∐n≥1 ∂Symn
A → ∂∐n≥1 Sym1

A is an equivalence, so we only
have to show that ∂Symn

A nullhomotopic for n ≥ 2. Using the explicit colimit formula for the derivative of a reduced
functor, we need only show that the functor Ωi ○ Symn

A ○Σi takes values in i-connective modules for n ≥ 2, but this
functor clearly takes values in i(n − 1)-connective modules.

Corollary 4.3.1.4. Let A be a simplicial C∞-ring. For any morphism of simplicial C∞-rings B → A, there is a
canonical equivalence of ∞-categories

ModAalg ≃ Sp(sC∞ringB//A)

Proof. Follows from propositions 4.3.1.2 and 4.3.1.3, together with the right completeness of the t-structure on
ModAalg and the equivalence Sp(C) ≃ Sp(CC/) for any ∞-category C with finite limits and any object C ∈ C.
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Remark 4.3.1.5. Let A be a simplicial C∞-ring, and let M be an A-module, which we can identify with a chain
complex of Aalg-modules via corollary 4.3.1.4. We call the object Ω∞

A (M) the trivial square zero extension of A by
M . The chain rule gives a (homotopy) commuting diagram

Sp(sC∞ringA//A) Sp(Modcn
Aalg)

sC∞ringA//A Modcn
Aalg

Ω∞
A

∂(I
Aalg ○( )

alg
)

Ω∞

I
Aalg ○( )

alg

for which the lower horizontal functor fits into a split fibre sequence

IAalg ○ ( )alg Ð→ ρAalg ○ ( )alg Ð→ Aalg

where Aalg is the constant functor on the free Aalg-module and

ρAalg ∶ (sCringR)Aalg//Aalg Ð→ (ModAalg)/Aalg

is the underlying Aalg-module functor. Using the commuting diagram above and the fact that the functor Ω∞ ∶
Sp(Modcn

Aalg)→Modcn
Aalg is identified with the connective cover functor, we deduce that the functor ρAalg ○( )alg ○Ω∞

A ∶
ModA →ModA fits into a split fibre sequence

τ≥0 Ð→ ρAalg ○ ( )alg ○Ω∞
A Ð→ Aalg

so Ω∞
A (M) ≃ A⊕τ≥0M as A-modules. The underlying E∞-algebra of the square zero extension is the algebraic square

zero extension of Aalg by M , and the algebra structure on A⊕ τ≥0M is described as in [Lur17a], rmk. 7.3.4.16: the
multiplication map m ∶ (A⊕ τ≥0M)⊗ (A⊕ τ≥0M)→ A⊕ τ≥0M is the multiplication on A on the summand A⊗A, the
A-action on τ≥0M on the summand A ⊗ τ≥0M , and nullhomotopic on the summand τ≥0M ⊗ τ≥0M ; this description
also determines the graded R-algebra structure on the graded R-module π∗(A⊕ τ≥0M) ≅ π∗(A)⊕ π∗(τ≥0M).
Remark 4.3.1.6. The analysis of the previous remark shows that the composition Ω∞

A ∣Modcn
A
∶ Modcn

A → sC∞ringA//A →
Modcn

A is equivalent to the coproduct id⊕A, where A is the constant functor on A. This functor obviously preserves
colimits, and the functor sC∞ringA//A → Modcn

A is conservative and preserves sifted colimits, so we deduce that the
functor Ω∞

A ∣Modcn
A

also preserves sifted colimits.

4.3.2 Tangent categories

The purpose of this section is to study sheaves of modules on derived C∞-schemes. Clearly, this will require an
understanding of the functoriality of the assignment

Az→ModA,

for A a simplicial C∞-ring. The description ModA ∶= Sp(sC∞ring/A) immediately suggests a way to achieve this:

we could stabilize the fibration ev1 ∶ Fun(∆1, sC∞ring) → sC∞ring fibrewise; this yields a presentable fibration
TsC∞ring → sC∞ring over sC∞ring, the tangent category of sC∞ring, the straightening of which yields a functor

sC∞ring Ð→ PrL, Az→ModA.

Alternatively, the inclusion of ∞-operads Comm⊗ ↪MComm⊗ yields a coCartesian fibration pM ∶ Modalg → E∞AlgR
which we may pull back along the functor

sC∞ring
( )

alg

Ð→ sCringR ≃ E∞Algcn
R ↪Ð→ E∞AlgR.

The resulting coCartesian fibration pM ∶ Mod → sC∞ring yields a second functor Mod ∶ sC∞ring → PrL which
coincides with the straightening of the tangent category on objects, by corollary 4.3.1.4. The goal of this subsection
is to show that the fibrations Mod → sC∞ring and TsC∞ring → sC∞ring are equivalent, and deduce some elementary
consequences of this parametrized stabilization construction.

Definition 4.3.2.1. Let C be a presentable ∞-category , then a commuting diagram

TC Fun(∆1,C)

C

f

ev1

exhibits TC as a tangent category of C if the commuting diagram exhibits TC as a stable envelope of ev1.
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Remark 4.3.2.2. Let C be a presentable ∞-category, and let P∗(C) denote the full subcategory of Fun(∆2,C)
spanned by those maps σ ∶ ∆2 → C such that σ∣∆{0,2} is an equivalence. The projection p∗ ∶ P∗(C) → C given by

evaluating at {2} is a presentable fibration whose fibre over an object A ∈ C is equivalent to CA//A. We call P∗ a
pointed envelope of C. The map ev∆{1,2} ∶ P∗(C)→ Fun(∆1,C) over C preserves Cartesian edges and therefore induces
a map Sp(p∗) → TC over C preserving Cartesian edges. Fibrewise, this map is an equivalence, induced by the map
CA//A → C/A. Invoking [Lur17b], cor. 2.4.4.4, we have an equivalence Sp(p∗)→ TC .

Lemma 4.3.2.3. There is a canonical equivalence TsC∞ring ≃ sC∞ring ×sCringR TsCringR

Proof. For any functor f ∶ C → D and any presentable fibration p ∶ E → D, there is an equivalence Sp(p) ×D C →
Sp(f∗p). Now we need only remark that the functor Fun(∆1, sC∞ring)→ sC∞ring×sCringR Fun(∆1, sCringR) preserves
Cartesian edges and, after stabilizing the fibres, induces the equivalence of proposition 4.3.1.2, so we conclude by
invoking [Lur17b], cor. 2.4.4.4.

Definition 4.3.2.4. The ∞-category Mod is the pullback sC∞ring ×sCringR Modalg. We have a presentable fibration
pM ∶ Mod→ sC∞ring.

We first give criteria for the recognition of limits and colimits in Mod.

Proposition 4.3.2.5. The following hold true.

(1) The functor pM ∶ Mod→ sC∞ring carrying a pair (A,M) to A preserves all limits and colimits.

(2) The functor q ∶ Mod→ModR carrying a pair (A,M) to M preserves limits and sifted colimits.

Proof. As pM is a presentable fibration over a presentable base, pM preserves all limits and colimits. The functor q
factors as

Mod
ρÐ→Modalg Ð→ModR

where the second functor evaluates at the colour m; this functor preserves limits and sifted colimits by [Lur17a],
cor. 3.2.2.3 and prop. 3.2.3.1, so it suffices to show that the functor ρ preserves sifted colimits. Using the argument
employed in lemma 4.1.8.29, we see that for each diagram f ∶ K → Mod, the comparison map e ∶ colim ρ ○ f →
ρ(colim f) is a coCartesian edge of the fibration pM ∶ Modalg → sCringR. In case K is sifted, applying the map pM
to e yields an equivalence in sCringR since ( )alg preserves sifted colimits, so we conclude that in this case e is an
equivalence as well.

Corollary 4.3.2.6. Let Modcn be the full subcategory spanned by objects (A,M) for which M is a connective Aalg-
module, which admits a presentable fibration pcn

M ∶ Modcn → sC∞ring then Modcn is projectively generated. Let
T = N(VectCartSp) be the nerve of the category of (trivial) finite rank vector bundles over Cartesian spaces with
linear fibre preserving maps over smooth base maps, which is a 2-sorted Lawvere theory, then there is a canonical
equivalence

sTAlg ≃ Modcn.

Proof. We may identify Modcn with the pullback Modcn
alg×sCringRsC

∞ring where Modcn
alg is the ∞-category AlgMComm(Modcn

R ).
It follows from proposition 4.3.2.5 that the functor pM × q ∶ Modcn → sC∞ring ×Modcn

R , which is clearly conservative,
preserves limits and sifted colimits. Proposition 4.1.1.3 implies that sC∞ring×ModR is projectively generated by the
2-sorted Lawvere theory N(CartSp) ×N(FModR) where N(FModR) is the nerve of the category of finite dimensional
real vector spaces, so it follows from [Lur17a], prop 7.1.4.12 that Modcn is projectively generated by the essential
image of the left adjoint of pcn

M × q, which consists of objects of the form (C∞(Rn), V ) for V a finite rank free
C∞(Rn)-module, which is readily identified with the opposite of N(VectCartSp).

Remark 4.3.2.7. Consider the pullbacks sC∞ringpc ×sC∞ring Mod and sC∞ringpc ×sC∞ring Modcn, then one can also
show that the sC∞ringpc ×sC∞ring Modcn is the ∞-category of algebras of the 3-sorted Lawvere theory of finite rank
vector bundles over Cartesian spaces with corners. The same remark holds mutatis mutandis for sC∞PLog ×sC∞ring

Modcn.

Theorem 4.3.2.8. There is a canonical equivalence

TsC∞ring Ð→Mod

of presentable fibrations over sC∞ring.
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Proof. In view of lemma 4.3.2.3, it suffices to produce an equivalence ϕ ∶ TsCringR →Modalg.
As the map pcn

M ∶ Modcn
alg → sCringR is a presentable fibration, all p-limits exists in Modcn

alg. Consider p-limits of the
following form:

∆2 Modcn
alg

(∆2)⊲ sCringR

p

Identify (∆2)⊲ = ∆1 ×∆1 and let E denote the full subcategory of Fun(∆1 ×∆1,Modcn
alg) spanned by those diagrams

that are p-limits of their restriction to ∆2, then it follows from (the dual of) theorem 2.1.1.4 that the projection map

π ∶ E Ð→ Fun(∆1 ×∆1, sCringR) ×Fun(∆2,sCringR)
Fun(∆2,Modcn

alg)

is a trivial Kan fibration. Now consider p-left Kan extensions of the form

∆{1,2} Modcn
alg

∆2 sCringR

p

then applying theorem 2.1.1.4 again, we deduce that the map

π′ ∶ E ′ Ð→ Fun(∆1 ×∆1, sCringR) ×Fun(∆1,sCringR)
Fun(∆1,Modcn

alg)

is a trivial Kan fibration, where E ′ ⊂ Fun(∆1 × ∆1,Modcn
alg) is the full subcategory spanned by those commuting

squares

(A,M) (B,N)

(A′,M ′) (B′,N ′)

that are p-limit diagrams and such that (A′,M ′) is a p-initial object in Modcn
alg, or equivalently, such that M ′ is a

zero object in ModA. Now note that the functor s ∶ sCring →Modcn
alg sending A to the pair (A,A) yields a section of

the projection

Fun(∆1 ×∆1, sCringR) ×Fun(∆1,sCringR)
Fun(∆1,Modcn

alg)Ð→ Fun(∆1 ×∆1, sCringR).

Let D denote the essential image of this section, then we have a trivial fibration (π′)−1(D)→ Fun(∆1 ×∆1, sCringR)
which we can restrict further to a trivial fibration

E Ð→ Fun(∆1 ×∆1, sCring) ×Fun(∆2,sCring) sCringR ⊂ Fun(∆1 ×∆1, sCringR)

over the full subcategory D ⊂ Fun(∆1 ×∆1, sCringR) spanned by commuting diagrams of the form

A B

A A

id
id

id

Explicitly, the ∞-category E is the full subcategory of Fun(∆1 ×∆1,Modcn
alg) spanned by those commuting diagrams

(A,M) (B,B)

(A,M ′) (A,A)

that are p-limit diagrams and such that M ′ is a zero object of Modcn
A . Choose a section r ∶ D → E of this fibration,

then we have a commuting diagram

D E Modcn
alg

sCringR

r ev({0},{0})
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where the right horizontal functor evaluates at the top left corner of a square diagram. Note that over each simplicial
commutative R-algebra A, the fibre DA is the ∞-category (sCringR)A//A, and the map (r ○ ev({0},{0}))A on the fibres

may be identified with the augmentation ideal functor IA. The ∞-category D is a pointed envelope of sCringR in the
sense of remark 4.3.2.2, so we can consider the diagram

φ̃ ∶ TsCringR

Ω∞
∗Ð→ D rÐ→ E Ð→Modcn

alg

of fibrations over sCringR. Note that Ω∞
∗ preserves Cartesian edges by construction. To show that the map r○ev({0},{0})

also preserves Cartesian edges, we observe that a Cartesian edge in D is given by a cube

A′ B′

A B

A′ A′

A A

where all the faces except the front and back ones are pullbacks. After applying the functor r and the underling
R-module functor Modcn

alg →ModR, we obtain the following cube

M ′ B′

M B

0 A′

0 A

The right face is still a pullback, and the front and back faces are also pullbacks. It follows that the left face is a
pullback as well, so we deduce that M → M ′ is an equivalence, which by [Lur17a], cor. 3.4.3.4 is equivalent to the
assertion that the edge (A,M)→ (A′,M ′) is pM -Cartesian in Modcn

alg. It follows from the universal property of stable

envelopes that φ̃ factors as in the diagram

TsCringR Sp(pcn
M) Modcn

alg

sCringR

φ

pT
p

Ω∞
∗

pcn
M

where φ sends pT -Cartesian edges to p-Cartesian edges. By [Lur17b], cor. 2.4.4.4, φ is an equivalence if for each A ∈
sCringR, the induced map φA ∶ Sp((sCringR)A//A)→ Sp(Modcn

A ) is an equivalence. This is the case as the construction
of the stabilized fibration Sp(p̃2) ensures that the map φA is the Goodwillie derivative of the augmentation ideal
functor which is an equivalence by proposition 4.3.1.3. We finish the proof by showing that the functor ψ ∶ Modalg →
Sp(pcn

M), induced from the functor Modalg → Modcn
alg (which preserves Cartesian edges and admits fibrewise left

adjoints) is an equivalence. This follows again from [Lur17b], cor. 2.4.4.4 as the functor induced on the fibres in this
case is the functor Sp(Modcn

A )→ModA that exhibits ModA as the right completion of Modcn
A . Choosing a homotopy

inverse of ψ (in the coCartesian model structure on (Set∆)+/sCringR
) and composing with φ yields a functor

ϕ ∶ TsCringR Ð→Modalg

implementing the desired equivalence.

We may repeat the constructions of theorem 4.3.2.8 with sC∞ring in place of sCringR, which yields a parametrized
trivial square zero extension functor Mod ≃ TsC∞ring → P∗(sC∞ring) ≃ D.
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Lemma 4.3.2.9. The functor

Modcn ⊂ TsC∞ring

Ω∞
∗Ð→ D

ev({1},{0})Ð→ sC∞ring

preserves sifted colimits.

Proof. The functor D
ev{1}×{0}Ð→ sC∞ring takes a diagram

A B

A A

id
id

id

to the object B. Let θM ∶ sC∞ring →ModR denote the underlying R-module functor, and consider the composition

D
ev{1}×{0}Ð→ sCringR

θMÐ→ModR,

which is equivalent to the composition

D rÐ→ E
ev{1}×{0}Ð→ Mod

qÐ→ModR.

We observe that by construction of the equivalence TsCringR ≃ Modalg, the functor

Mod
Ω∞
∗Ð→ D E Modr ev({0},{0})

is the one taking fibrewise connective covers, so it follows from the construction of the ∞-category C that the functor
θM ○ ev({0},{1}) ○Ω∞

∗ fits into a fibre sequence of functors

q ○ τ≥0 Ð→ θM ○ ev({0},{1}) ○Ω∞
∗ Ð→ θM ○ pM

The last map admits a section, so we find that θM ○ ev({0},{1}) ○Ω∞
∗ is equivalent to q ○ τ≥0 ⊕ θM ○ pM . It follows from

proposition 4.3.2.5 that this functor restricted to Modcn preserves sifted colimits.

Invoking [Lur17b], prop. 5.5.8.15, we have the following.

Corollary 4.3.2.10. The functor Modcn ⊂ TsC∞ring → Fun(∆1, sC∞ring) is a left Kan extension of its restriction to
N(VectCartSp)op.

With this result in hand, we can show that the functor TsC∞ring → Fun(∆1, sC∞ring) is in fact the derived functor
of a right Quillen functor.

Construction 4.3.2.11. Let Mod be the category defined as follows.

(1) Objects are pairs (A,M) where A is a C∞-dga and M is an Aalg
dg -module.

(2) Morphisms are pairs (f,α) ∶ (A,M) → (B,N) where f ∶ A → B is a morphism of C∞dga’s and α ∶ f!(M) =
M ⊗A B → N is a map of Balg

dg -modules.

The obvious projection Mod → C∞dga is a biCartesian fibration over a presentable base with presentable fibres; it
follows from the main result of [GHN15] that Mod is presentable. Let Modalg be the category whose objects are
pairs (A,M) where A is a nonnegatively graded cdga over R and M is an A-module, and morphisms are defined
similarly as in Modalg, then we may identify the category Mod with the pullback Modalg ×cdga≥0R

C∞dga. The

forgetful functor ( )Malg
dg ∶ Mod→Modalg admits a left adjoint FMC∞

dg defined by the assignment

(A,M)z→ (FC
∞

dg (A),M ⊗A FC
∞

dg (A)).

The category Modalg admits a proper combinatorial model structure in which

(W ) weak equivalences are maps (A,M) → (B,N) for which the map A → B is an equivalence of cdga’s and the
underlying map on dg R-modules M → N is an equivalence.

(F ) fibrations are maps (A,M) → (B,N) such that A → B is a fibration of cdga’s and and the underlying map on
dg R-modules M → N is a fibration, i.e. both maps on underlying R-modules are degreewise surjective.

(C) cofibrations are maps (A,M) → (B,N) such that A → B is a cofibration of cdga’s and the map M ⊗A B → N
is a cofibration of B-modules.
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The category Mod likewise admits a right proper combinatorial model structure right transferred along the adjunction

Modalg Mod.
FMC

∞
dg

( )
Malg
dg

This model structure is an example of a model fibration in the sense of [HP14], and the existence of the desired model
structure can be deduced from theorem 3.0.12 of loc. cit. using the classical Grothendieck construction. As the model
structure on Modalg is also obtained via the Grothendieck construction, one readily verifies that the model structure
on Mod is right transferred from Modalg which implies it is combinatorial, since the one on Modalg is. There is a
canonical functor Mod → Mod which exhibits a localization, by proposition 2.1.4 of [Hin16]. Now we define a right
Quillen functor

SZ ∶ Mod≥0 Ð→ Fun(∆1,C∞dga),
where we endow the target with the projective model structure. For M a nonnegatively graded dg A-module, define
a structure of a C∞dga on the dg R-module A⊕M as follows.

(1) The cdga structure on A⊕M is that of the square zero extension of A by M .

(2) In degree 0, the C∞-ring structure on A0 ⊕M0 is defined as follows. Let f ∶ Rn → R be a smooth function, then
we have a map f∗ ∶ An0 → An0 . We define f∗ ∶ (A0 ⊕M0)n → A0 ⊕M0 by setting

f∗((ai,mi)1≤i≤n) = (f∗((ai)1≤i≤n),
n

∑
i=1

( ∂f
∂xi

)
∗

(ai)mi)

The obvious map A ⊕M → A of C∞dga’s determines the functor SZ ∶ Mod≥0 → Fun(∆1,C∞dga), which is clearly
right Quillen (the adjoint may be constructed explicitly as in remark 4.3.2.14 or using the adjoint functor theorem
as SZ preserves filtered colimits). We define a right Quillen functor

SZ≥0 ∶ ModÐ→ Fun(∆1,C∞dga)

as the composition of right Quillen functors SZ ○ τ≥0.

Corollary 4.3.2.12. The functor RSZ≥0 ∶ Mod→ Fun(∆1, sC∞ring) is equivalent to the canonical functor TsC∞ring →
Fun(∆1, sC∞ring) defining the tangent category.

Proof. In view of corollary 4.3.2.10 and [Lur17b], prop. 5.5.8.15, it suffices to show that the functor RSZ preserves
sifted colimits and coincides with the functor Ω∞

∗ on N(VectCartSp). For the first point, it suffices to show that the
composition

Modcn RSZÐ→ sC∞ring
θMÐ→ModR

preserves sifted colimits. The second functor is the right derived functor of the forgetful functor G ∶ C∞dga→ModR.
We have RG ○RSZ ≃ R(G ○ SZ), but the composition G ○ SZ is the functor

(A,M)z→ A⊕M,

whose right derived functor coincides with the functor

q ○ τ≥0 ⊕ θM ○ pM

of lemma 4.3.2.9, which preserves sifted colimits by proposition 4.3.2.5. On the 0-truncated objects Mod ⊂ Mod,
the functor Ω∞alg

∗ coincides with the classical square zero extension functor by [Lur17a], rmk 7.3.4.16, so there is
an equivalence of functors SZalg∣Mod → Ω∞alg

∗ ∣Mod. For each pair (A,M) of a C∞-ring and a discrete module, this
induces a map of C∞-rings

FC
∞

A (SZ(A,M)alg)Ð→ Ω∞
∗ (A,M)

functorial in the pair (A,M). We also have the counit map

FC
∞

A (SZ(A,M)alg)Ð→ SZ(A,M)

and it suffices to show that this map is an equivalence for (A,M) = (C∞(Rn), V ) where V is a free finite rank
C∞(Rn)-module. Suppose V is a rank k-module, then the algebraic square zero extension SZ(C∞(Rn), V )alg can be
identified with the coproduct C∞(Rn)⊗R[x1, . . . , xk]/(xixj)1≤i,j≤k and the equivalence

FC
∞

C∞(Rn)(C∞(Rn)⊗R[x1, . . . , xk]/(xixj)1≤i,j≤k)Ð→ C∞(Rn)⊕ V

is a consequence of Hadamard’s lemma.
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Remark 4.3.2.13. From the argument in the previous proof, one can deduce that for each A ∈ sC∞ring and
M ∈ ModA, the trivial square zero extension Ω∞

A (M) is naturally equivalent to FC
∞

A (Ω∞

AalgM).

Remark 4.3.2.14. The functor SZ is right Quillen and thus admits a left adjoint, the parametrized C∞-Kähler
differentials. Let A be a C∞dga, then we define a dg A-module Ω1

A as the universal A-module that comes equipped
with a map ddR ∶ A→ SZ(Ω1

A) over A, that is, for each A-module M , composition with ddR induces a bijection

HomMod
A

alg
dg

(Ω1
A,M) ≅Ð→ HomC∞dga/A(A,SZ(M)).

When A is a cofibrant object of the form C∞(Rn)[ε1, . . . , εk], with dεj = ∑m fmεjm then Ω1
A is a quasi-free A-module

generated by symbols ddRxi in degree 0 for each coordinate function xi ∶ Rn → R, and ddRεi in degree ∣εi∣, with
differential given by

d(addRεj) = daddRεj + (−1)∣a∣addR(∑
m

fmεjm) = daddRεj +∑
m

(−1)∣a∣a εjmddRfm +∑
m

(−1)∣a∣afmddRεjm

for a ∈ A a homogeneous element, where ddRf for f a smooth function is ∑i df
dxi

ddRxi. Now the left adjoint to SZ is
given by the functor

(A→ B)z→ Ω1
A ⊗A B.

There is an analogous construction one can perform for trivial square zero extensions of positive prelog simplicial
C∞-rings and thereby also for simplicial C∞-rings with corners.

Construction 4.3.2.15. Let ModPLog denote the pullback Mod×sC∞ringsC
∞PLog and Modcn

PLog the pullback Modcn×sC∞ring

sC∞PLog, and consider the functor λ given by

ModPLog Ð→ Fun(∆1, sC∞ring) ( )≥0Ð→ Fun(∆1, sCMon)

carrying a triple (A,M,N → A≥0) to the map (A ⊕ τ≥0M)≥0 → A≥0. Using the natural transformation of remark
4.1.8.19, we obtain a natural commuting diagram

(A⊕ τ≥0M)≥0 A≥0

(A⊕ τ≥0M)CMon A

of simplicial commutative monoids. It follows from the fact that the relative cotangent complex LR≥0/R vanishes

that this diagram is a pullback. The underlying space of the object (A ⊕ τ≥0M)CMon coincides with the underlying
space of A ⊕ τ≥0M , which is simply the product A × τ≥0M , so the same holds for (A ⊕ τ≥0M)≥0. The ∞-category
Modcn

sC∞PLog is projectively generated by the discrete full subcategory N(VectCartSp⊳c ) spanned by objects of the form

(C∞(Rn × Rk≥0), V,Zk≥0 → C∞
≥0(Rn × Rk≥0)) where V is a finitely generated and free C∞(Rn × Rk≥0)-module. It follows

from the previous analysis that λ carries such an object to the map

C∞
≥0(Rn ×Rk≥0)⊕ V Ð→ C∞

≥0(Rn ×Rk≥0).

We may view V as a simplicial commutative monoid by remembering the additive structure it inherits as a connective
R-module; this is simply the restriction to N(VectCartSp⊳c )op of a functor

( )add ∶ Modcn
PLog Ð→Modcn

R Ð→ sCMon

that preserves limits and sifted colimits. Now we define a functor (of 1-categories)

ω ∶ VectCartSp⊳opc Ð→ Fun(∆1,C∞PLog)

by carrying a triple (C∞(Rn ×Rk≥0), V,Zk≥0 → C∞
≥0(Rn ×Rk≥0)) to the map

(C∞(Rn ×Rk≥0)⊕ V,Zk≥0 × V add → C∞
≥0(Rn ×Rk≥0)⊕ V )Ð→ (C∞(Rn ×Rk≥0),Zk≥0 → C∞

≥0(Rn ×Rk≥0))

where
Zk≥0 × V add Ð→ C∞

≥0(Rn ×Rk≥0)⊕ V
is the coproduct of the map

Zk≥0 Ð→ C∞
≥0(Rn ×Rk≥0)Ð→ C∞

≥0(Rn ×Rk≥0)⊕ V
and the map

V add Ð→ C∞
≥0(Rn ×Rk≥0)⊕ V, v z→ (1, v).

195



We define a functor Modcn
Plog → Fun(∆1, sC∞PLog) as an ev1-left Kan extension

N(VectCartSp⊳c )op N(Fun(∆1,C∞PLog)) Fun(∆1, sC∞PLog)

Modcn
Plog sC∞PLog

ω

ev1

obtaining a (strictly) commuting diagram

Modcn
Plog Fun(∆1, sC∞PLog)

sC∞PLog

ev1

of ∞-categories, where the vertical maps are presentable fibrations. From the fact that weakly contractible colimits
in the fibres of a presentable fibration C → D are equivalently colimits in C, we deduce that the diagonal filler in
the square above is also an absolute left Kan extension and thus preserves sifted colimits. We have a functor Ω∞

∗pc ∶
ModPLog → Fun(∆1, sC∞PLog) by composing the functor just constructed with the functor τ≥0 ∶ ModPLog →Modcn

PLog,
the relative right adjoint to the inclusion of fibrewise connective objects.

Proposition 4.3.2.16. (1) The functor Ω∞
∗pc preserves limits and restricted to Modcn

PLog preserves also sifted colimits.

(2) Ω∞
∗pc carries Cartesian edges to Cartesian edges.

(3) Ω∞
∗pc preserves fibrewise limits and restricted to connective objects, also fibrewise sifted colimits.

(4) Ω∞
∗pc carries the full subcategory ModLog = sC∞Log×sC∞ringMod ⊂ ModPLog into the full subcategory Fun(∆1, sC∞Log)

and the horizontal functor in the resulting commuting diagram

ModLog Fun(∆1, sC∞Log)

sC∞Log

Ω∞
∗c

ev1

preserves Cartesian edges and (fibrewise) limits and (fibrewise) filtered colimits.

Proof. (1) By construction, Ω∞
∗pc preserves sifted colimits restricted to fibrewise connective objects. To see that Ω∞

∗pc

also preserves limits, it suffices to observe that the functors

(A,M,N → A≥0)z→ A≥0 ⊕ τ≥0M,

and

(A,M,N → A≥0)z→ N × τ≥0M
add,

preserve limits.

(2) Let (A,M,N → A≥0) → (A′,M ′,N ′ → A′
≥0) be a Cartesian edge, which amounts to the assertion that the map

M →M ′ is an equivalence of R-modules. Unwinding the definitions, we are required to show that the diagram

N × τ≥0M
add N

N ′ × τ≥0M
′add N ′

is a pullback square, which is obvious.

(3) We are left with the case of limits, which follows from (1), (2) and assertion (∗) of proposition 4.1.8.32.
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(4) We need only check that Ω∞
∗pc preserves the subcategory of logarithmic objects; the other properties follow

immediately from (1), (2) and (3) and the fact that the inclusion sC∞Log ⊂ sC∞PLog preserves filtered colimits.
We need to show that the upper horizontal map in the pullback diagram

L (A≥0 ⊕ τ≥0M)×

N × τ≥0M
add A≥0 ⊕ τ≥0M

is an equivalence. Since N → A≥0 is a log structure, it suffices to show that the diagrams

A×
≥0 (A≥0 ⊕ τ≥0M)×

A≥0 A≥0 ⊕ τ≥0M

N A≥0

N × τ≥0M
add A≥0 ⊕ τ≥0M

are pullbacks. Since the relative cotangent complex LR>0/R≥0 vanishes, the map (A≥0 ⊕M)× → A≥0 ⊕ τ≥0M
coincides with the map A× ⊕ τ≥0M → A≥0 ⊕ τ≥0M , and the left square is then readily seen to be a pullback. To
see that the right square is a pullback, we note that the lower horizontal map factors through A≥0 × τ≥0M

add, so
we may assume that N = A≥0. Clearly, we may also suppose that M is connective. Using the fact that A≥0 → A
is an inclusion of components, we may replace A≥0 by A so that we need to show that the diagram

A A

A ×Madd A⊕M

(4.8)

which is natural in A and M , is a pullback. First, we show that we may suppose that A is discrete. Choose a
colimit diagram f ∶ N(∆op

+ ) → sC∞ring carrying the cone point to A such that f([n]) is a (possibly infinitely
generated) free C∞-ring for [n] ∈ N(∆op), and choose a Cartesian lift F as in the diagram

[ − 1] Modcn

N(∆op
+ ) sC∞ring

(A,M)

f

F

then it follows from proposition 4.3.2.5 that F is a colimit diagram. Amalgamating the composition of F with
the functors Ω∞

∗ and ( )add, we obtain commuting square of simplicial objects

f f

f ×Madd Ω∞
∗ ○ F = f ⊕M.

with colimit the diagram (4.8). The map f → f ⊕M is a Cartesian transformation and therefore a realization
fibration, so in order to prove that (4.8) is a pullback it suffices to show that the diagram above is a pullback;
that is, we may suppose that A is discrete. Now consider the diagram

∗ Q A

Madd A ×Madd A⊕M

in which both squares are pullbacks. Since the map Q → A induces a bijection on connected components, it
suffices to show that Q is discrete. This is an immediate consequence of the Mayer-Vietoris sequence associated
to the left pullback.
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4.3.3 Geometries of modules

In the previous subsections, we constructed for every simplicial C∞-ring A a stable ∞-category of A-modules in a
functorial manner. In this subsection, we replace A by X = (X ,OX ), a local Gder

Diff -structured ∞-topos, and ModA by
an ∞-category QCohX ∶= ModOX . Let A be a simplicial C∞-ring, then, just as in the discrete case (see definition-
proposition 3.1.3.38), there is a spectrum functor for modules MSpecA ∶ ModA →ModOSpecA taking an A-module M
to a sheaf of OSpecA-modules. Contrary to the algebraic case, this functor is not fully faithful; instead, it is essentially
surjective. It’s adjoint ΓMod is fully faithful, and the full subcategory ΓMod(QCohSpecA) ⊂ ModA is strongly reflective,

determining a full subcategory Modcplt
A of complete modules.

To work efficiently with the various spectrum and global sections functors for simplicial C∞-rings and modules thereof,
we find it convenient to employ the language of module geometries, following Lurie in [Lur11d].

Proposition 4.3.3.1. Mod is compactly generated. Moreover, an object (A,M) is compact in Mod if and only if A
is finitely presented and M is a perfect A-module; that is, A is compact in sC∞ring and M is compact in ModA.

Proof. This proof is identical to the one of proposition 2.2.2 of [Lur11d], replacing the ∞-category of spectra with
the ∞-category of R-modules.

Notation 4.3.3.2. We write Perf for the full subcategory spanned by compact objects in Mod. By proposition 4.3.3.1,
the coCartesian fibration p ∶ Mod → sC∞ring restricts to a coCartesian fibration p ∶ Perf → sC∞ringfp. We denote

GMod
Diff for the opposite ∞-category of Perf; by taking the opposite of p, we have a Cartesian fibration q ∶ GMod

Diff → Gder
Diff .

Objects of GMod
Diff will be denoted as pairs (SpecA,M) with SpecA ∈ Gder

Diff and M a perfect A-module.

We endow GMod
Diff with the structure of a geometry according to the following prescription:

(1) A map f ∶ (SpecA,M)→ (SpecB,N) is admissible if and only if f is q-Cartesian and q(f) is admissible in Gder
Diff .

(2) A collection {(SpecB[1/bα],Nα) → (SpecB,N)}α∈J generates a covering sieve if and only if the collection
{SpecB[1/bα]→ SpecB}α∈J generates a covering sieve in Gder

Diff .

This indeed defines a geometry by proposition 2.2.6 of [Lur11d].

Remark 4.3.3.3. Let T Mod
Diff ⊂ GMod

Diff be the discrete full subcategory spanned by objects of the form

(SpecC∞(N),M)

where N is a manifold and M is a finitely generated projective C∞(N)-module. Note that T Mod
Diff is nothing but

N(Vect), the category of finite dimensional vector bundles with globally bounded rank on manifolds. We endow
T Mod

Diff with the structure of a pregeometry as follows: a map between vector bundles E → U and F → N as in the
diagram

E F

U N

f̃

f

where f̃ is fibrewise linear, is admissible if this diagram is a pullback and f ∶ U → N is an open embedding. Also, let
GModcn

Diff ⊂ GMod
Diff be the full subcategory spanned by pairs (SpecA,M) where M is a connective perfect A-module. This

∞-category inherits the structure of a geometry from Gder
Diff and it can be shown that inclusion T Mod

Diff ↪ GModcn

Diff exhibits
GModcn

Diff as a geometric envelope of T Mod
Diff . The proof goes along along the lines of the one of theorem 4.1.4.6, using that

GModcn

Diff is the ∞-category of simplicial algebras for the Lawvere theory generated by the objects (C∞(Rn),C∞(Rn)m).
By remark 3.1.2.8, the category Perfop from remark 3.1.3.39 consisting of pairs (SpecA,M) where A is a C∞-ring
and M a (discrete, not differentially graded) A-module of finite presentation, is a 0-truncated geometric envelope of
T Mod

Diff . We leave the details of the proof to the motivated reader, since we won’t need these results.

Recall that a GMod
Diff -structure on an ∞-topos X can be canonically identified with an Ind((GMod

Diff)op)-valued sheaf
on X . As Mod is compactly generated, a GMod

Diff -structure on X is precisely a Mod-valued sheaf on X . Let RingTopMod

be the ∞-category of (possibly non-local) GMod
Diff -structured ∞-topoi (this is the same thing as the ∞-category

RTop((GMod
Diff)disc) of local (GMod

Diff)disc-structured ∞-topoi, where (GMod
Diff)disc is the discrete geometry underlying GMod

Diff ),
and let RingTopdC∞ be the ∞-category of (possibly non-local) Gder

Diff -structured ∞-topoi.

Proposition 4.3.3.4. The ∞-category RTop(GMod
Diff) fits into a pullback diagram

RTop(GMod
Diff) RingTopMod

RTop(Gder
Diff) RingTopdC∞

q̃ q
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of ∞-categories, where the right vertical map is the obvious forgetful functor and the lower horizontal map is the
inclusion of the subcategory of local objects and local morphisms. Moreover, the left vertical map q̃ is a Cartesian
fibration.

Proof. We claim that it suffices to show that the map q is a Cartesian fibration. Supposing for a moment that we
have verified this, it then follows that q̃ is also a Cartesian fibration and that the pullback of the diagram above is a
pullback of simplicial sets. Then the ∞-category RTop(Gder

Diff)×RingTopdC∞ RingTopMod is the subcategory of RingTopMod

of those objects and morphisms that lie in RTop(Gder
Diff) after applying the forgetful functor to RingTopdC∞ . Differently

put, RTop(Gder
Diff) ×RingTopdC∞ RingTopMod ⊂ RingTopMod is the subcategory whose

(a) objects are triples (X ,OX , F ) such that (X ,OX ) is a local Gder
Diff -structure.

(b) morphism are those α ∶ (X ,OX , F ) → (Y,O′
Y , F

′) such that the underlying morphism f∗ ○OX → OY is a local
morphism of Gder

Diff -structures on Y.

Proposition 2.2.7 of [Lur11d] now shows that RTop(Gder
Diff)×RingTopdC∞ RingTopMod ⊂ RingTopMod coincides with RTop(GMod

Diff).
Now we prove that q is Cartesian: it suffices to show that the conditions of lemma 1.4.14 of [Lur09] are satisfied for
the triangle of ∞-categories

RingTopMod RingTopdC∞

RTop

p

q

p′

Clearly, q is an inner fibration. For any ∞-topos, the induced map on the fibre is identified with the map qX ∶
ShvMod(X )op → ShvsC∞ring(X )op, which is a Cartesian fibration. We are are required to show that for each geometric
morphism f∗ ∶ X → Y, the induced functor ShvMod(X ) → ShvMod(Y) carries qX -coCartesian morphisms to qY -
coCartesian morphisms. Using [Lur17a], prop. 4.6.2.17, this amounts to the following assertion: suppose that
(OX ,F)→ (O′

X ,F ′) is a morphism in ShvMod(X ) such that the induced map

F ⊗OX O
′
X Ð→ F ′

of sheaves of R-modules on X is an equivalence, then the map

f∗(F)⊗f∗(OX ) f
∗(O′

X )Ð→ f∗(F ′)

is an equivalence, which follows immediately from the fact that f∗ ∶ ShvModR(X )→ ShvModR(Y) is symmetric monoidal
and preserves colimits.

In view of the proposition above, we will identify the objects of RTop(GMod
Diff) with triples (X ,OX , F ), with X an

∞-topos, OX a sheaf of local simplicial C∞-rings on X and F a sheaf of O-modules.

Definition 4.3.3.5. Let us write q̃ ∶ RTop(GMod
Diff) → RTop(Gder

Diff) for the projection of proposition 4.3.3.4. Let
(X ,OX ) be a Gder

Diff -structured ∞-topos, then we denote the fibre q̃−1(X ,OX ) by ModOX and we call it the ∞-category
of OX -modules. For X = (X ,OX ) a Gder

Diff -structured ∞-topos, we will also use the notation QCohX for ModOX .

Remark 4.3.3.6. Note that for an ∞-topos X , we have a diagram of ∞-categories

ModOX ShvMod(X ) RingTopMod

∗ ShvsC∞ring(X ) RingTopdC∞

∗ RTop

OX

X

where all squares are pullbacks. It follows that ModOX is the fibre at OX of the presentable fibration ShvMod(X ) →
ShvsC∞ring(X ).

Remark 4.3.3.7. Since the map ShvMod(X )→ ShvE∞Algcn
R
(X ) is isomorphic to Mod(ShvModR(X ))→ E∞Algcn(ShvModR(X )),

we may also identify both maps with the tangent category TShvE∞Algcn
R

(X) → ShvE∞Algcn
R
(X ). It follows the map

ShvMod(X )→ ShvsC∞ring(X ) may also be identified with the tangent category.

The following is just a restatement of proposition 2.2.5.26.

Proposition 4.3.3.8. Let (X ,OX ) be a Gder
Diff-structured ∞-topos.
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(1) The ∞-category ModOX is stable and presentable. Moreover, ModOX admits an accessible t-structure.

(2) The forgetful functor θ ∶ ModOX → ShvModR(X ) is conservative and preserves small limits and colimits.

(3) The forgetful functor θ is t-exact, and the t-structure on ModOX of point (1) can be identified with the pair
(θ−1(ShvModR(X )≤0), θ−1(ShvModR(X )≥0)).

(4) The t-structure of point (1) is right complete.

(5) Suppose that X is hypercomplete, then the t-structure of point (1) is left complete.

Remark 4.3.3.9. The coCartesian fibration q̃ ∶ LTop(GMod
Diff)→ LTop(Gder

Diff) is a presentable fibration: it follows from
the description of coCartesian edges of q̃ that the coCartesian pushforward determined by a map (X ,OX )→ (Y,OY)
can be identified with the composition

ModOX
f∗Ð→Modf∗OX

⊗f∗OX
OY

Ð→ ModOY .

The second map clearly preserves colimits, and the first map can be identified with the fibre at OX of the diagram

ShvMod(X ) ShvMod(Y)

ShvsC∞ring(X ) ShvsC∞ring(Y)

qX qX

induced by f∗. It suffices to show that the upper horizontal map carries qX -colimits to qY -colimits, but this follows
because f∗ preserves colimits and carries qX -coCartesian edges to qY -coCartesian edges. As a result, the functor q̃
admits a left adjoint, a section which carries each pair (X ,OX ) to the triple (X ,OX ,0), which is the initial object
in the fibre. It follows from [Lur17b], rmk. 5.2.6.4 that the functor q̃ is the map induced by composition with the
transformation of geometries

s0 ∶ Gder
Diff Ð→ GMod

Diff ,

which carries A to the pair (A,0), so we find that the section described above coincides with the relative spectrum

Spec
G

Mod
Diff

Gder
Diff

.

Proposition 4.3.3.10. The global sections functor ΓMod ∶ RTop(GMod
Diff)→Modop admits a right adjoint SpecG

Mod
Diff .

Proof. This is construction 3.1.1.1 for the geometry GMod
Diff together with proposition 3.1.1.2.

Lemma 4.3.3.11. Let A be a fair simplicial C∞-ring, then the following diagram

ModOSpA ModA

Mod♡π0(OSpecA) Mod♡π0(A)

πn

Γ

πn

Γ

which commutes up to homotopy in virtue of proposition 2.2.5.37 is Γ-left adjointable.

Proof. This is proven exactly as in lemma 4.1.3.27.

Proposition 4.3.3.12. The unit of the adjunction id→ SpecG
Mod
Diff ○ΓMod is an equivalence when restricted to the full

subcategory of RTop(GMod
Diff) spanned by objects (X ,OX ,FM), where (X ,OX ) is an affine fair derived C∞-scheme.

Proof. By theorem 4.1.3.22, the unit induces an equivalence

(X ,OX ) ≃Ð→ (Spec Γ(X ),OSpecΓ(X)),

so, given a sheaf F of OX -modules, it suffices to show that the natural map ε ∶ MSpecA Γ(F) → F of sheaves of
OX -modules is an equivalence. As the t-structure on ShvModOX

(X ) is left and right complete, it suffices to show that
ε induces an equivalence on all sheaves of homotopy groups. We should show that the canonical map

πn(MSpecA Γ(F))Ð→ πn(F)

is an equivalence, but, as the square of lemma 4.3.3.11 is left adjointable, the map above is equivalent to the counit
map

MSpecπ0(A) Γ(πnF)Ð→ πn(F)
which is an equivalence by proposition 5.20 of [Joy12a].
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The previous proposition states that a sheaf of OX -modules for (X ,OX ) an affine derived manifold can always
be retrieved as the spectrum of its global sections.

Corollary 4.3.3.13. Let A be a fair simplicial C∞-ring. The full subcategory ΓMod(ModOSpecA) ⊂ ModA is strongly
reflective.

Definition 4.3.3.14. Let A be a fair simplicial C∞-ring. The stable presentable ∞-category of complete modules is
ΓMod(ModOSpecA). We denote it Modcplt

A .

Remark 4.3.3.15. Let A be a fair simplicial C∞-ring. The stable ∞-category Modcplt
A inherits a t-structure from

ModOSpecA via the spectrum-global sections equivalence. Both the inclusion functor Modcplt
A → ModA and the

localization functor ModA → Modcplt
A are t-exact. It follows that the t-structure on Modcplt

A is simply given by

(Modcplt
A ∩ Mod≤0

A ,Modcplt
A ∩ Mod≥0

A ). We can also conclude that the heart QCoh♡(A) can be identified with the
abelian category of complete π0(A)-modules.

Proposition 4.3.3.16. Let A be a fair simplicial C∞-ring, then an A-module M is complete if and only if πn(M)
is a complete π0(A)-module for all n ∈ Z.

Proof. Suppose M is complete. The functor QCohA ↪ ModA
πn→ Modπ0(A) coincides with the functor πn ∶ QCohA →

QCoh♡A, and we know that QCoh♡A is the abelian category of complete π0(A)-modules. Conversely, suppose that
πn(M) is a complete π0(A)-module for all n ∈ Z. We should verify that the map η ∶ M → Γ(MSpecAM) is
an equivalence. Since the t-structure on ModA is left and right complete, it suffices to show that η induces an
equivalence η ∶ πnM → πnΓ(MSpecAM) for each n ∈ Z. Since the square of lemma 4.3.3.11 is left adjointable,
this map is equivalent to the unit map πnM → ΓMSpecπ0(A) πn(M), which is an equivalence because πnM is
complete.

To show that there is always a good supply of complete modules, we recall the following definition. Let A be an
E∞-algebra, then an A-module M is almost perfect if M ∈ Mod≥kA for some k ≤ 0 and M is almost compact as an
object of Mod≥kA .

Proposition 4.3.3.17. Let A be a fair simplicial C∞-ring. If M is an almost perfect A-module, then M is complete.

Proof. Let M be an almost perfect A-module. Since Modcplt
A ⊂ ModA is a stable full subcategory and M is eventually

connective, we may assume that M is connective. By proposition 4.3.3.16, M is complete if and only if τ≤nM is
complete for all n ≥ 0, and by proposition 4.3.3.13, the full subcategory Modcplt

A ⊂ ModA is stable under retracts.
Since there exists for each n ≥ 0 a perfect connective A-module M ′ such that τ≤nM

′ ≃ τ≤nM , we may assume that
M is perfect. To show that M is complete, it suffices to prove that Modcplt

A ⊂ ModA is a stable full subcategory

containing A that is closed under retracts. The only nonobvious thing is the verification that A ∈ Modcplt
A , but by

proposition 4.3.3.16, A is itself a complete module over A because A is fair.

It follows from proposition 4.3.3.4 and remark 4.3.3.6 that the restriction LTop(GMod
Diff) ×LTop(Gder

Diff
) dC∞Affopfair →

dC∞Affopfair is a presentable fibration. Unstraightening this fibration, we obtain a functor

QCoh ∶ dC∞Affopfair Ð→ PrL.

Theorem 4.3.3.18. The functor QCoh is a sheaf of presentable ∞-categories on dC∞Afffair for the étale topology.

Proof. Using remark 3.2.1.22, it suffices to show that for each (X ,OX ) ∈ dC∞Afffair, the pullback φ∗(X ,OX )QCoh ∶
X op → PrL is a sheaf. The functor

LTopÐ→ PrL

obtained by unstraightening the coCartesian fibration RingTopopMod →
LTop can be identified with the functor

LTop
FunR

(Modop, )Ð→ PrL

which is simply the Lurie tensor product of presentable ∞-categories with Mod, which preserves colimits separately
in each variable, and similarly unstraightening the fibration RingTopdC∞ → LTop produces the colimit preserving
functor

⊗ sC∞ring ∶ LTopÐ→ PrL.

The functor φ∗(X ,OX )QCoh is obtained as the unstraightening of the functor

X op ×LTop(Gder
Diff

)
LTop(GMod

Diff)Ð→ X op
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but this functor fits into a pullback diagram

X op ×LTop(Gder
Diff

)
LTop(GMod

Diff) X op ×LTop RingTopopMod

X op X op ×LTop RingTopopdC∞

of coCartesian fibrations over X op. It is now sufficient to show that the functors X op → PrL given by

U z→ X/U ⊗ sC∞ring, U z→ X/U ⊗Mod

preserve limits. Since the functor X/U → X/V induced by a map V → U also admits a left adjoint given by Weil

restriction, we may consider both functors as taking values in PrR. Then we need to show that the functors X → PrL

on opposite categories preserves colimits, but these functors are compositions of the opposite of the functor X op → PrR,
U ↦ X/U which preserves limits by descent, and the functors ⊗ sC∞ring and ⊗Mod, which preserve colimits.

Remark 4.3.3.19. By right Kan extending QCoh along the Yoneda embedding, we have a functor dC∞Stop → PrR

which we abusively also denote QCoh. For X a derived stack, we call QCohX the ∞-category of quasi-coherent sheaves
on X. By definition of the right Kan extension, we have

QCohX = lim
SpecA→X∈(dC∞Afffair)

op
X/

QCoh(SpecA). (4.9)

An object in the limit is a Cartesian section of the Cartesian fibration classified by the diagram (dC∞Afffair)opX/
→ PrL,

that is, the data of a complete module MA for each SpecA ∈ dC∞Aff together with, for each homotopy commutative
diagram

SpecA SpecB

X

f

of derived stacks an equivalence f∗MB ≃MA, and these equivalences are themselves compatible up to coherent higher
homotopies. The previous theorem implies that QCoh ∶ dC∞Stop → PrR takes colimits of derived stacks to limits of
∞-categories, so for many stacks, QCoh admits a simpler description than the formula (4.9). In particular, if a derived
n-Artin stack X is represented by a derived Lie n-groupoid X∗, we have an equivalence

QCohX
≃Ð→ lim

N(∆)
QCoh(X∗).

We note that by theorem 4.3.3.18, we have given two definitions of the ∞-category of quasi-coherent sheaves on a
derived Deligne-Mumford C∞-stack X: viewing X as a structured topos (X ,OX ), we have the ∞-category ModOX
of definition 4.3.3.14, and, viewing X as a sheaf on dC∞Aff via the functor jSch, we have the ∞-category QCoh(X)
of remark 4.3.3.19. These two ∞-categories can be canonically identified, via the following analogue of proposition
2.7.18 of [Lur11d].

Proposition 4.3.3.20. Let X = (X ,OX ) be a derived Deligne-Mumford C∞-stack and denote by X = jSch(X) the
associated sheaf, then there is a canonical equivalence QCoh(X) ≃ ModOX .

Proof. The proof of theorem 4.3.3.18 applies to show that for any n ≥ 0, the functor

QCoh ∶ DMStopn Ð→ PrL

obtained by unstraightening the fibration LTop(GMod
Diff)×LTop(Gder

Diff
) DMStopn is a sheaf. Since this functor restricts to the

functor QCoh already defined on affines, we conclude by invoking the equivalence Shv(DMStn) ≃ Shv(dC∞Afffair).

4.3.4 Local properties of quasi-coherent modules

Here we introduce of variety of subclasses of quasi-coherent sheaves.

Remark 4.3.4.1. Recall that a connective module M of a connective E∞-ring A is called strong if the natural maps
πn(A) ⊗π0(A) π0(M) → πn(M) are isomorphisms for all n ≥ 0. If F is a sheaf of OX -modules for OX a sheaf of
connective E∞-rings, we say that F is strong if the map πn(OX )⊗π0(OX ) π0(F)→ πn(F) is an isomorphism in τ≤0X .

Definition 4.3.4.2. Let SpecA be an affine fair derived C∞-scheme and M a complete A-module.
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(1) M is n-connective if πk(M) = 0 for k < n.

(2) M is eventually connective if there exists some n << 0 such that M is n-connective.

(3) M is n-truncated if πk(M) = 0 for k > n.

(4) M is truncated if there exists some n >> 0 such that M is n-truncated.

(5) M has Tor-amplitude in [n,m] for n ≤ m if for every discrete A-module N , the homotopy group πi(M ⊗A N)
vanishes if i does not lie in the interval [n,m].

(6) M is flat if the sheaf of modules FM associated to M is a flat OSpecA-module; that is, FM is strong and π0(FM)
is a flat π0(OSpecA)-module.

(7) M is dualizable if the sheaf of modules FM associated to M is a dualizable OSpecA-module.

(8) M is locally projective if M is connective (that is, 0-connective) and there is an admissible covering {ια ∶ Uα →
SpecA} such that ι∗αM is a projective object of Mod≤0

OUα
, that is, the functor Mod≤0

OUα
→ S corepresented by

ι∗αMM preserves geometric realizations.

(9) M is a vector bundle locally of finite rank if there is an admissible covering {ια ∶ Uα → SpecA} such that ι∗αM is
a free rank n OUα -module for some n <∞. The full subcategory spanned by vector bundles locally of finite rank
is denoted Vect(A).

(10) M is locally perfect if there is an admissible covering {ια ∶ Uα → SpecA} such that ι∗αM is perfect in ModOUα .
The full subcategory of ModA spanned by locally perfect A-modules is denoted Perf(A).

Remark 4.3.4.3. Heuristically, if a property P on quasi-coherent modules is defined in terms of the vanishing of
certain homotopy groups, then it will be local for the étale topology. On the other hand, if a property comes as some
sort of finiteness condition, we have to sheafify.

Definition 4.3.4.4. Let P be a property for complete modules. We say that the property P is stable under base
change if the following condition holds.

(∗) If (A,M) has the property P and A → B is a map of fair simplicial C∞-rings, then M ⊗AM has the property
P .

We say that P is local for the étale topology if the following conditions hold.

(1) If (A,M) has the property P and f ∶ A→ B is an admissible map, then (B,B ⊗AM) has the property P .

(2) If {SpecAi → SpecA} is an admissible covering, M an A-module, and for each i, Ai ⊗AM has the property P ,
then M has the property P .

Proposition 4.3.4.5. Let P be a property P for complete modules that is stable under base change and local for the
étale topology. Let QCohP ⊂ QCoh be the full subfunctor spanned by modules that have the property P , then QCohP
is a subsheaf.

Proof. Let {fi ∶ Ui → SpecA} be an admissible covering of an affine fair derived C∞-scheme and let

h ∶ N(∆op)Ð→ dC∞Schfair

be the Čech nerve of the map ∐Ui → SpecA, then it follows from theorem 4.3.3.18 and [Lur17b], cor. 3.3.3.3 that
we may identify the ∞-category Modcplt

A with the ∞-category of coCartesian sections of the coCartesian fibration
QCoh×dC∞Sch

op
fair

N(∆). Since the collection of fully faithful functors is stable under limits, we can identify the limit

of the functor
Ui ×SpecA . . . ×SpecA Uj z→ QCohP (Ui ×SpecA . . . ×SpecA Uj)

with the full subcategory of Modcplt
A spanned by modules M for which f∗i M has the property P for each i, but by

locality of P , this is precisely the subcategory of modules that have the property P .

Remark 4.3.4.6. The inclusion Ŝ ⊂ Ĉat∞ admits a right adjoint denoted ( )≃ taking the maximal subgroupoid.
Suppose that P is a property of complete modules stable under base change and local for the étale topology such
that QCohP has essentially small fibres, then QCoh≃P determines an object in dC∞Stfair.

Proposition 4.3.4.7. All the properties of quasi-coherent modules of definition 4.3.4.2 are local for the étale topology.
All the properties except the ones of being (n)-truncated are stable under base change.
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Proof. The properties defined by the vanishing of certain sheaves of homotopy groups are local as the homotopy
groups of complete modules are complete. Only the property of being dualizable requires proof. This is an immediate
consequence of [Lur17a], prop. 4.6.1.11.

Definition 4.3.4.8. Let A be a fair simplicial C∞-ring, and let M be a finitely generated A-module. For each
x ∶ R-point A→ R, the rank of M at x is the dimension of the R-module π0(M ⊗A R).

Remark 4.3.4.9. For a general locally finitely generated M ∈ ModA, the rank function rkπ0(M) ∶ SpecA → N is
upper-semicontinuous, and locally constant if M is locally free (i.e. if M is a vector bundle). If a locally free module
M has constant finite rank k, it is called a rank k vector bundle. The full subcategory of Modcplt

A spanned by rank k
vector bundles is denoted Vectk(A). The property of being a rank k vector bundle is clearly stable under base change
and local for the étale topology.

Proposition 4.3.4.10 (Serre-Swan). Let A be a fair simplicial C∞-ring, and let M be an A-module. M is locally
finitely generated and locally projective if and only if M is a vector bundle locally of finite rank.

Proof. M is locally finitely generated and locally projective if and only if π0(M) is locally finitely generated and
locally projective over π0(A) and M is strong. Fix an R-point ∗ → SpecA, and let n be the dimension of the real
vector space π0(M)⊗π0(A) R, which is finite because π0(M)⊗π0(A) π0(A)[1/a] is finitely presented over π0(A[1/a]),
for some a such that x(a) ≠ 0. Nakayama’s lemma implies that π0(M)x, the stalk at X of the module spectrum of
π0(M), is free of rank n as a module over the local C∞-ring π0(X)x, so after localizing to a neighbourhood of x,
π0(M) is free. Now we conclude, since a connective module N over a connective E∞-ring is free if and only if N is
strong and π0(N) is free.
For the converse, the problem is local for the étale topology. Thus, we may suppose that M is a trivial vector bundle,
in which case the result is obvious.

Proposition 4.3.4.11 (Dualizable is locally perfect). Let A be a fair simplicial C∞-ring and let M be a complete
A-module, then M is dualizable if only if M is locally perfect.

Proof. First suppose that M is locally perfect. Since dualizability is a local property, we may assume that M is
perfect, in which case the result follows form [Lur17a], prop. 7.2.4.4. Conversely, if M is dualizable, then for each
real point x ∶ A → R, the module Mx is a dualizable Ax-module, where Ax is the fair simplicial C∞-ring of germs at
x. Since Ax is a ring of germs, every module arises as the global sections of its associated sheaf of modules, so we
have Modcplt

Ax
≃ ModAx . It follows that Mx is dualizable as an object in the symmetric monoidal ∞-category ModAx ;

invoking [Lur17a], prop. 7.2.4.4, we deduce that Mx is perfect, but this implies that there is some a ∈ A such that
x(A) ≠ 0 and A[a−1]⊗AM is perfect.

Remark 4.3.4.12. Let X be a derived C∞-stack, then proposition 4.3.4.5 we have a full subcategory QCoh≥0
X ⊂

QCohX of connective objects. Since the inclusion Modcplt≥0
A ⊂ ModA is a morphism in PrL, so is the functor QCoh≥0

X ⊂
QCohX . This full subcategory is closed under extensions and thus determines an accessible t-structure on QCohX
by [Lur17a], prop 1.4.4.11. If X = jSch(X ,OX ) for some derived Deligne-Mumford C∞-stack (X ,OX ), then this
t-structure coincides with the one constructed in proposition 4.3.3.8, so the coconnective objects of QCohX coincide
with the truncated objects. If X is an Artin stack however, we do not know whether an object F ∈ QCohX lies in
QCoh≤0

X if and only if for each map f ∶ SpecA→X, the pullback f∗F is 0-truncated; this is essentially equivalent to
the flatness of submersions.

In [Lur17a], cor. 7.2.2.19, it is proven that pulling back 0-equivalences of E1-rings induces an equivalence on the
homotopy categories of projective modules. Along the same lines, we have the following vector bundle extension
lemma.

Lemma 4.3.4.13. Let f ∶ A→ B be an effective epimorphism of fair simplicial C∞-ring, then the functor f! ∶= ⊗AB
induces a full functor

hVect(A)Ð→ hVect(B).

Moreover, for each P ∈ hVect(B), there is a localization A→ A[1/a] and some P ′ ∈ hVect(A) such that f!P
′ ≅ P .

Proof. First, we show that the functor is full. Let M be a vector bundle on SpecA and write N = f!(M), then we
should show that the map

Ext0
A(M,M)Ð→ Ext0

B(N,N)

is a surjection. We may assume that M is a free rank k module, in which case the map above can be identified with

the surjection π0(A)k
2

→ π0(B)k
2

. Now choose a finitely generated projective B-module P , then we will show that
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after localizing near SpecA, we can find a finitely generated projective module that pulls back to P . We may choose
a free rank k B-module N and an idempotent e ∶ N → N such that P is the colimit of the diagram

N
eÐ→ N

eÐ→ N . . .

Let M denote a free rank k A-module, then using fullness of the functor above induced by the functor f!, we may
choose some ẽ ∶ N → N such that f!(F ) ≃ P , where F is the colimit of the diagram

M
ẽÐ→M

ẽÐ→M . . .

It remains to be shown that F is finitely generated and projective after localizing near SpecRB. Since F is flat (as
flat objects are stable under filtered colimits) and localizations are flat maps, it suffices to show that π0(F ) is finitely
generated and projective over some localization of π0(A). Consider the map

π0(M) π0(M),π0(ẽ)−π0(ẽ
2
)

then at each point of SpecRB, pulling back this map to R yields the zero map because π0(e) is an idempotent. Since
π0(M) is finitely generated and free, Nakayama’s lemma tells us that each point x ∈ SpecRB has a neighbourhood
Ux ⊂ SpecRA on which the map π0(ẽ) becomes an idempotent. Now we take U ∶= ⋃xUx, then U has a characteristic
element a ∈ π0(A) and F ′ ∶= F ⊗A A[1/a] is a retract of a free rank k module and F ′ ⊗A[1/a] B ≃ P .
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Chapter 5

The Cotangent Complex

To any morphism f ∶ A → B among C∞-rings, we may associate a module of relative C∞-Kähler differentials,
denoted Ω1

B/A, which classifies A-linear C∞-derivations d ∶ B →M , for M a B-module, that is, we have a canonical
isomorphism

Der(A/B,M) ∶= HomC∞ringA//B (B,B ⊕∞M) ≃ HomModB (Ω1
B/A,M),

where B ⊕∞M denotes the square-zero extension equipped with its canonical structure of a C∞-ring. Taking C∞-
derivations here is crucial: the usual algebraic module of relative Kähler differentials (Ω1

Balg/Aalg)alg of falg is far
too large, blind as it is to relations between elements involving smooth functions that cannot be reduced to regular
functions. It can be shown that (Ω1

C∞(Rn))alg is uncountably generated, while Ω1
C∞(Rn) is free on n generators. In

certain cases, this difference disappears however. If f ∶ A → B is a surjection, dual to a closed immersion of affine
C∞-schemes, the module of relative C∞-Kähler differentials vanishes (as do the relative algebraic Kähler differentials),
and we will show that the map

I/I2 Ð→ A⊗B Ω1
A, [f]z→ 1⊗ ddRf

determines an exact sequence
I/I2 Ð→ A⊗B Ω1

A Ð→ Ω1
B Ð→ 0,

which shows that the algebraic conormal module I/I2 of falg is already the correct object from the perspective of
C∞-geometry. When passing from the classical C∞-derivations to the derivations constructed in the previous chapter,
we recover the cotangent complex in derived C∞-geometry. We establish a number of properties of the assignment
(A → B) ↦ LB/A that practicioners of derived geometry will be familiar with. For instance, for each n ≥ 1, there
exists a derivation d ∶ Lτ≤n−1A → πn(A)[n + 1] such that the map τ≤n → τ≤n−1A fits into a pullback diagram

τ≤nA τ≤n−1A

τ≤n−1A τ≤n−1A⊕ πn(A)[n + 1]

ηd

η0

The cotangent complex detects local equivalences:

Theorem (Inverse function theorem). Let f ∶ A→ B be a morphism between fair simplicial C∞-rings such that π0(f)
is finitely presented, then f is étale if and only if Lf vanishes.

It follows from the inverse function theorem that an effective epimorphism C∞(Rn)→ A among finitely presented
simplicial C∞-rings whose cotangent complex vanishes must be an equivalence. If we were doing derived algebraic
geometry over a Noetherian ring R, this continues to hold if A is only assumed to be of finite type. In this case, a finite
type R-algebra with a free cotangent complex is necessarily a localization of a free and finitely generated R-algebra.
In C∞-geometry, it occurs often that an object is finitely generated but not finitely presented; when dealing with
manifolds with corners, for instance. As it turns out, we can characterize to an extent the finitely generated simplicial
closed C∞-rings whose cotangent complex is free.

Theorem. Let f ∶ C∞(Rn) → A be an effective epimorphism, let I = kerπ0(f) be jet determined and suppose that
there are n closed sets Xi ⊂ R such that Z(I) =∏iXi. Then the following are equivalent.

(1) Lf ≃ 0 in ModA.

(2) I = m∞
Z(I) and the unit map of the 0’th truncation

AÐ→ π0(A) ≃ C∞(Rn)/I = C∞(Rn)/m∞
Z(I)

is an equivalence.
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This result holds for all closed sets, but we will not develop the tools to prove this here. The theorem explains
the role that discrete simplicial C∞-rings of Whitney functions play in the theory: even though they are very far
from being free in the ∞-category sC∞ring, they are up to a topological condition (closure in the Fréchet topology)
precisely the objects that are formally smooth if we remove the assumption of being of finite presentation. Applying
the theorem to the point determined ideal of functions that vanish in some half space of Rk, we obtain the cotangent
complex of simplicial C∞-rings of manifolds with corners.

Corollary 5.0.0.1. Let A = C∞(Rk≥0×Rn−k) viewed as a discrete simplicial C∞-ring. Then LA is free on n generators.

Applying the theorem to the ideal of functions that have all derivatives vanishing on a linear hyperplane, we
obtain the cotangent complex for power series algebras as simplicial C∞-rings.

Corollary 5.0.0.2. Let A = C∞(Rk)[[x1, . . . , xn−k]] be an algebra of power series of smooth functions, viewed as a
finitely generated discrete simplicial C∞-ring. Then LA is free on n generators.

The previous two corollaries constitute a convincing case that the somewhat abstract procedure we will engage
in to define the cotangent complex of a simplicial C∞-ring yields the correct generalization of the cotangent bundle.
One of the most technically convenient corollaries of theorem 5.1.1.26 is the following.

Corollary 5.0.0.3. Let A be the underlying simplicial C∞-ring of an affine derived manifold with corners. Then LA
is perfect.

Proof. Let C be the full subcategory of sC∞ring spanned by objects with perfect cotangent complex, which is stable
under finite colimits and retracts. The functor

N(CartSpc)Ð→ sC∞ringop, Rn ×Rk≥0 z→ C∞(Rn ×Rk≥0)

preserves products by corollary 4.1.6.6. By lemma 4.1.1.20, there is an essentially unique right exact functor
sC∞ringfp

c → C extending the one above. By lemma 4.1.1.20, the composition sC∞ringfp
c → C → sC∞ring is equivalent

to the functor taking the underlying simplicial C∞-ring of a derived manifold with corners.

The relevance of this result lies therein that in the presence of perfection of the cotangent complex, a larger set
of tools for manipulating atlases becomes available.

5.1 The Relative Cotangent Complex

Construction 5.1.0.1. Let C be a presentable ∞-category . Recall that we have defined the tangent category of C
as a stable envelope of the arrow ∞-category of C, fitting into a diagram

TC Fun(∆1,C)

C
p

G

ev{1}

of fibrations over C. At each A ∈ C, the fibre of the functor G at A can be identified with Ω∞
A ∶ Sp(C/A)→ C/A, which

admits a left adjoint (Σ∞
+ )A. By [Lur17a] 7.3.2.6, these left adjoints assemble into a functor F left adjoint to G. The

cotangent complex functor is the composition

L ∶ C Ð→ Fun(∆1,C) FÐ→ TC ,

where the first map is the diagonal embedding.
A diagram σ ∶ ∆1 ×∆1 → TC

X Y

0 Z

is a relative cofibre sequence if it is a p-colimit diagram and the diagram p○σ factors through the projection ∆1×∆1 →
∆1 so that the vertical maps become identities. The full subcategory E of Fun(∆1 ×∆1, TC)×Fun(∆1×∆1,C) Fun(∆1,C)
spanned by relative cofibre sequences admits a trivial Kan fibration over Fun(∆1, TC) by restricting to the top
morphism in the diagram. We let s be a section of this fibration, defined up to contractible ambiguity. The relative
cotangent complex functor is the composite

Fun(∆1,C) LÐ→ Fun(∆1, TC)
sÐ→ E ev∞Ð→ TC ,

where the last morphism evaluates a relative cofibre sequence at the cocone {1} × {1} ∈ ∆1 ×∆1.

208



Definition 5.1.0.2. For sC∞ring, the tangent category is the presentable fibration p ∶ Mod → sC∞ring. For A a
simplicial C∞-ring, the cotangent complex LA ∈ ModA ≃ TsC∞ring ×sC∞ring {A} of A is the value of the cotangent
complex functor at A. For a morphism f ∶ A → B of simplicial C∞-rings, the relative cotangent complex Lf ∈ ModB
(also denoted LB/A if the morphism is clear from the context) is the value of the relative cotangent complex functor
at f .

Remark 5.1.0.3. By definition, the relative cotangent complex of a morphism A → B of simplicial C∞-rings fits
into a p-colimit diagram J ∶ ∆1 ×∆1 → TsC∞ring

LA LB

0 LB/A

Denote K⊳ ∶= ∆1 ×∆1, and let q ∶ K⊳ ×∆1 → K⊳ be the natural transformation that collapses K⊳ to its cocone and
consider the composition

K⊳ ×∆1 qÐ→K⊳ JÐ→ TsC∞ring
pÐ→ sC∞ring.

Then we have a commuting diagram

K⊳ TsC∞ring

K⊳ ×∆1 sC∞ring

p

and there is a (unique up to contractible ambiguity) dotted coCartesian lift K⊳ ×∆1 → TsC∞ring such that K⊳ × {0}
is the diagram J . This lift exhibits a coCartesian transformation between J and a diagram J ′ ∶ ∆1 × ∆1 →
TsC∞ring ×sC∞ring {B} ≃ ModB . By [Lur17b], prop 4.3.1.9, the diagram J ′ is a cofibre sequence

f!LA LB

0 LB/A

in ModB .

Remark 5.1.0.4. In a similar vein, the same proofs of [Lur17a] prop. 7.3.3.5, cor. 7.3.3.6 and proposition 7.3.3.7
show that

(1) for a commuting triangle

B

A C

f

of simplicial C∞-rings, there is a cofibre sequence

f!LB/A LC/A

0 LC/B

in ModC

(2) for a pushout square

A B

A′ B′

f

of simplicial C∞-rings, there is an equivalence

f!LB/A
≃Ð→ LB′/A′
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Definition 5.1.0.5. Let A be a simplicial C∞-ring. The functor of (R-linear) A-derivations is the mapping space

Der(A, ) ∶= HomsC∞ring/A(A,Ω∞
A ( )) ∶ ModA Ð→ S.

For a map B → A a map of simplicial C∞-rings, the functor of (B-linear) A-derivations is the mapping space

DerB(A, ) ∶= HomsC∞ringB//A(A,Ω∞
A ( )) ∶ ModA Ð→ S.

By definition, the cotangent complex of A corepresents A-derivations. What is not obvious from the definition, is
that the relative cotangent complex of a map B → A corepresents B-linear A-derivations. Nevertheless, this is true;
this assertion is an easy corollary of the following result

Lemma 5.1.0.6. Let f ∶ B → A be a map of simplicial C∞-rings. The relative cotangent complex is the cotangent
complex of f obtained by applying construction 5.1.0.1 to the presentable ∞-category sC∞ringB/.

Proof. This is [Lur17a] prop. 7.3.3.8 and prop 7.3.3.14.

For any map B → A of simplicial C∞-rings, it is straightforward to characterize the functor

HomsC∞ring/A(B,Ω∞
A ( )) ∶ ModA Ð→ S

in terms of the cotangent complex.

Proposition 5.1.0.7. Let C be a presentable ∞-category. Then the functor F ∶ Fun(∆1,C) → TC takes a morphism
f ∶X → Y to the object f!LX .

Proof. The functor F is a relative left adjoint to the horizontal functor in the diagram

TC Fun(∆1,C)

C
p

G

ev{1}

exhibiting TC as a stable envelope of ev{1} ∶ Fun(∆1,C) → C, so F takes ev{1}-coCartesian edges to p-coCartesian
edges. For any morphism f ∶X → Y , the square

X X

X Y

id

id

f

f

is an ev{1}-coCartesian morphism in Fun(∆1,C), so it follows that the morphism LX → F (f) obtained as the image
under F of the square above is p-coCartesian in the tangent category, and thus induces an equivalence f!LX ≃
F (f).

Corollary 5.1.0.8. Let ∆2 → sC∞ring be a commuting triangle

B

A C
g

viewed as a morphism in sC∞ringB/. Then the functor

HomsC∞ringB//C (A,Ω∞
C ( )) ∶ ModC Ð→ S

is corepresented by the object g!LA/B.

Proof. By definition of the tangent category of sC∞ringB/ and the relative left adjoint F to G ∶ TsC∞ringB/ →
Fun(∆1, sC∞ringB/), the functor HomsC∞ringB//C (A,Ω∞

C ( )) is corepresented by the object F (g), so we conclude
by invoking proposition 5.1.0.7.

Notation 5.1.0.9. Recall that for any fair simplicial C∞-ring A, we have a localization ( )cplt denote the functor
of completion on A-modules. Accordingly, for f ∶ A → B a functor of simplicial C∞-rings, we let Lcplt

B/A
denote the

complete or quasi-coherent cotangent complex.
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Remark 5.1.0.10. We will see later that the complete cotangent complex of a fair simplicial C∞-ring A coincides
with the cotangent complex associated to the adjoint of the infinite loop space functor Sp(ShvsC∞ring(X )/OX ) →
ShvsC∞ring(X )/OX , where (X ,OX ) = SpecA.

Notation 5.1.0.11. For f ∶ A → B of morphism of simplicial commutative R-algebras. We denote the relative
cotangent complex of f , obtained from the presentable ∞-category sCringR via construction 5.1.0.1, by Lalg

f , or Lalg
B/A

.

This cotangent complex is discussed in [TV06], and [Lur17a] sections 7.3 and 7.4.

The following result -another formal consequence of unramifiedness- underlies a number of important computations
of cotangent complexes.

Proposition 5.1.0.12. Let f ∶ B → A be a morphism of simplicial commutative R-algebras, then there is a canonical
equivalence Lalg

A/B
⊗A F (A) ≃ LF (A)/F (B).

Proof. Denote by FA ∶ (sCringR)A//A → sC∞ringF (A)//F (A) the functor induced by the left adjoint to ( )alg. FA has
a right adjoint itself (given by pulling back along the unit map); consequently, there is a commuting diagram

Sp ((sCringR)A//A) Sp (sC∞ringF (A)//F (A))

(sCringR)A//A sC∞ringF (A)//F (A)

∂FA

FA

Σ∞
+ Σ∞

+

Since FA sends the object A ⊗B A of (sCringR)A//A to F (A) ⊗∞F (B) F (A) in sC∞ringF (A)//F (A), and the relative

cotangent complex is identified with the object ∂( )alg(Σ∞
+ (F (A)⊗∞F (B)F (A))), we conclude that there is a canonical

equivalence ∂( )alg○∂FA(Lalg
A/B

) ≃ LF (A)/F (B). The chain rule yields a canonical equivalence of functors ∂(( )alg○FA) ≃
∂( )alg ○ ∂FA; we wish to compare the functor ( )alg ○FA to the pushforward g! along the unit map g ∶ A→ F (A)alg,
the derivative of which implements the base change functor ⊗A F (A). We define a natural transformation α ∶ g! →
( )alg ○FA as follows: consider g! and ( )alg ○FA as functors (sCringR)A//A → (sCringR)/F (A). The functor ( )alg ○FA
is reduced, but g! is not, so we must first pass to the coreduction of g! as exposed in [Lur17a] section 6.2.3. Choose
a natural transformation β ∶ A → g!, where A is the constant functor on the object A. Recall that cored(g!) fits into
a pushout diagram of functors

A g!

F (A)alg cored(g!)

g

The unit transformation induces a natural transformation g! → ( )alg ○ FA which gives us a natural transformation
α ∶ cored(g!)→ ( )alg ○ FA. Now it suffices to show the following:

(∗) The natural transformation α induces an equivalence

colim iΩ
i
F (A) ○ cored(g!) ○ΣiA

≃Ð→ colim iΩ
i
F (A) ○ ( )alg ○ FA ○ΣiA.

To prove the assertion above, it clearly suffices to show that α induces an equivalence on the full subcategory spanned
by objects in the essential image of ΣA. We argue as in the proof of proposition 4.3.1.2: the essential image of ΣA
consists of good A-cell objects of the form

A0 = AÐ→ A1 = A⊗R ΣRSym●(V )Ð→ A2 Ð→ . . .

where each map Ak → Ak+1 is a pushout along a map of the form A⊗RΣkRSym●(Vk)→ A. As in the proof of proposition
4.3.1.2, the functors g! and ( )alg ○FA preserve the colimits that assemble a good cell object (sequential colimits and
certain pushouts), so we only have to show that α induces an equivalence on objects of the form A ⊗R ΣkRSym●(V )
for k ≥ 1. Unwinding definitions, we must show that the following diagram in sCringR is a pushout:

A F (A)alg

A⊗R ΣkRSym●(V ) (F (A)⊗∞ ΣkC∞(V ∨))alg

g
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or equivalently, using pasting of pushout squares, that the object (F (A)⊗∞ ΣkC∞(V ∨))alg exhibits a coproduct of
F (A)alg and ΣkRSym●(V ) in sCringR. We have a commuting diagram

F (A)alg ⊗R (ΣkC∞(V ∨))alg

F (A)alg ⊗R ΣkRSym●(V ) (F (A)⊗∞ ΣkC∞(V ∨))alg

r

h

f

The map f is an equivalence by lemma 4.1.3.38 and the map r is an equivalence by unramifiedness applied to the
effective epimorphism R→ ΣkC∞(V ∨) of simplicial C∞-rings.

Corollary 5.1.0.13. Let V a real vector space, let n be a nonnegative integer and let A ∶= Σn(C∞(V ∨)), then there
is a canonical equivalence LA ≃ A⊗R V [n].

Corollary 5.1.0.14. Let f ∶ A→ B be a localization of simplicial C∞-rings, then Lf vanishes.

Proof. By proposition 4.1.3.13, the map f is a pushout of the map h ∶ C∞(R) → C∞(R ∖ {0}), so by point (2) of
remark 5.1.0.4 it suffices to show that Lh vanishes. But h is the map obtained by applying the free C∞-ring functor
to the map h′ ∶ R[x]→ R[x,x−1] that inverts x (algebraically). This last map is an étale map of simplicial R-algebras,
so the algebraic cotangent complex Lalg

h′ vanishes and the result follows from proposition 5.1.0.12.

Example 5.1.0.15. Let A = R[x1, . . . , xn]/I be a finite type R-algebra that is not lci at some x ∈ Z(I) (i.e. the
localization of the ideal I at at the maximal ideal mx of R[x1, . . . , xn] determined by x is not generated by a regular
sequence over the regular local ring R[x1, . . . , xn]mx), then the cotangent complex Lalg

A is not left bounded at x by

Avramov’s theorem, so it follows (recall that the map Ax → FC
∞
(A)alg

x is faithfully flat by corollary 4.1.6.25) that

the cotangent complex of the finitely presented C∞-ring FC
∞
(A) ≃ FC

∞
0 (A) = C∞(Rn)/I is not left bounded in

ModFC∞ (A) either.

Proposition 5.1.0.16. Let f ∶ B → A be an effective epimorphism of simplicial C∞-rings, then there is a canonical
equivalence Lalg

Balg/Aalg → LB/A.

Proof. We have a diagram of right adjoints

Fun(∆1, sC∞ring) Fun(∆1, sCringR)

Mod Modalg

( )
alg

and passing to left adjoints vertically determines the Beck-Chevalley transformation carrying A → B to LA ⊗A B →
Lalg
A ⊗Aalg Balg. This natural transformation induces a natural transformation

(AÐ→ B)z→ (Lalg

Balg/Aalg Ð→ LB/A).

Both functors (A→ B)↦ Lalg

Balg/Aalg and (A→ B)↦ LB/A preserve sifted colimits so invoking proposition 4.1.2.3, we

may suppose that A → B is of the form C∞(Rn+m) → C∞(Rn) induced by the inclusion of a graph of a polynomial
function P ∶ Rn → Rm. In this case, lemma 4.1.3.4 shows that there is a pushout diagram

R[x1, . . . , xn+m] R[x1, . . . , xn]

C∞(Rn+m) C∞(Rn),

the upper horizontal map also being induced by P , so that the map Lalg

Balg/Aalg → LB/A coincides with the map

Lalg
R[x1,...,xn]/R[x1,...,xn+m]

⊗R[x1,...,xn] C
∞(Rn)Ð→ LC∞(Rn)/C∞(Rn+m),

which is an equivalence by proposition 5.1.0.12.

In many cases, cotangent complexes are not readily obtained by first computing some algebraic cotangent complex.
In such situations, the following result is often useful.

212



Proposition 5.1.0.17. Let f ∶ A→ B be a morphism of simplicial C∞-rings, then the map

π0(LA ⊗A B) ≅ π0(LA)⊗π0(A) π0(B)Ð→ π0(LB)

is canonically isomorphic to the map
Ω1
π0(A) ⊗π0(A) π0(B)Ð→ Ω1

π0(B).

Proof. Recall that there is a commuting diagram of ∞-categories

Mod Modcn

Fun(∆1,C∞ring) Fun(∆1, sC∞ring)

SZ Ω∞

The lower horizontal map has a left adjoint given by 0’th truncation, and both vertical maps have left adjoints given
by the smooth Kähler differentials functor and the cotangent complex functor respectively. The upper horizontal map
has a left adjoint given by 0’th truncation. The associated diagram of left adjoints then commutes up to homotopy,
and this homotopy applied to the map f furnishes the desired isomorphism.

Remark 5.1.0.18. Present a simplicial C∞-ring by some C∞dga A, then it follows from remark 4.3.2.14 that the
cotangent complex of A is the value of the left derived functor of the relative Kähler differentials evaluated on the
identity A→ A. A cofibrant replacement of this map in the arrow category is simply a cofibrant replacement A→ Ã,
so the cotangent complex of A may be identified with the cofibrant dg A-module Ω1

Ã
⊗Ã A.

It is a consequence of proposition 5.1.0.12 that the cotangent complex of a free simplicial C∞-ring is free. Another
way to prove this is to observe that the parametrized square zero extension functor TsC∞ring → Fun(∆1, sC∞ring)
factors via the connective cover functor τ≥0 ∶ Mod → Modcn. On connective modules, taking square zero extensions
preserves limits and sifted colimits, so the adjoint carries compact projective objects of Fun(∆1, sC∞ring) to compact
projective objects of Modcn, which we identified with N(CartSpVect). We can apply this argument to the log cotangent
complex, a derived and positive C∞ version of Gabber’s cotangent complex [Ols05], which we now construct.

Definition 5.1.0.19. Recall from construction 4.3.2.15 the functor Ω∞
∗pc fitting into a commuting diagram

ModPlog Fun(∆1, sC∞PLog)

sC∞PLog

ev1

It follows from proposition 4.3.2.16 that Ω∞
∗pc admits a left adjoint F relative to sC∞PLog. Let (A,M → A≥0) be a

positive prelog simplicial C∞-ring, then the log-cotangent complex functor is the composition

L ∶ sC∞PLog Ð→ Fun(∆1, sC∞PLog) FÐ→ModPlog.

Similarly, the relative log-cotangent complex is the functor

Fun(∆1, sC∞PLog) LÐ→ Fun(∆1, sC∞PLog)Ð→E ev∞Ð→ModPlog,

where E is the full subcategory of Fun(∆1 ×∆1,ModPlog)×Fun(∆1×∆1,sC∞PLog) Fun(∆1, sC∞PLog) spanned by relative
cofibre sequences.

Proposition 4.3.2.16 also provides a functor Ω∞
∗c fitting into a commuting diagram

ModLog Fun(∆1, sC∞Log)

sC∞Log

ev1

admitting a relative left adjoint, allowing us to define a cotangent complex for simplicial C∞-rings with corners. We
have a commuting diagram of left adjoints

ModLog Fun(∆1, sC∞Log)

ModPLog Fun(∆1, sC∞PLog)

LLog

F

LLog (5.1)
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so it follows that the cotangent complex of a simplicial C∞-ring with corners (A,Ac) coincides with L(A,Ac→A≥0). We
also have a commuting diagram of right adjoints

ModPLog Fun(∆1, sC∞PLog)

Mod Fun(∆1, sC∞ring).

p

Ω∞
∗pc

p

Ω∞
∗

(5.2)

Passing to horizontal left adjoints determines a Beck-Chevalley transformation LA → L(A,M→A≥0) for (A,M → A≥0) ∈
sC∞PLog, and passing to left adjoints in the entire square shows that this Beck-Chevalley map induces equivalences
LA ≃ L(A,0→A≥0) ≃ L(A,A>0).

Proposition 5.1.0.20. The log-cotangent complex has the following properties.

(1) The object L(C∞(Rn×Rk≥0),(C
∞
b

(Rn×Rk≥0))
is free on n + k generators.

(2) The analogues of remarks 5.1.0.4 and 5.1.0.3 hold for the relative log-cotangent complex.

(3) For (A,Ac) a 0-truncated simplicial C∞-ring with corners, the object π0(L(A,Ac)) coincides with the module of
b-Kähler differentials constructed in section 7 of [JF19].

(4) Let f ∶ (A,Ac) → (B,Bc) an admissible map of simplicial C∞-rings with corners, then the relative log-cotangent
complex of f vanishes.

Proof. (2) and (3) are entirely formal and left as an exercise to the reader. For (1), note that proposition 4.3.2.16
asserts that the functor Ω∞

∗pc preserves limits and sifted colimits restricted to connective objects so that the adjoint
carries compact projectives to compact projectives. Since (C∞(Rn ×Rk≥0), (C∞

b (Rn ×Rk≥0)) is the logification of the
compact projective object (C∞(Rn × Rk≥0),Zk≥0 → C∞

≥0(Rn × Rk≥0)), we conclude using the commuting diagram (5.1)
that L(C∞(Rn×Rk≥0),(C

∞
b

(Rn×Rk≥0))
is a free C∞(Rn ×Rk≥0)-module. It follows from (3) that the module is generated by

n + k elements. For (4), we note that f is a pushout of (C∞(R),C∞
b (R)) → (C∞(R ∖ {0}),C∞

b (R ∖ {0})), so we
conclude using (2), the vanishing of cotangent complexes of localizations of simplicial C∞-rings and the fact that for
initial log structures, the log-cotangent complex coincides with the cotangent complex of the underlying simplicial
C∞-rings.

Remark 5.1.0.21. Let (A,Ac) be a simplicial C∞-ring with corners. Dualizing the map LA → L(A,Ac) determines
an object T(A,Ac) → T in (ModA)/TA . When (A,Ac) is a manifold with corners M , the module T(A,Ac) is the locally

free b-tangent sheaf which is locally on Rn × Rk≥0 spanned differentials { ∂
∂xi

, xj
∂
∂xj

} where the xi are coordinate

functions on Rn and the xj are coordinate functions on Rk≥0 and the map T(A,Ac) → TA determines a submodule.
The commutator bracket of vector fields on TA restricts to T(A,Ac) and determines the structure of a Lie algebroid
on T(A,Ac). When (A,Ac) is not (log) smooth, T(A,Ac) still admits the structure of a Lie algebroid under suitable
conditions on A. Suppose that A is truncated, that is, there is some n such that A ≃ τ≤nA, then the fundamental
theorem of (parametrized) derived deformation theory asserts that Koszul duality for Lie algebroids ([Nui19] induces
a canonical equivalence of ∞-categories

FMPA ≃ LieAlgdA

between formal moduli problems over A and Lie algebroids over A. Let Ã be a small extension of A, so that Ã is
given be a finite sequence

ÃÐ→ An−1 Ð→ . . .Ð→ A1 Ð→ A,

where each map is a square zero extension by a shifted copy of A. A deformation of (A,Ac) to Ã is a pair ((B,Bc), α)
where (B,Bc) lies over (Ã, Ãc) ∶= (Ã, Ã≥0 ×A≥0 Ac) and α is an equivalence (B,Bc)∐(Ã,Ãc)

(A,Ac) ≃ (A,Ac) in
sC∞ringc. Consider the functor informally given by

sC∞ringsm
/A Ð→ S, Ãz→ {Deformations of (A,Ac) to (Ã)},

then it can be shown that this functor is a formal moduli problem whose tangent complex coincides with the anchored
module T(A,Ac) → TA, so that the equivalence above endows T(A,Ac) with a Lie bracket.
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5.1.1 Connectivity and finiteness of cotangent complexes

First we establish useful results asserting that connectivity and finiteness is preserved by taking cotangent complexes.

Proposition 5.1.1.1 (Hurewicz theorem for simplicial C∞-rings). Let f ∶ A → B be a map of simplicial C∞-rings.
If cofib(f) is n-connective, then there is a canonical (2n)-connective map B ⊗A cofib(f)→ LB/A of B-modules.

We need an easy lemma.

Lemma 5.1.1.2. If a map f ∶ A → B of simplicial C∞-rings is an n-equivalence (i.e. f induces an isomorphism on
the k’th homotopy group for k ≤ n), then LB/A is (n + 1)-connective.

Proof. It suffices to show that for any connective n-truncatedB-moduleM , the map HomModB (LB ,M)→ HomModB (LA⊗A
B,M) is an equivalence. By proposition 5.1.0.7 and corollary 5.1.0.8, this map is equivalent to the map

θ ∶ HomsC∞ring/B(B,B ⊕M)Ð→ HomsC∞ring/B (A,B ⊕M)

As M is n-truncated, the unit map M →M ⊗B τ≤nB of B-modules is an equivalence. Differently put, in the tangent
category, the coCartesian lift of the map B → τ≤nB starting at M is also Cartesian, so we have a pullback diagram

B ⊕M τ≤nB ⊕M

B τ≤nB

and we deduce that the map θ is equivalent to the map

θ′ ∶ HomsC∞ring/τ≤nB
(B, τ≤nB ⊕M)Ð→ HomsC∞ring/τ≤nB

(A, τ≤nB ⊕M).

But as both τ≤nB and τ≤nB ⊕M are clearly n-truncated, the assumption that f ∶ A→ B is an n-equivalence ensures
that θ′ is an equivalence.

Proof of proposition 5.1.1.1. The argument proceeds as in [Lur17a] thm 7.4.3.12; we refer to Higher Algebra where
the proof is the same, and provide details where our argument differs.
We say that a map f ∶ A→ B is n-good if fib(εf) is (2n)-connective. The following assertions hold.

(1) If in a commuting triangle

B

A C

gf

h

f and g are n-good and f and g are (n − 1)-connective, then h is n-good. This is proven as in [Lur17a] thm
7.4.3.12.

(2) If in a pushout diagram

A B

A′ B′

f

f ′

of simplicial C∞-rings the map f is n-good, then f ′ is n-good. As in [Lur17a] thm 7.4.3.12.

(3) Let V be a real vector space. If k ≥ n − 1, then the map ΣkC∞(V ∨) → R is n-good. To prove this, first consider
the fibre sequence

LΣkC∞(V ∨) ⊗ΣkC∞(V ∨) RÐ→ 0Ð→ LR/ΣkC∞(V ∨)

of R-modules provided by remark 5.1.0.3, yielding an equivalence LR/ΣkC∞(V ∨) ≃ V [k + 1]. The domain of the
map εf is given by the cofibre

cofib(ΣkC∞(V ∨)→ R)⊗ΣkC∞(V ∨) R ≃ cofib(R→ Σk+1C∞(V ∨))

(here we use unramifiedness). Using lemma 4.1.3.38, we identify the underlying map of simplicial R-algebras of
the map R→ Σk+1C∞(V ∨) with the map R→ Sym●(V [k + 1]), whose cofibre is ∐∞

n=1 Symn(V [k + 1]). The map

εf ∶∐
n=1

Symn(V [k + 1])Ð→ V [k + 1]

is equivalent to the identity on the first summand and nullhomotopic on all the other summands. Now we are
done, since ∐∞

n=2 Symn(V [k + 1]) is a (2n)-connective object if k ≥ n − 1.
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(4) If f ∶ A→ B is a (2n− 1)-equivalence, then f is n-good. This is true because B⊗A cofib(f) is (2n)-connective by
a straightforward application of the torsion spectral sequence, and LB/A is (2n)-connective by lemma 5.1.1.2.

Now proposition 4.1.3.32 yields a sequence of simplicial C∞-rings over B

A = An Ð→ An+1 Ð→ An+2 Ð→ . . .

where each Ak → Ak+1 is obtained as a pushout

ΣkC∞(V ∨) R

Ak Ak+1

and An → B is n-connective. By point (4), the map A2n+1 → B is n-good. By point (1), it suffices to show that
Ak → Ak+1 is n-good for k ≤ 2n. By point (2) we are reduced to proving that ΣkC∞(V ∨) → R is n-good for k ≥ n.
This is the conclusion of point (3).

The following corollaries are proven exactly as [Lur17a] cor. 7.4.3.2 until 7.3.4.5.

Corollary 5.1.1.3. Let f ∶ A → B be a morphism of simplicial C∞-rings. If f has n-connective cofibre for some
n ≥ 0, then the relative cotangent complex LB/A is n-connective. The converse holds if π0(f) is an isomorphism of
C∞-rings.

Corollary 5.1.1.4. A map f ∶ A → B of simplicial C∞-rings is an equivalence if and only if the underlying map
π0(A)→ π0(B) is an equivalence and LB/A vanishes.

Corollary 5.1.1.5. Let f ∶ A → B be a map of simplicial C∞-rings that has an n-connective cofibre for some n ≥ 0,
then the induced map LA → LB also has n-connective cofibre.

Remark 5.1.1.6. Let f ∶ A→ B be a surjection of C∞-rings, viewed as discrete simplicial C∞-rings, then proposition
5.1.0.17 and corollary 5.1.1.3 show that Ω1

π0(B)/π0(A) ≅ 0 and that the map π0(fib(f) ⊗A B) → π1(LB/A) is an

isomorphism. Because B is discrete, the module π0(fib(f)⊗AB) is canonically identified with I/I2 where I = ker(f),
and we have the classical conormal exact sequence

I/I2 Ð→ Ω1
π0(A) ⊗π0(A) π0(B)Ð→ Ω1

π0(B) Ð→ 0

for C∞-rings.

Remark 5.1.1.7. Suppose that f ∶ A→ B is a map between fair simplicial C∞-rings which has n-connective cofibre
for n ≥ 1. Then f is always an effective epimorphism, so lemma 3.1.3.42 shows that B is a complete A-module. There
is a (2n − 1)-connective map of A-modules cofib(f) → LB/A. Since cofib(f) is complete, there is also a (2n − 1)-
connective map cofib(f)→ Lcplt

B/A
. It follows that corollaries 5.1.1.3, 5.1.1.4 and 5.1.1.5 hold in the situation described

above with Lcplt
B/A

in place of LB/A.

The connectivity estimates we have just proven are very powerful, particularly because they allow us to put any
morphism f ∶ A→ B of simplicial C∞-ring into standard, starting from the map π0(A)→ π0(B) and the the relative
cotangent complex. This result has two very important consequences:

(1) A map f ∶ A → B is (almost) finitely presented if and only if π0(f) is finitely presented and LB/A is (almost)
perfect.

(2) Any affine derived manifold SpecA whose cotangent complex has Tor-amplitude in [0, n] admits a presentation
as a dg-manifold

The construction of the standard form of a morphism is explained in the proof of the following result.

Proposition 5.1.1.8. Let f ∶ A→ B be a morphism of simplicial C∞-rings.

(1) If f is of finite presentation, then LB/A is perfect. The converse is true if π0(f) is finitely presented.

(2) If f is almost of finite presentation, then LB/A is almost perfect. The converse is true if π0(f) is finitely presented.
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Proof. We prove the forward implications. Using corollary 5.1.0.8, we see that the cotangent complex functor

sC∞ringA//B Ð→ModB ,

C

A B

z→ LC/A ⊗C B

is a left adjoint. Suppose B is finitely presented in the ∞-category of A-algebras, which is generated under sifted
colimits by objects of the form A ⊗∞ C∞(Rn) by proposition 4.1.1.28. Invoking lemma 4.1.1.20, it suffices to show
that the object LA⊗∞C∞(Rn)/A ⊗A⊗∞C∞(Rn)B is perfect, but it follows from corollary 5.1.0.13 that this object is free
on n generators.
If B is almost finitely presented over A, then proposition 4.1.3.32 provides a map fn ∶ B′ → B in sC∞ringA//B

where B′ is finitely presented over A and fn n-connective. It follows that the relative cotangent complex LB/B′ is
(n + 1)-connective, which implies that the map

LB′/A ⊗B′ B Ð→ LB/A

is n-connective, using the fibre sequence of remark 5.1.0.4.
Now suppose that π0(f) is of finite presentation and that Lf is almost perfect. First, we prove (2): following the
proof of [Lur17a] thm. 7.4.3.18, we construct a sequence of simplicial C∞-rings over B

A = A(−1)Ð→ A(0)Ð→ A(1)Ð→ A(2)Ð→ . . .

such that each map fn ∶ A(n) → B is n-connective and A(n) is of finite presentation over A. To construct A(0), we
choose an effective epimorphism g ∶ C∞(Rn)⊗∞A→ B (which exists because π0(B) is finitely generated over π0(A))
and consider the kernel I ∶= ker(π0(f)) as a finitely generated C∞(Rn)⊗∞ π0(A)-module. The map π0(fib(f)) → I
is a surjection, so we can choose a map M → fib(f) where M is a finitely generated and free C∞(Rn)⊗∞ A-module
(on k generators say) that induces a surjection π0(M) → I. Now we take the free simplicial C∞-ring over A of the
module M and define A(0) as the pushout diagram

C∞(Rk)⊗∞ A C∞(Rn)⊗∞ A

A A(0)

g

There is a canonical map A(0)→ B which is a 0-equivalence by construction.
Now we assume that we have constructed an n-connective map fn ∶ A(n) → A for n ≥ 0 (but as we have just
explained, we may assume that A(n) → B is a 0-equivalence for all n ≥ 0). Proposition 5.1.1.1 shows that we have
an isomorphism πn(fib(fn)) → πn+1(LB/A(n)). Using that LB/A is almost perfect and LA(n)/A is perfect (by the
previous part of the proof), we see that LB/A(n) is almost perfect. Since LB/A(n) is (n + 1)-connective, the module
πn+1(LB/A(n)) is finitely presented; choose a finite set Jn of generators of πn(fib(fn)) as a π0(A(n))-module, then

we have a map RJn ⊗R A(n)[n] → fib(fn) of A(n)-modules, which induces a surjective map on the n’th homotopy
group. We now define A(n + 1) by forming a pushout diagram

FC
∞

A(n)(Sym●
A(n)(RJn ⊗R A(n)[n])) A(n)

A(n) A(n + 1)

The map RJn ⊗R A(n)[n] → B is nullhomotopic, which yields a map A(n + 1) → B. Notice that we have a diagram
of shape ∆2 ×∆1, where both squares are pushouts

ΣnC∞((RJ
n

)∨) ΣnC∞((RJ
n

)∨)⊗∞ A(n) A(n)

R A(n) A(n + 1)

It is clear that A(n+1) is of finite presentation over A, so to finish the construction, we need to show that the induced
map A(n + 1) → B is (n + 1)-connective. First, note that by the diagram above, A(n) → A(n + 1) is an effective
epimorphism, which implies that A(n + 1) → B is a 0-equivalence since A(n) → B is a 0-equivalence by assumption.
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In light of corollary 5.1.1.3, it suffices to show that the relative cotangent complex LB/A(n+1) is (n + 2)-connective.
We have a fibre sequence

LA(n+1)/A(n) ⊗A(n+1) B Ð→ LB/A(n) Ð→ LB/A(n+1),

which, using the pushout diagram above and remark 5.1.0.4, we can identify with a fibre sequence

RJn ⊗R B[n + 1]Ð→ LB/A(n) Ð→ LB/A(n+1).

By assumption, LB/A(n) is n-connective. Using the long exact sequence, it suffices to show that the map πn+1(RJn ⊗R

B[n+1])→ πn+1(LB/A(n)) is surjective. For this, we just have to note that the map RJn ⊗RB[n+1]→ LB/A(n) is the

shift of the map RJn ⊗R B[n] → LB/A(n)[−1] that we have constructed above, which we have chosen so as to induce
a surjection on the n’th homotopy group.
Now suppose that LB/A is perfect. It suffices to show that for some large enough k, the map A(k) → B is an
equivalence. The proof of this fact is word for word the same as the proof of [Lur17a] thm. 7.4.3.18.

Remark 5.1.1.9. Proposition 5.1.1.8 is false if π(f) is not assumed to be finitely presented. For a counterexample,
let M be a manifold with boundary, then corollary 5.0.0.3 shows that LM is a perfect (in fact, finitely generated and
projective), yet C∞(M) is not even finitely 1-presented.

Combining propositions 5.1.1.8 and 4.3.3.17 shows that for almost finitely presented simplicial C∞-rings, the
cotangent complex is a quasi-coherent module. However, if A is a fair simplicial C∞-ring such that π0(A) is finitely
presented, we can perform the constructions of proposition 5.1.1.8 with the quasi-coherent cotangent complex instead
of the cotangent complex. Since for fair simplicial C∞-rings, the cotangent complex controls the connectivity and
finiteness properties as explained in remark 5.1.1.7, we have the following corollary.

Corollary 5.1.1.10. Let A be a simplicial C∞-ring such that π0(A) is finitely presented, then the following are
equivalent.

(1) A is of finite presentation.

(2) LA is perfect and is equivalent to Lcplt
A .

(3) Lcplt
A is perfect.

The same holds when ‘finite presentation’ and ‘perfect’ is replaced with ‘almost of finite presentation’ and ‘almost
perfect’ respectively.

A more careful construction of the object A(0) yields the following result (see also theorem 4.34 of [Joy12b]).

Proposition 5.1.1.11. Let A be a fair simplicial C∞-ring such that π0(A) is finitely presented, and such that LA
(equivalently Lcplt

A ) is perfect and has Tor-amplitude in [−1,0], then there is an open submanifold U ⊂ Rn, a vector
bundle E → U with a section s ∶ U → E and an equivalence dZ(s) ≃ A.

Proof. Choose an effective epimorphism f ∶ C∞(Rn)→ A, then the object LA/C∞(Rn) also has Tor-amplitude in [−1,0]
and is moreover 1-connective. It follows that LA/C∞(Rn)[−1] is connective, perfect and has Tor-amplitude 0, and is
therefore finitely generated and projective. Using the vector bundle extension lemma 4.3.4.13 we may choose an open
set SpecRB ⊂ U ⊂ Rn, a finitely generated projective C∞(U)-module P such that P ⊗C∞(U) A ≃ LA/C∞(Rn)[−1]. In
particular, we can identify P with the module of sections of a vector bundle E → U .
Now let I ∶= ker(π0(f)), then we have surjections π1(LA/C∞(Rn)) ≃ π0(fib(f))⊗C∞(Rn) π0(A) → I/I2. Identifying P
with an object in the abelian category of finitely presented C∞(U)-modules, we have a surjection P → I/I2 which
lifts to map P → I, by projectivity of P . Because the inclusion I ↪ C∞(U) becomes the zero map after tensoring
with R, the map I → I/I2 becomes an isomorphism after tensoring with R. Thus, using the assumption that I is
locally finitely generated, we may choose a locally finite cover {Vα} of U such that on each Vα, the map P → I induces
a surjection P ⊗C∞(U) C

∞(Vα)→ I ⊗C∞(U) C
∞(Vα). Using that I and P are closed under locally finite sums, we see

that P → I is in fact a surjection. The composite map P → I → C∞(U) is a section of the vector bundle E → U , so
we can form the pushout

C∞(E) C∞(U)

C∞(U) Ã

By construction, there is a canonical map Ã → A that induces an isomorphism on connected components. The first
map in the fibre sequence

LÃ/C∞(U) ⊗Ã AÐ→ LA/C∞(U) Ð→ LA/Ã

is an equivalence, so it follows from corollary 5.1.1.4 that Ã ≃ A.
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Definition 5.1.1.12. A map of simplicial C∞-rings f ∶ A→ B is n-quasi-smooth if LB/A has Tor-amplitude in [0, n].
A simplicial C∞-ring A is n-quasi smooth if the map R→ A is n-quasi-smooth.

Corollary 5.1.1.13. Let SpecA be an affine derived manifold of finite presentation. Then SpecA is the derived
zero locus of a section of a vector bundle on a manifold if and only if A is 1-quasi-smooth.

We have the following permanence properties of n-quasi-smooth morphisms.

Proposition 5.1.1.14. Let QSn ⊂ Fun(∆1, sC∞ring) be the class of n-quasi-smooth morphisms.

(1) QSn is stable under composition; that is, QSn ⊂ Fun(∆1, sC∞ring) determines a full subcategory.

(2) If f ∶ A → B is n-quasi-smooth, and g ∶ A → C is any morphism in sCringR then the base change B → A⊗B C is
n-quasi-smooth.

(3) QSn is stable under retracts.

Proof. Let i ∶ A → B be a map of finitely presented simplicial C∞-rings that admits a retraction r. If B is n-quasi-
smooth for n ≥ 0, then A is also n-quasi-smooth: for n = 0, this follows because TDiff is idempotent complete. For
n > 0, we can observe that LA is a retract of r!LB , and that Tor-amplitude is stable under retracts and base change
by flat maps (r is flat because it is a retract).

As a consequence of this proposition, we deduce that the subcategory of sC∞ring whose objects are n-quasi-smooth
derived manifolds and whose morphisms are n-quasi-smooth morphisms is stable under finite colimits.

Remark 5.1.1.15. Combining propositions 5.1.1.14 and 5.1.1.11, we deduce that if SpecA → SpecB is a 1-quasi-
smooth morphism of finitely presented affine derived manifolds and SpecC → SpecB is a map with 1-quasi-smooth
finitely presented domain, then there exists an affine Kuranishi model (V,E, s) and an equivalence SpecC ×SpecB

SpecA ≃ dZ(s). This was observed by Fukaya-Oh-Ohta-Ono ([Fuk+00], Appendix A), who show that on the
pullback K ×N K′ of sets, there exists a Kuranishi structure provided that the maps K→ N and K′ → N are weakly
submersive, which means precisely that the induced map of affine derived manifolds is 1-quasi-smooth. Fukaya-Oh-
Ohta-Ono actually prove this when K′ and K are 1-quasi-smooth derived orbifolds. To generalize to this case, we
first consider an intersection

[SpecA/G] ×N K′

where N is a manifold, K′ is a 1-quasi-smooth derived orbifold, SpecA is 1-quasi-smooth and finitely presented and
G is a finite group. In this case (and even if G is an arbitrary group object in dC∞St), we have an equivalence

[SpecA/G] ×N K′ ≃ [SpecA/G] ×N×BG K′ ×BG,

so it follows from our analysis of the affine case, together with general yoga of realization fibrations that [SpecA/G]×N
K′ is a 1-quasi-smooth derived orbifold. In the general case, we observe that K×NK′ admits a 0-étale atlas by objects
of the form [SpecA/G]×NK′ satisfying the conditions of proposition 4.2.2.6, so that K×NK′ is also a 1-quasi-smooth
derived orbifold.

Remark 5.1.1.16. It is also true that a morphism f of affine derived manifolds is submersive if and only if Lf has
Tor-amplitude 0 (equivalently, using [Lur17a] prop. 7.2.4.23, if Lf is projective), but proving that assertion obviously
requires more differential-topological input than we have used so far. We will deduce this result as a consequence of
the derived inverse function theorem 5.1.3.17.

Proposition 5.1.1.17. Let f ∶ A → B be an étale morphism of fair simplicial C∞-rings (that is, f is a localization
up to localizations on B). Then the quasi-coherent relative cotangent complex Lcplt

B/A
vanishes.

Proof. The vanishing of Lcplt
B/A

is local on SpecB. By assumption, there is a cover {B → B[1/b]} such that each

composition A→ B → B[1/b] is admissible; point (1) of remark 5.1.0.4 provides a cofibre sequence

LB/A ⊗B B[1/b]Ð→ LB[1/b]/A Ð→ LB[1/b]/B ,

but since the relative cotangent complex vanishes on localizations by corollary 5.1.0.14, the second and third term in
this sequence are zero, so LB/A ⊗B B[1/b] vanishes as well.

Corollary 5.1.1.18. Let U ⊂ SpecA be an admissible map of affine derived manifolds. The cotangent complex
LA ∈ QCoh(A) restricted to U is naturally equivalent to the cotangent complex of U .

Corollary 5.1.1.19. Let N be a manifold, viewed as an affine derived manifold. The cotangent complex of N has
vanishing homotopy groups in degrees other than 0, and π0(LN) ≅ T ∨N in Mod♡ON , the abelian category of ON -modules.
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Proof. Since π0(LC∞(N)) = Ω1
C∞(N) is the module of sections of the cotangent sheaf of N , we only have to show

that the higher homotopy groups vanish. Because taking global sections commutes with taking homotopy groups, it
suffices to check this locally on N . By corollary 5.1.1.18, we have for each open inclusion i ∶ U ↪ N an equivalence
i∗LC∞(N) ≃ LC∞(U), so it suffices to prove the statement for N = Rn, in which case the statement follows from
corollary 5.1.0.13.

Definition 5.1.1.20. Let SpecA be an affine derived manifold of finite presentation. Then LA has finite Tor-
amplitude, so that for each R-point x ∶ A → R, the object LA ⊗A R is an R-module with finitely many nonzero
homotopy groups all of finite dimension. The virtual dimension of SpecA at x is the Euler characteristic of LA⊗AR.

Proposition 5.1.1.21. Let SpecA be an affine derived manifold of finite presentation, then the virtual dimension
of SpecA is locally constant on SpecRA.

Proof. By proposition 5.1.1.8, we may suppose after localizing that A = A(n), the object appearing in the construction
of proposition 5.1.1.8 for the map R→ A, where we attach a simplicial C∞-ring of the form Σn−1C∞(Rk) to A(n−1).
The object A(0) clearly has constant virtual dimension, so by induction we may assume that A(n − 1) has constant
virtual dimension m in a neighbourhood of a point x ∶ ∗ → SpecRA(n) ↪ SpecRA(n − 1). Now the equivalence
LA(n) ≃ LA(n−1)/Σn−1C∞(Rk)⊗A(n−1)A(1) and the fact that LA(n−1) has Tor-amplitude [−n+ 1,0] show that there are
equivalences πr(LA(n)) ≃ πr(LA(n−1)) for r < n − 1 and that we have an exact sequence

0Ð→ πn(LA(n))⊗A(n) RÐ→ Rk Ð→ πn−1(LA(n−1) ⊗A(n−1) R)Ð→ πn−1(LA(n)⊗A(n) R)Ð→ 0,

showing that the virtual dimension at x is m ± k, and thus it is so for all points in some neighbourhood.

Definition 5.1.1.22. Let A be a fair simplicial C∞-ring. For an R-point x ∶ A→ R, we call

embdimxA ∶= dimπ0(LA)⊗A R

the embedding dimension of A at x. This is an upper semicontinuous function on the real spectrum of π0(A). The
embedding dimension of A is

embdimA ∶= sup
x∶A→R

embdimxA ∈ [0,∞)

Lemma 5.1.1.23. Let A be a fair simplicial C∞-ring, and suppose that A has embedding dimension n at an R-point
x ∶ A→ R, then there exists a closed immersion SpecA ⊃ U → Rn for x ∈ U → SpecA some admissible map.

Proof. Choose an effective epimorphism f ∶ C∞(Rk)→ A, then we have the conormal exact sequence

I/I2 Ð→ Ω1
C∞(Rn) ⊗C∞(Rn) π0(A)Ð→ Ω1

π0(A) Ð→ 0.

Nakayama’s lemma tells us that after localizing near x, may lift a basis of π0(LA) ⊗A R and choose n generators
{b1, . . . , bn} in the module Ω1

π0(A). Consider the differentials {ddRxi}1≤i≤k for xi the coordinate functions on Rk, then

these differentials also generate Ω1
π0(A) and we can write bj = ∑iKijddRxi as an equation in π0(LA). Let K denote

the matrix with coefficients Kij in π0(A) and let {aij}1≤i≤n for 1 ≤ j ≤ n − k be a linearly independent collection of
real vectors in the null space of Kij at x, then the finitely generated submodule of Ω1

π0(A) generated by the images
of the differentials ∑i aijddRxi becomes the zero vector space after base change along x ∶ A → R, so Nakayama’s
lemma asserts that after localizing near x, we may suppose that the elements ∑i aijddRxi lie in the kernel of the map
Ω1
C∞(Rn)⊗C∞(Rn) π0(A)→ Ω1

π0(A). It follows from the conormal exact sequence that we can find n−k functions gi on

Rk in I that are independent at x. Localizing near x, we may assume that the functions {gi} determine a submersion
Rk → Rk−n and a pushout diagram

C∞(Rn−k) C∞(Rk)

R C∞(Rn),
0

then we have an effective epimorphism f ′ ∶ C∞(Rn)→ A such that Ω1
π0(f ′) vanishes at x.

We now give the results on cotangent complexes of C∞-rings of Whitney functions that we have alluded to.

Lemma 5.1.1.24. Let A be a closed fair C∞-ring, and suppose that as a simplicial C∞-ring, π0(LA) is a free module
π0(A)-module of finite rank. Then for each x ∈ SpecRA, there exists a localization A[a−1] containing x and a manifold
M with a closed subset X ⊂M such that A ≅ C∞(M)/m∞

X .
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Proof. Using lemma 5.1.1.23, we may suppose that we have an effective epimorphism C∞(Rn) → A where n is the
embedding dimension of A. Since π0(LA) is free of rank n, the second map in the conormal exact sequence

I/I2 Ð→ Ω1
C∞(Rn) ⊗C∞(Rn) π0(A)Ð→ Ω1

π0(A) Ð→ 0

is an isomorphism, so the first map, which takes [f] to ddRf , is the zero morphism. It follows that at all x points of
Z(I), the jets of the partial derivatives { ∂f

∂xi
}i at x are contained in the ideal generated by the partial derivative of

f at x. Using the assumption that I is closed, we deduce that the functions { ∂f
∂xi

}i are contained in I. By induction,

we conclude that all higher partial derivatives of f are contained in I, which implies that I ⊂ m∞
Z(I). Since I is closed,

we also have m∞
Z(I) ⊂ I.

Remark 5.1.1.25. Even when π1(LA) vanishes, so that I = I2 it is necessary to impose that I be closed to deduce
that C∞(Rn)/I is a ring of Whitney functions. To prove this, take a closed set X ⊂ Rn and define a sequence of
subsets ∅ = I−1 ⊂ I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ m∞

X where Ik has cardinality ∑ki=0 2i as follows. Choose an arbitrary nonzero
f ∈ m∞

X , and set I0 ∶= {f}. Suppose that In has been defined, then we define In+1 by choosing for each g ∈ In ∖ In−1 a
factorization g = ϕh with ϕ,h ∈ m∞

X , using Tougeron’s flat function lemma, and adjoining ϕ and h to In. Consider the
ideal I generated by the set ⋃n In ⊂ m∞

X . By construction, we have I = I2, but I is not closed: by Whitney’s spectral
theorem, the closure of I is m∞

X , but as I is countably generated, the flat function lemma provides a principal ideal
(ψ) ⊂ m∞

X such that I ⊂ (ψ).

Theorem 5.1.1.26. Let f ∶ C∞(Rn) → A be an effective epimorphism, let I = kerπ0(f) be jet determined and
suppose that there are n closed subsets Xi ⊂ R such that Z(I) =∏iXi. Then the following are equivalent.

(1) Lf ≃ 0 in ModA.

(2) I = m∞
Z(I) and the unit map of the 0’th truncation

AÐ→ π0(A) ≃ C∞(Rn)/I = C∞(Rn)/m∞
Z(I)

is an equivalence.

Proof. We first show (2)⇒ (1). Proposition 4.1.6.8 shows that there is a pushout diagram

C∞(Rn) A

A A

f

id

id

so point (2) of remark 5.1.0.4 provides an equivalence Lf ≃ Lid = 0. Now assume (1), then π0(Lf) = 0 so lemma
5.1.1.24 shows that I = m∞

Z(I). Applying point (1) of remark 5.1.0.4 to the composition

C∞(Rn)Ð→ AÐ→ C∞(Rn)/m∞
Z(I)

yields a fibre sequence

Lf ⊗A C∞(Rn)/m∞
Z(I) Ð→ LC∞(Rn)/m∞

Z(I)/C
∞(Rn) Ð→ LC∞(Rn)/m∞

Z(I)/A
.

By assumption, Lf = 0 and LC∞(Rn)/m∞
Z(I)/C

∞(Rn) = 0 by the proof of (2) ⇒ (1), so we conclude using corollary

5.1.1.4.

Remark 5.1.1.27. The previous proposition in fact holds without any restriction on the closed subsets, but the
proof of this fact depends on an alternative calculation of the cotangent complex of simplicial C∞-rings of the form
C∞(X;Rn) which uses the HKR filtration on the universal S1-equivariant simplicial C∞-ring C∞(X;Rn)⊗∞C∞(X;Rn)⊗∞C∞(X;Rn)

C∞(X;Rn), which can be identified, using corollary 4.1.6.5, with the continuous Hochschild homology of C∞(X;Rn)
as a Fréchet algebra. The vanishing of the higher homotopy groups of LC∞(X;Rn) is then a consequence of excision
for continuous Hochschild homology as proven by Meyer [Mey10]. We will come back to this result in later work,
since a discussion of Hochschild homology in functional analytic settings is not in order at this point.
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5.1.2 Application: derived intersection of regularly situated sets

In this short subsection, we apply some of the ideas developed in this chapter so far to give an alternative character-
ization of the condition of being regularly situated for two suitable closed sets X and Y in some Rn: X and Y are
regularly situated if and only if the derived intersection of the finitely generated affine C∞-schemes (X,C∞

(X;Rn)) and
(Y,C∞

(Y ;Rn)) coincides with (X ∩ Y,C∞
(X∩Y ;Rn)). More precisely, our goal is to prove the following result.

Proposition 5.1.2.1. Let X,Y ⊂ Rn be closed subsets of the form ∏iXi and ∏i Yi for {Xi} and {Yi} tuples of n
closed subsets of R, and let p ∶ C∞(Rn) → C∞(X;Rn) and q ∶ C∞(Rn) → C∞(Y ;Rn) be the quotient maps onto the
discrete simplicial C∞-rings of Whitney functions on X and Y , then the following are equivalent.

(1) X and Y are regularly situated, that is, either X ∩Y = ∅ or for each x0 ⊂X ∩Y , there is a neighbourhood x0 ∈ V
in Rn for which there are constants C ∈ R>0 and λ ∈ R≥0 such that for each x ∈ V ∩X, we have the inequality

Cd(x,X ∩ Y )λ ≤ d(x,Y ),

where d( , ) denotes the Euclidean distance on Rn.

(2) Either X∩Y = ∅ or the ideal p(m∞
Y ) ⊂ C∞(X;Rn) of those Whitney functions F on X which admit a representative

f ∶ Rn → R that is flat on Y , is closed for the Fréchet topology on C∞(X;Rn).

(3) Either X∩Y = ∅ or the ideal q(m∞
X) ⊂ C∞(Y ;Rn) of those Whitney functions G on Y which admit a representative

g ∶ Rn → R that is flat on X, is closed for the Fréchet topology on C∞(Y ;Rn).

(4) The commuting diagram

C∞(Rn) C∞(X;Rn)

C∞(Y ;Rn) C∞(X ∩ Y ;Rn)

q

p

is a pushout in the category C∞ring.

(5) The commuting diagram

C∞(Rn) C∞(X;Rn)

C∞(Y ;Rn) C∞(X ∩ Y ;Rn)

q

p

is a pushout in the ∞-category sC∞ring.

Proof. The proofs of (1⇒ 2) and (1⇒ 3), (4⇒ 2) and (4⇒ 3), and (2⇒ 1) and (3⇒ 1) are identical, so we only
do one of each.

(1⇒ 2) It is a result of  Lojasiewicz [ Loj59] that the condition of being regularly situated for X,Y can be reformulated
as follows: the chain complex

0Ð→ C∞(X ∪ Y ;Rn) δÐ→ C∞(X;Rn)⊕C∞(Y ;Rn) πÐ→ C∞(X ∩ Y ;Rn)Ð→ 0

of R-modules is exact, where δ is the map

F z→ (F ∣X , F ∣Y )

and π is the map

(F,G)z→ F ∣X∩Y −G∣X∩Y .

These maps are continuous so kerπ is closed in C∞(X;Rn)⊕C∞(Y ;Rn) and kerπ ∩C∞(X;Rn)⊕{0} is closed
in C∞(X;Rn). The space kerπ ∩C∞(X;Rn)⊕ {0} coincides with the closed ideal m∞

X∩Y of Whitney functions
on X that are flat on X ∩ Y . Under the assumption that the chain complex above is exact, this ideal coincides
with the subspace im δ ∩ C∞(X;Rn) ⊕ {0} of Whitney functions on X that can be extended to a Whitney
function on Y ∪X flat on Y , which is precisely the space p(m∞

Y ) of functions that admit a representative that
is flat on Y .
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(2⇒ 1) Let (F,G) ∈ kerπ, then we should show that (F,G) ∈ im δ. We may assume that G = 0, otherwise we use that
the map C∞(X ∪ Y ;Rn) → C∞(X;Rn) is a surjection to lift G to some G and replace (F,G) by (F,G) − δG.
It follows that it suffices to argue that the inclusion im δ ∩ C∞(X;Rn) ⊕ {0} ⊂ ker δ ∩ C∞(X;Rn) ⊕ {0} is an
equality. Since π is continuous and im δ ∩ C∞(X;Rn) ⊕ {0} is closed by assumption, it suffices to show that
the inclusion is dense. Let f ∈ C∞(Rn) be a lift of F ∈ ker δ ∩C∞(X;Rn)⊕ {0}, then f ∈ m∞

X∩Y . By Whitney’s
spectral theorem, the ideal m∞

X∩Y is the closure of the ideal mgX∩Y , so there exists a sequence {fm}m ⊂ mgX∩Y

converging to f , and therefore the associated sequence of Whitney jets {Fm}m converges to F . Suppose that
fm vanishes in a neighbourhood Um of X ∩ Y , then X ∖ Um and Y ∖ Um are disjoint closed sets, so we may
modify fm by a function ϕm that equals 1 in a neighbourhood of X ∖ Um and equals 0 in a neighbourhood of
Y ∖Um and conclude that the sequence {Fm}m lies in im δ ∩C∞(X;Rn)⊕ {0}.

(1⇒ 4) The diagram in the statement of the proposition is a pushout if and only if the diagram

C∞(R2n) C∞(Rn)

C∞(X;Rn)⊗∞ C∞(Y ;Rn) C∞(X ∩ Y ;Rn)

is a pushout, where the upper diagonal map is the fold map. The maps C∞(X;Rn) → C∞(X ∩ Y,Rn) and
C∞(Y ;Rn)→ C∞(X ∩Y,Rn) both factor through the map ∆∗ ∶ C∞(X ×Y ;Rn)→ C∞(X ∩Y ;R2n) induced by
restricting Whitney functions to the diagonal. It follows from corollary 4.1.6.5 that we are reduced to proving
that the diagram

C∞(R2n) C∞(Rn)

C∞(X × Y ;R2n) C∞(X ∩ Y ;Rn)

is a pushout of C∞-rings. Using unramifiedness, and the projective resolution C∞(R2n)[e1, . . . , en] with
∂ei = xi − yi for C∞(Rn) as a C∞(R2n)-module, we are reduced to proving that the canonical map C∞(X ×
Y ;R2n)/({xi − yi}i) → C∞(X ∩ Y ) is an equivalence. If X and Y were open sets, this would follow from
Hadamard’s lemma, but this result does not hold for Whitney functions in general. Thus, given a Whitney
function F on X × Y that vanishes when restricted to the diagonal X × Y ∩ Rn ⊂ R2n, we need to show that
there exists a representative f ∶ R2n → R of F which vanishes on the entire diagonal Rn ⊂ R2n. To this end, we
make the following claim. Let ∆ ⊂ R2n be the diagonal consisting of points (x1, . . . , xn, y1, . . . , yn) for which
xi = yi for 1 ≤ i ≤ n.

(∗) The sets X × Y and ∆ are regularly situated in R2n.

We prove (∗). Let p = (x,y) ∈ R2n, then d(p,∆k+1) = 1/
√

2d(x,y). The distance d(p,X × Y ∩∆) is given by

d(p,X × Y ∩∆) ≤ inf
q∈X∩Y

d(x, q) + d(y, q) ≤ inf
q∈X∩Y

d(x,y) + 2d(y, q) = d(x,y) + 2d(y,X ∩ Y ).

Since X and Y are regularly situated, we have for some constants C > 0 and λ ≥ 0 an inequality

Cd(y,X ∩ Y ) ≤ d(y,X) ≤ d(y,x).

We may without loss suppose that 0 ≤ λ ≤ 1, then we have

Cd(p,X × Y ∩∆)λ ≤ C(d(x,y) + 2d(y,X ∩ Y ))λ ≤ Cd(x,y) + 2Cd(y,X ∩ Y )λ ≤ C′d(x,y)

which confirms our claim. Now let F be a Whitney function on X × Y and suppose that F ∣X×Y ∩∆ vanishes.
Choose a representative f ∶ R2n → R whose Whitney jet is F , then f ∣∆ ∈ m∞

X×Y ∩∆ ⊂ C∞(∆). We may view f ∣∆ as
a function on R2n constant in the directions orthogonal to ∆, so that f ∣∆ ∈ m∞

X×Y ∩∆ as a function in C∞(R2n).
Since X ×Y and ∆ are regularly situated, lemme 4.5 of [Tou72] provides a multiplier ϕ ∶ ∆∖X ×Y ∩∆→ R for
the ideal m∞

X×Y ∩∆ that is equal to 0 in a neighbourhood of X×Y ∖X×Y ∩∆ and is equal to 1 is a neighbourhood
of ∆ ∖X × Y ∩∆. Since ϕ is a multiplier for m∞

X×Y ∩∆, the function f ∣∆ϕ defined on R2n ∖X × Y ∩∆ extends
uniquely to a C∞-function on R2n which is flat on X × Y ∩ ∆, and by construction of ϕ, this function is also
flat on X × Y . Now consider

f̃ ∶= f − f ∣∆ϕ,
then the Whitney jet of f̃ is F as f ∣∆ϕ ∈ m∞

X×Y and f̃ vanishes on ∆ by construction of ϕ. It follows from
Hadamard’s lemma that we may write f̃ = ∑i gi(xi−yi) so that F lies in the ideal ({xi−yi}i) ⊂ C∞(X×Y ;R2n),
where we now understand xi and yi as Whitney functions onX×Y . We conclude that the map C∞(X×Y ;R2n)→
C∞(X×Y ∩∆; ∆) ≅ C∞(X∩Y ;Rn) coincides with the projection C∞(X×Y ;R2n)→ C∞(X×Y ;R2n)/({xi−yi}i).
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(4⇒ 5) Since the 0’th truncation of the pushout A is C∞(X ∩ Y ;Rn) by assumption, it suffices to show that the
pushout is 0-truncated, but since π0(A) is jet determined and the relative cotangent complex of the composition
C∞(Rn) → A vanishes by theorem 5.1.1.26 and the transitivity fibre sequence of point (1) of remark 5.1.0.4,
another application of theorem 5.1.1.26 grants the result.

(5⇒ 4) Obvious.

(4⇒ 2) If the diagram in the statement of the proposition is a pushout, unramifiedness shows that it is also a pushout
of commutative R-algebras, so by standard commutative algebra we know that the map q′ ∶ C∞(X;Rn) →
C∞(X ∩ Y ;Rn) is a quotient by the ideal p(m∞

Y ). However, the map q′ is a morphism of C∞-rings, and
thus continuous for the natural topologies on the domain and codomain, which are both Fréchet. Hence
ker q′ = p(m∞

Y ) is closed.

Remark 5.1.2.2. The preceding proposition in fact holds, and its proof is valid, for any pair X and Y of closed sets
in Rn given the generalization of theorem 5.1.1.26 mentioned in the previous subsection.

5.1.3 Square zero extensions, Postnikov towers and obstruction theory

Given two simplicial C∞-rings A and B, the problem of finding a morphism A → B can be broken down into two
stages.

(1) Construct a morphism π0(A)→ π0(B), which is a problem in classical C∞-geometry.

(2) Find a way to lift the map A→ π0(A)→ π0(B) along the map B → τ≤0B = π0(B).

Stage (1) may be easy or entirely intractable depending on the situation at hand, and naturally, one cannot expect
to discover a general method for finding maps between C∞-rings. In this subsection, we focus on problem (2), which
does admit a surprising degree of systematization. First, we may observe that this problem decomposes into an
infinite series of lifting problems

⋮

τ≤nB

⋮

τ≤1B

A π0(B)

along the Postnikov tower of B, so problem (2) may be recast as the following question: what data is required to
lift a map A → τ≤nB to a map A → τ≤(n+1)B? This question admits a satisfactory answer in terms of the cotangent
complex of A.

Definition 5.1.3.1. Unstraightening the square zero extension functor

Modcn Ð→ Fun(∆1, sC∞ring)Ð→ sC∞ring

carrying (A,M) to A ⊕ M determines a functor p ∶ MT → ∆1 × sC∞ring such that the composition MT →
∆1 × sC∞ring → sC∞ring is a biCartesian fibration associated to the absolute cotangent complex, the tangent cor-
respondence of sC∞ring. We can identify an R-linear derivation A → M with a functor ∆1 → MT fitting into a
commuting diagram

∆1 MT

∆1 × {A} ∆1 × sC∞ring
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We let Der(sC∞ring) denote the ∞-category Fun(∆1,MT ) ×Fun(∆1,∆1×sC∞ring sC
∞ring of derivations.

Let Der(sC∞ring) be the full subcategory of Fun(∆1×∆1,MT )×Fun(∆1×∆1,∆1×sC∞ring) Fun(∆1, sC∞ring) spanned by
pullback diagrams

Ã A

0 M

η

where the upper horizontal map belongs to sC∞ring and the lower horizontal one to Mod, and the lower left corner
is p-initial. The projection map Der(sC∞ring)→ Der(sC∞ring) is a trivial Kan fibration, so we may choose a section
s and consider the map

Φ ∶ Der(sC∞ring) sÐ→ Der(sC∞ring)Ð→ Fun(∆1, sC∞ring)

Let A be a simplicial C∞-ring, and let M ∈ ModA be an A-module. Given a derivation d ∶ A →M determined by a
map LA →M of A-modules, or equivalently a map dη ∶ A → A⊕ τ≥0M the value Φ(A) is a map Ã → A fitting into a
Cartesian square

Ã A

A A⊕ τ≥0M.

ηd

η0

A morphism Ã → A of simplicial C∞-rings is a square zero extension of A by M[−1] if there exists a derivation
d ∶ LA →M such that Ã fits into a Cartesian square as above.
The functor Φ admits a left adjoint Ψ, which carries a map Ã→ A to the derivation (A,d ∶ LA → LA/Ã); it is easy to
verify that the commuting square

Ã Ad[LA/Ã]

A A

exhibits a unit transformation.

Since a square zero extension by M is defined up to equivalence by the A-module M and the derivation d, we will
usually denote it Ad[M]. Knowing that a given map A′ → A is a square zero extension gives a powerful method of
constructing maps from another simplicial C∞-ring B into A′; indeed, given a map f ∶ B → A, then f lifts to a map
f ′ as in the commuting diagram

A′

B A

f ′

f

if and only if the induced map f∗LB → LA → M[1] is nullhomotopic. By the cofibre sequence of remark 5.1.0.3,
the existence of such a homotopy is in turn equivalent to the condition that LA →M[1] factors through the relative
cotangent complex LA → LB/A. Reasoning like this allows one to split the problem of finding maps between derived
manifolds, or more generally simplicial C∞-rings, into two parts: a ‘global’ one, that is, defining the map B → A,
and an ‘infinitesimal’ one having to do with the cotangent complex. Note also that the ‘infinitesimal’ part is purely
algebraic: it asks only that the obstruction class in Ext0

ModA
(f∗LB ,M[1]) vanishes, where the Ext group is the 0’th

homology of the complex of homomorphisms in the dg-category of dg Aalg-modules. If the obstruction vanishes, the
set of connected components of the space of lifts is a torsor for Ext0

ModA
(f∗LB ,M). We formulate these ideas more

precisely in the following proposition.

Proposition 5.1.3.2. Let f ∶ A → B be a morphism of simplicial C∞-rings, and let M be a connective module of a
simplicial C∞-ring C equipped with a derivation d ∶ LC →M[1]. Consider a commutative diagram

A Cd[M]

B C

f

g

Then this diagram determines a point x ∈ HomModC (g!LB/A,M[1]) such that there is a canonical equivalence

HomsC∞ringA//C (B,Cd[M]) ≃ Ωx,0HomModC (g!LB/A,M[1]).
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Proof. Since the ∞-category Λ2
2 is weakly contractible, it follows from from the dual of lemma 4.1.1.29 and the dual

of [Lur17b], prop. 1.2.13.8 that the inner fibration sC∞ringA//C → sC∞ring preserves and reflects pullbacks. The
square zero extension Cd[M] is a limit of such a diagram, so we have a pullback diagram of spaces

HomsC∞ringA//C (B,Cd[M]) HomsC∞ringA//C (B,C)

HomsC∞ringA//C (B,C) HomsC∞ringA//C (B,C ⊕M[1])

Clearly, the map ∗ → HomsC∞ringA//C (B,C) specifiying g ∶ B → C is a weak homotopy equivalence, so the lower

horizontal map determines a point x ∈ HomsC∞ringA//C (B,C ⊕M[1]) which is given by a composition B
g→ C

ηd→
C ⊕M[1], and the right vertical map determines a point y ∈ HomsC∞ringA//C (B,C ⊕M[1]) which is given by a

composition B
g→ C

η0→ C ⊕M[1]. Note that there is commuting diagram

HomsC∞ringA//C (C,C ⊕M[1]) HomsC∞ringA//C (B,C ⊕M[1])

HomModC (F (C),M[1]) HomModC (F (B),M[1])

≃ ≃

in H, where F is the left adjoint to the functor taking trivial square zero extensions. By definition, F (C) = LC/A

and by corollary 5.1.0.8, F (B) ≃ g!LB/A. It follows from the commutativity of the diagram above that the point

y ∈ HomsC∞ringA//C (B,C⊕M[1]) corresponds to a composition g!LB/A → LC/A
0→M[1], so that y is in fact equivalent

to the zero map. Now it follows that the space HomsC∞ringA//C (B,Cd[M]) fits into a pullback diagram

HomsC∞ringA//C (B,Cd[M]) ∗

∗ HomModC (g!LB/A,M[1])

0

x

as desired.

Remark 5.1.3.3. In the situation of proposition 5.1.3.2, we have that the space of dotted lifts

A Cd[M]

B C

f

g

extending the square to a 3-simplex is equivalent to Ωx,0HomModC (g!LB/A,M[1]) (see [Lur17b], lem. 5.2.8.22).

The previous lemma classifies the extension problem for maps along square zero extensions in terms of the
cotangent complex. The relevance to problem (2) mentioned above is the content of the following proposition.

Proposition 5.1.3.4. Let A be a simplicial C∞-ring. For each n ≥ 0, the map τ≤(n+1)A → τ≤nA is a square zero
extension. Moreover, the relative cotangent complex Lτ≤nA/τ≤(n+1)A is (n + 2)-connective and we have a canonical

isomorphism πn+1(A) ≃ πn+2(Lτ≤nA/τ≤(n+1)A).

The proposition asserts that the Postnikov tower of a simplicial C∞-ring is a sequence of square zero extensions.
Before we give the proof, we need a definition.

Definition 5.1.3.5. A map f ∶ A′ → A of simplicial C∞-rings is an n-connective extension for n ≥ 0 if fib(f) is
n-connective. We say that f is an n-small extension if

(1) fib(f) is n-connective.

(2) fib(f) is (2n)-truncated in ModcnR .

(3) The multiplication map
fib(f)⊗A′ fib(f)Ð→ fib(f)

is nullhomotopic.

We let Funn−sm(∆1, sC∞ring) be the full subcategory spanned by n-small extensions.
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Proposition 5.1.3.6. Let Dern−sm(sC∞ring) ⊂ Der(sC∞ring) be the full subcategory of those derivations A → M
such that M[−1] is n-connective and 2n-truncated. Then the functor Φ induces an equivalence Dern−sm(sC∞ring) ≃
Funn−sm(∆1, sC∞ring).

Proof. One readily verifies that Φ carries Dern−sm(sC∞ring) into Funn−sm(∆1, sC∞ring), determining a functor Φn−sm.
This functor admits a left adjoint Ψn−sm given by the assignment

(Ã→ A)z→ (A,d ∶ LA → τ≤2n+1LÃ/A).

The functor Φn−sm is clearly conservative, so we are reduced to verifying that the map Ã → Ad[τ≤2n+1LA/A′] is an
equivalence. We have morphisms of fibre sequences

fib(f) Ã A

LA/A′[−1] Ad[LA/A′] A

τ≤(2n+1)LA/A′[−1] Ad[τ≤(2n+1)LA/A′] A

h

g

Since the map g is a (2n)-equivalence, it suffices to check that h is a (2n)-equivalence. Now h factors as

fib(f) h′Ð→ fib(f)⊗Ã A
h′′Ð→ LA/Ã[−1],

where the map h′′ is (2n+1)-connective as a consequence of the assumption that fib(f) is n-connective (so that cofib(f)
is (n + 1)-connective) and proposition 5.1.1.1, so we only have to show that the map h′ ∶ fib(f) Ð→ fib(f)⊗Ã A is a
(2n)-equivalence. We have a fibre sequence

fib(f)⊗Ã fib(f)Ð→ fib(f)⊗Ã Ã ≃ fib(f) h′Ð→ fib(f)⊗Ã A

where the first map is the multiplication on fib(f). Since fib(f) is n-connective, the groups πk(fib(f) ⊗Ã fib(f))
vanish for k < 2n, so the fibre sequence above shows that h′ is (2n)-connective. Thus, the second map in the exact
sequence

π2n(fib(f)⊗Ã fib(f))Ð→ π2n(fib(f))Ð→π2n(fib(f)⊗Ã A)

is a surjection. By assumption, the multiplication on fib(f) is nullhomotopic, so this map is also an injection and we
conclude that h′ is a (2n)-equivalence.

Proof of proposition 5.1.3.4. According to proposition 5.1.3.6, we only have to show that each map τ≤(n+1)A→ τ≤nA
is an (n + 1)-small extension, but the fibre of this map can be identified with the object πn+1(A)[n + 1] which is
obviously (n + 1)-connective, (2n + 2)-truncated and has vanishing multiplication. Proposition 5.1.3.6 also provides
us with an isomorphism πn+1(A) ≃ πn+2(Lτ≤nA/τ≤(n+1)A).

Remark 5.1.3.7. Proposition 5.1.3.6 could have been proven using proposition 5.1.0.16 to reduce to the algebraic
situation, and using the results in [Lur17a] section 7.4.2. We have opted to give a more elementary proof, which
does not rely on Dunn-Lurie additivity (observe that the proof also works for E∞-algebra objects in any presentably
symmetric monoidal stable ∞-category C equipped with a t-structure such that the tensor product carries C≥0 × C≥0

into C≥0).

We now have tools to construct Postnikov towers of simplicial C∞-rings if we are given a cotangent complex. For
instance, we have the following result on liftings of étale mappings.

Proposition 5.1.3.8. Let f ∶ A→ B(0) be a morphism of fair simplicial C∞-rings where B(0) is 0-truncated. If the
induced morphism π0(A)→ B(0) is étale, then there exists an object B ∈ sC∞ringA//B(0) such that the map B → B(0)
induces an equivalence π0(B) ≅ B(0) in C∞ring and the map A→ B is étale.

We recall for the reader’s convenience the following easy lemma.

Lemma 5.1.3.9. Let f ∶ A → B be a 0-equivalence of simplicial C∞-rings, and let M be a connective A-module. If
M ⊗A B is n-connective for n ≥ 1, then M is n-connective.
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Proof. Suppose that M ⊗A B is n-connective for some n ≥ 1, then the second page of the torsion spectral sequence
yields

0 = π0(M ⊗A B) ≅ π0(M)⊗π0(A) π0(A) ≅ π0(M)
and M is 1-connective. Now suppose for the sake of induction that M is k-connective for k ≤ n − 1, then M[−k] is
connective so the torsion spectral sequence again gives equivalences

0 = πk(M ⊗A B) ≅ π0(M[−k]⊗A B) ≅ πk(M)

so M is (k + 1)-connective.

Proof of proposition 5.1.3.8. We inductively define a tower of simplicial C∞-rings

. . .Ð→ B(n)Ð→ B(n − 1)Ð→ . . .Ð→ B(1)Ð→ B(0)

under A with the following properties:

(1) B(n) is n-truncated.

(2) The B(n)-module Lcplt
B(n)/A

is (n + 1)-connective.

(3) The map τ≤(n−1)B(n)→ B(n − 1) is an equivalence.

Note that for n = 0, B(0) satisfies the conditions above since π0(Lcplt
B(0)/A

) ≅ Ω1cplt
B(0)/π0(A)

= 0 because π0(A) → B(0)
is an equivalence. Suppose that A → B(n − 1) is already defined and satisfies the conditions above, then we have a
derivation d ∶ Lcplt

B(n−1)
→ τ≤(n+1)Lcplt

B(n−1)/A
induced by the canonical derivation Lcplt

B(n−1)
→ Lcplt

B(n−1)/A
so we may define

B(n) as the square zero extension B(n − 1)d[τ≤(n+1)Lcplt
B(n−1)/A

[−1]]. There is a fibre sequence of B(n)-modules

τ≤(n+1)Lcplt
B(n−1)/A[−1]Ð→ B(n)Ð→ B(n − 1).

Since B(n − 1) satisfies conditions (1) through (3) above, it follows that πn(B(n)) ≅ τ≤(n+1)Lcplt
B(n−1)/A

[−n − 1] ≅
πn+1(Lcplt

B(n−1)/A
), that B(n) is n-truncated and that the map τ≤(n−1)B(n) → B(n − 1) is an equivalence. It follows

from proposition 5.1.3.4 that the second map in the fibre sequence

Lcplt
B(n)/A ⊗B(n) B(n − 1)Ð→ Lcplt

B(n−1)/A Ð→ Lcplt
B(n−1)/B(n)

is (n + 1)-connective, so that Lcplt
B(n)/A

⊗B(n) B(n − 1) is (n + 1)-connective. Since the map B(n − 1) → B(n) is

n-connective, it follows from lemma 5.1.3.9 that Lcplt
B(n)/A

is also (n + 1)-connective. Now we have constructed B(n)
satisfying conditions (1) through (3) above. Conditions (1) and (3), together with [Lur17b], prop. 5.5.6.26 and the
fact that Postnikov towers are convergent in sC∞ring guarantee that we have a Postnikov tower

B ∶= lim
k
B(k)Ð→ . . .Ð→ B(n)Ð→ B(n − 1)Ð→ . . .Ð→ B(1)Ð→ B(0)

and for all n ≥ 0, we see that condition (2) and the fibre sequence

Lcplt
B/A ⊗B B(n)Ð→ Lcplt

B(n)/A Ð→ Lcplt
B(n)/B

establish that Lcplt
B/A

⊗B B(n) is n-connective. The map B → B(n) is (n + 1)-connective, so by lemma 5.1.3.9 again,

Lcplt
B/A

is also n-connective for all n, that is Lcplt
B/A

= 0. Now we conclude using corollary 5.1.1.4.

Remark 5.1.3.10. The proof of proposition 5.1.3.8 applies to lift atlases on stacks. By a standard procedure in
derived geometry, given a derived stack and U(0) → τ≤0X an étale or submersive atlas in the category of stacks on
C∞ringfair, then U(0) can be lifted to an atlas U →X provided that X has a cotangent complex and that X interacts
nicely with the constructions of proposition 5.1.3.8; that is, X should be compatible with square zero extensions and
Postnikov towers.

The main objective of the of this section is to describe local properties of morphisms in terms of differential data.
We have already done this for the properties of being (almost) finitely presented. Our next goal is to show analogues
of the inverse function and constant rank theorems.

Definition 5.1.3.11. A map f ∶ A→ B of simplicial C∞-rings is

(1) formally étale if LB/A ≃ 0.

(2) formally submersive if LB/A is a projective B-module.
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Remark 5.1.3.12. In algebraic geometry, it standard to also introduce the condition of being formally unramified
or equivalently, formally immersive on a morphism f ∶ A→ B by demanding that π0(LB/A) vanishes, but we will not
make much use of this terminology.

We will start by rephrasing the conditions of being formally étale and submersive in terms of lifting properties
against infinitesimal extensions of objects. Since such extensions abound in derived geometry, the usefulness of this
reformulation can hardly be overstated.

Definition 5.1.3.13. A map g ∶ C̃ → C of simplicial C∞-rings is a nilpotent extension if g is an effective epimorphism
and π0(g) ∶ π0(C̃)→ π0(C) has nilpotent kernel.

Nilpotent extensions appear much more frequently than square-zero extensions, but when proving theorems in
practice, it usually suffices to only consider the latter case, as the following lemma shows.

Lemma 5.1.3.14. Let g ∶ C̃ → C be a nilpotent extension, then there exists a sequence

. . .→ C(k)→ . . .→ C(1)→ C(0) ∶= C

as an object of Fun(N(Z⊲
≥0)op, sC∞ringC̃/) with limit C̃, where each C(k + 1)→ C(k) is a square zero extension.

Proof. Denote I = ker(π0(f)) and suppose that In = 0, then we have a sequence

π0(C̃)Ð→ π0(C̃)/In−1 Ð→ π0(C̃)/In−2 Ð→ . . .Ð→ π0(C)

of length n where the fibre of each map is of the form Ik−1/Ik for n ≥ k ≥ 1. Since Ik−1/Ik is 0-connective, 0-
truncated and has vanishing multiplication, we conclude that each map in the sequence above is a 0-small extension,
so proposition 5.1.3.4 shows that the sequence above is a sequence of square zero extensions. Setting C(k) = C ×π0(C)

π0(C̃)/In−k for n ≥ k ≥ 0, we see that each map C(k) → C(k − 1) is a square zero extension by the module I(k−1)/Ik
in the range n ≥ k ≥ 0. Now define a (k + 1)-connective map fk ∶ C̃ → C(k + n) inductively as follows: supposing that
fk ∶ C̃ → C(k + n) has been defined for k ≥ 0, proposition 5.1.1.1 tells us LC(k+n)/C̃ is k-connective and we have an

equivalence πk(LC(k+n)/C̃) ≃ πk−1(fib(C̃ → C(k + n))). Let M denote the C(k + n)-module πk−1(fib(C̃ → C(k + n))),
then we have a derivation d ∶ LC(k+n) → M[k] and it suffices to define C(k + n + 1) as the square zero extension
C(k + n)d[M[k]].

Proposition 5.1.3.15. Let f ∶ A→ B be a map of simplicial C∞-rings.

(1) The following are equivalent.

(a) f is formally submersive.

(b) f has the left lifting property with respect to all nilpotent extensions.

(c) f has the left lifting property with respect to all square zero extensions.

(2) The following are equivalent.

(a) f is formally étale.

(b) Let C̃ → C be a nilpotent extension, then the space of dotted lifts in the diagram

A C̃

B C

f

is weakly contractible.

(c) Let Cd[M]→ C be a square zero extension, then the space of dotted lifts in the diagram

A Cd[M]

B C

f

is weakly contractible.
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Proof. (1) It is clear that (b)⇒ (c). We show that (a)⇒ (c), that (c)⇒ (b), and that (b)⇒ (a). Suppose that f
is formally submersive. Consider a commuting diagram

A Cd[M]

B C

f

g

where Cd[M] → C is the square zero extension of C by M . By proposition 5.1.3.2, the obstruction to finding a
solution to this lifting problem is a nonzero element of the abelian group Ext0

ModC
(g!LB/A,M[1]). As g!LB/A is a

retract of a free C-module, the space HomModC (g!LB/A,M[1]) is a retract of a connected space, and is therefore

connected; this proves (a)⇒ (c). To show (c)⇒ (b), let C̃ → C be a nilpotent extension, and choose a sequence

. . .→ C(k)→ . . .→ C(1)→ C(0) ∶= C

with limit C̃, where each C(k+1)→ C(k) is a square zero extension. By assumption, we may solve each successive
lifting problem, so we obtain the desired solution by passing to the limit.
We prove (b)⇒ (a). Condition (b) and proposition 5.1.3.2 imply that for any connective B-module M , the abelian
group Ext1

ModB
(LB/A,M) ≅ Ext0

ModB
(LB/A,M[1]) vanishes. This proves that LB/A is projective by appealing to

[Lur17a] prop. 7.2.2.6, point (2).

(2) Assume that f is formally étale, then f is formally submersive so the obstruction to the existence of a dotted lift
in the commuting diagram

A Cd[M]

B C

f

g

vanishes by the previous part of the proof, and the space of such lifts is equivalent to

Ω0HomModC (g!LB/A,M[1]) ≃ HomModC (g!LB/A,M).

This space is weakly contractible as g!LB/A is initial by assumption, which proves (a) ⇒ (c). Conversely,
taking g = id ∶ B → B in the diagram above, condition (b) tells us that the space HomModB (LB/A,M) is weakly
contractible for any connective B-module M , so that LB/A is an initial connective B-module, that is, LB/A ≃ 0.
This proves (c)⇒ (a). The implications (b)⇔ (c) are easy to prove writing a nilpotent extension as a sequence
of square zero extensions.

Corollary 5.1.3.16. Let A be a simplicial C∞-ring. The truncation functor τ≤0 induces an equivalence sC∞ringét
A/ ≃

N (C∞ringét
π0(A)/) of ∞-categories.

Proof. Proposition 5.1.3.8 immediately yields essential surjectivity of the functor

τ≤0 ∶ sC∞ringét
A/ Ð→N (C∞ringét

π0(A)/) .

We thus show fully faithfulness. We have a commuting diagram of spaces

HomsC∞ringét
A/

(B,C) Hom
N(C∞ringét

π0(A)/)
(π0(B), π0(C))

HomsC∞ringét
A/

(B,π0(C)) Hom
N(C∞ringét

π0(A)/)
(π0(B), π0(C))

where the lower horizontal arrow is an equivalence by adjunction. Thus, it suffices to show that the fibre of the left
vertical map is weakly contractible, but this fibre is exactly the space of dotted lifts in the diagram

A C

B π0(C)

which is weakly contractible by virtue of proposition 5.1.3.15 and the fact that C → π0(C) is a nilpotent extension.
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One of the main results of this section is the following theorem.

Theorem 5.1.3.17 (Inverse Function Theorem). Let f ∶ A→ B be a morphism of fair simplicial C∞-rings such that
the induced map π0(f) ∶ π0(A)→ π0(B) is finitely presented. Then f is étale if and only if f is formally étale.

Remark 5.1.3.18. Note that in the situation of theorem 5.1.3.17, the map f is itself of finite presentation by
proposition 5.1.1.8.

The proof goes along the lines of the one for the inverse function theorem in algebraic geometry (for the étale
topology), supplemented by the usual implicit function theorem in differential geometry. First, we recall from standard
commutative algebra the Fitting invariant of a finitely presented module:

Lemma 5.1.3.19 (The Fitting Ideal Lemma). Let k be a commutative ring, and let M be a finitely presented k-

module. Choose a presentation kp
K→ kq →M and define for each 0 ≤ n ≤ q the Fitting ideal Fitn(M) as the ideal of k

generated by the (q −n)× (q −n)-minors of the matrix K. Then Fitn(M) does not depend on the presentation of M .

Proof. See e.g. [Eis95], chapter 21.

It follows from the Fitting ideal lemma that Fit0(0) = k, since the identity map k
id→ k gives a presentation of 0.

As a first step to theorem 5.1.3.17, we prove that under some finiteness conditions, a formally unramified morphism
is locally a closed immersion.

Lemma 5.1.3.20. Let f ∶ A → B be a morphism of fair simplicial C∞-rings such that the induced map π0(f) ∶
π0(A) → π0(B) is finitely presented. If π0(LB/A) = 0, then there exist finitely many elements {ai} ∈ π0(B) that
generate the unit ideal such that each of the induced maps A→ B[a−1

i ] factors as

A
f ′iÐ→ Ai

f ′′iÐ→ B[a−1
i ],

where f ′i is étale and f ′′i is an effective epimorphism.

Proof. By assumption, π0(B) is finitely presented over π0(A) which is finitely generated, so if we write π0(A) =
C∞(Rn)/I, then we may write π0(B) as the quotient of C∞(Rn × Rm)/I by some finitely generated ideal J =
(h1, . . . , hl). The π0(B)-module π0(LB/A) is computed as the module of relative smooth Kähler differentials Ω1

π0(B)/π0(A),
which in this case is the quotient of the free π0(B)-module generated by the elements {ddRxi}1≤i≤m, the de Rham
differentials of the coordinate functions on Rm, by the submodule generated by the elements {ddRhj}1≤j≤l. Since

Ω1
π0(B)/π0(A) = 0, the Jacobian matrix { ∂hj

∂xi
}
i,j

must have rank m, so l ≥m. Also, we may conclude that the collection

{ai} of m ×m-minors of the Jacobian generates the unit ideal in π0(B); this follows because the description of the
module of smooth Kähler differentials implies that the ideal generated by the collection of m ×m-minors {ai} is the
0’th Fitting ideal of Ω1

π0(B)/π0(A). Each minor ai is determined by m functions out of the collection {h1, . . . , hl} and we

may assume without loss that ai is determined by the first m functions. Now note that the map π0(A)→ π0(B)[a−1
i ]

factors as

π0(A) ≅ C∞(Rn)/I
r′iÐ→ C∞(Rn ×Rm)[a−1

i ]/(I, h1, . . . , hm)
r′′iÐ→ C∞(Rn ×Rm)[a−1

i ]/(I, J) ≅ π0(B)[a−1
i ].

The second map is a quotient map and thus a surjection. We claim that the first map is étale; observe that we have
localized to the open set U where the the Jacobian matrix of the map (h1, . . . , hm) ∶ Rn × Rm → Rm is invertible;
thus the functions (h1, . . . , hm) are independent, and we have an isomorphism C∞(Rn × Rm)[a−1

i ]/(h1, . . . , hm) ≅
C∞(Z(h1, . . . , hm) ∩ U). Shrinking U if necessary, the implicit function theorem now yields a smooth function
g ∶ Rn ⊃ V → Rm from some open V such that V ≅ Graph(g) = Z(h1, . . . , hm) ∩U . Thus, we have a map of C∞-rings
C∞(Z(h1, . . . , hm) ∩ U) → C∞(V ) that is inverse to the map C∞(V ) → C∞(Z(h1, . . . , hm) ∩ U). After we take the
quotient by the ideal I, we see that r′i is étale. Now we may define Ai via the procedure of proposition 5.1.3.8 from
the map r′′i ∶= π0(A) → C∞(Rn × Rm)[a−1

i ]/(I, h1, . . . , hm) to obtain an étale A-algebra Ai in an essentially unique
way, and since the map B[a−1

i ]→ π0(B)[a−1
i ] is a nilpotent extension, the space of dotted lifts in the diagram

A B[a−1
i ]

Ai π0(B)[a−1
i ]

f ′i

is weakly contractible by proposition 5.1.3.15, so we obtain the desired factorization.
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Remark 5.1.3.21. As the collection {ai} of m×m-minors of the Jacobian in the proof above is finite, it generates a
germ determined ideal. Since the lemma asserts that the collection {ai} generates the unit ideal, it follows that the
admissible morphisms B → B[a−1

i ] determine an admissible covering of B.

Lemma 5.1.3.22. Let f ∶ A → B be an effective epimorphism of simplicial C∞-rings such that the induced map
π0(f) is finitely presented. If π1(LB/A) vanishes, then there exists an element D ∈ π0(A) that becomes invertible in
π0(B) such that the induced map π0(A)[1/D]→ π0(B) is an isomorphism.

Proof. Since f is an effective epimorphism, proposition 5.1.1.1 shows that the relative cotangent complex is 1-
connective, and that there is an isomorphism π0(fib(f)) ⊗π0(A) π0(B) ≅ π1(LB/A). Write I = ker(π0(f)), then
we have a surjection

π0(fib(f))Ð→ I

of π0(A)-modules, and therefore also a surjection

π0(fib(f))⊗π0(A) π0(B)Ð→ I/I2.

It follows that I/I2 = 0 so that I = I2. Since π0(f) is finitely presented, the ideal I is generated by finitely many
elements (g1, . . . , gn), and we may write gi = ∑jKijgj , where Kij ∈ I. Now consider the matrix K with entries Kij ,
and let D ∈ π0(A) denote the determinant of the matrix H ∶ id −K. The matrix H maps to the identity in π0(B)
so that D becomes invertible in π0(B). To see that the canonical map π0(A)[1/D] → π0(B) is an isomorphism, it
suffices to show that a map of C∞-rings π0(A)→ C sends I to zero if and only if it inverts D, which is clear.

Remark 5.1.3.23. When the assumptions of lemma 5.1.3.22 are satisfied, the map π0(A) → π0(B) exhibits a
localization of π0(A) with respect to the element D constructed in the proof as an R-algebra and as a C∞-ring. This
happens, for instance, when SpecRA has multiple connected components, and the map A→ B takes the quotient by
the ideal generated by characteristic functions of some, but not all, of those components.

Remark 5.1.3.24. For the conclusions of lemma 5.1.3.22, it does not suffice to demand that the map π0(LA⊗BA)→
π0(LB) induces an isomorphism. For instance, let A = C∞(R) and take a function g on R such that g and g′ are
zero on R≤0 and nonzero on R>0, then the map A → A/(g) = B is not étale, but does induce an isomorphism
π0(LA ⊗B A)→ π0(LB).

Proof of theorem 5.1.3.17. The fact that an étale map has vanishing quasi-coherent relative cotangent complex is the
content of proposition 5.1.1.17. For the other direction, let f ∶ A→ B be a morphism between fair simplicial C∞-rings
such that LB/A vanishes and π0(f) is finitely presented. Then lemma 5.1.3.20 provides us with an admissible covering
{B → B[1/bi]}i such that each of the induced maps A → B[1/bi] factors as an étale map followed by an effective
epimorphism. Using that the relative cotangent complex vanishes for étale maps, we may replace B by B[1/bi] and
assume that f ∶ A → B is an effective epimorphism. Lemma 5.1.3.22 asserts that the underlying map π0(f) is a
localization. Now it follows from corollary 5.1.1.4 that f is also a localization.

The inverse function theorem is most useful in the case of finitely presented maps between simplicial C∞-rings.
In this case, having the cotangent complex LB/A of f ∶ A→ B vanish at a point x ∶ B → R implies that after localizing
near x, B and A are equivalent, as the following proposition shows.

Proposition 5.1.3.25. Let A be a fair simplicial C∞-ring and let M be an almost perfect A-module.

(1) Suppose that for an R-point x ∶ A → R the R-module M ⊗A R is n-connective. Then there exists some a ∈ π0(A)
such that x(a) ≠ 0 and M ⊗A A[1/a] is n-connective.

(2) Suppose that M is perfect and that for an R-point x ∶ A → R the R-module M ⊗A R is a zero object. Then there
exists some a ∈ π0(A) such that x(a) ≠ 0 and M ⊗A A[1/a] ≃ 0.

Proof. (1) Since M is almost perfect, M is eventually connective, so we only have to treat the case of M connective
and n > 0, the case n = 0 being trivial. Now lemma 5.1.3.9 tells us that if suffices to show that there exists some
a ∈ π0(A) such that M ⊗A π0(A)[1/a] is n-connective. Write M ′ ∶= M ⊗A π0(A), and suppose for the sake of
induction that for some 0 ≤ k < n we have found some a ∈ π0(A) such that x(a) ≠ 0 andM ′

k ∶=M ′⊗π0(A)π0(A)[1/a]
is k-connective. Our goal is to produce an element a′ ∈ π0(A) such that x(a′) ≠ 0 and M ′ ⊗π0(A) π0(A)[1/a′] is
(k + 1)-connective.
M ′
k[−k] is connective, so the torsion spectral sequence yields an isomorphism

π0(M ′
k[−k]⊗π0(A)[1/a] R) ≅ πk(M ′

k)⊗π0(A)[1/a] R,

but clearly, π0(M ′
k[−k] ⊗π0(A)[1/a] R) ≅ πk(M ⊗A R) = 0 by assumption. Because M ′

k is almost perfect and
k-connective, πk(M ′

k) is finitely presented, so if we write π0(A)x for the local C∞-ring of germs at x ∶ A → R,
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then the stalk πk(M ′
k)x is finitely presented over π0(A)x. Since πk(M ′

k)⊗π0(A)[1/a]R is the quotient of πk(M ′
k)x

by the maximal ideal of π0(A)x, it follows from Nakayama’s lemma that πk(M ′
k)x = 0, so there exists some

a′ ∈ π0(A)[1/a] such that x(a′) ≠ 0 and

0 = πk(M ′
k)⊗π0(A)[1/a] π0(A)[1/a′] ≅ πk(M ′ ⊗π0(A) π0(A)[1/a′]),

which completes the induction step. After n steps this procedure yields an element a ∈ π0(A) such that x(a) ≠ 0
and M ′ ⊗π0(A) π0(A)[1/a] is n-connective.

(2) Again, we may suppose that M is connective, and by lemma 5.1.3.9 and the fact that ModA is left complete, it
suffices to show that there exists some a ∈ π0(A) such that M⊗Aπ0(A)[1/a] vanishes. We note that because M is
perfect, we may assume that M has Tor-amplitude in [0, n−1] for some n ≥ 1, so M⊗Aπ0(A) is (n−1)-truncated.
Since M ⊗A R is in particular n-connective, (1) shows that we may find an element a ∈ π0(A) with x(a) ≠ 0 such
that M ⊗A π0(A)[1/a] vanishes, being (n − 1)-truncated and n-connective.

Remark 5.1.3.26. In the previous proof, we use the following fact. Suppose that M is a connective A-module.
Suppose furthermore that M k-connective for some k ∈ Z>0 and almost compact as an object of Mod≥nA for some
0 ≤ n < k, then M is also almost compact as an object of Mod≥kA . This implies that πk(M) is finitely presented which
permits the application of Nakayama’s lemma. Note that although the hypothesis of Nakayama’s lemma would allow
for πk(M) to be finitely generated, it does not suffice that M is merely finitely generated as an object of Mod≥nA ,
since this does not imply that M is finitely generated as an object of Mod≥kA . In general, if M is connective, (1) holds
for a fixed n ≥ 0 provided that M is finitely (n − 2)-presented.

Corollary 5.1.3.27. Let f ∶ SpecB → SpecA be a finitely presented morphism of affine fair derived C∞-schemes,
and suppose that for an R-point x ∶ B → R, the R-module LB/A⊗B R vanishes. Then there exists some b ∈ π0(B) such
that x(b) ≠ 0 and the induced map SpecB[1/b]→ SpecA is étale.

Corollary 5.1.3.28. Let SpecA be an affine derived manifold of finite presentation, and suppose that for an R-point
x ∶ A→ R, the R-module LA ⊗A R is free. Then there exists some a ∈ π0(A) such that x(a) ≠ 0 and SpecA[1/a] is a
manifold.

Proof. The cotangent complex is perfect, so as in the proof of corollary 5.1.1.23, we may choose after localizing near
x, a finite collection {a1, . . . , an} ⊂ π0(A) such that the differentials {ddRa1, . . . , ddRan} form a basis of π0(LA⊗AR) ≃
LA ⊗A R. The elements {ai} determine a map f ∶ SpecA → Rn such that the perfect complex Lf vanishes at x. By
proposition 5.1.3.25, Lf vanishes after localizing on SpecA, rendering f étale by the inverse function theorem.

Corollary 5.1.3.29. Let X ⊂M be a closed subset in a manifold (X can be a manifold with corners, for instance)
then the C∞-ring of Whitney functions C∞(X;M) is not finitely presented in C∞ring.

Proof. If C∞(X;M) were finitely presented in C∞ring, then C∞(X;M) would be finitely presented in sC∞ring, since
LM is perfect. Because LM is projective, corollary 5.1.3.28 would imply that M is a manifold, a contradiction.

Remark 5.1.3.30. We say that a point x in (X,OX), a derived manifold locally of finite presentation, is smooth
if x∗LX is free, which is the case if and only if the dimension of π0(x∗LX) coincides with the virtual dimension of
(X,OX) near the point x. In view of the previous corollary, the smooth locus (the collection of all smooth points) of
a derived manifold locally of finite presentation (X,OX) is open and forms a manifold, which is all of X if and only
if LX is locally free. In particular, if (X,OX) = SpecA is affine, the fact that open sets of X are in bijection with
localizations of A shows that we may choose an element χSm ∈ A whose localization corresponds to the smooth locus.
Of course, this characteristic function for the smooth locus need not be nonzero. Conversely, χSm is invertible if and
only if LA is projective.

Remark 5.1.3.31. Proposition 5.1.3.25 is quite powerful in a variety of situations. For instance, it can be used to
easily check nondegeneracy of shifted presymplectic structures on Artin stacks locally of finite presentation. In the
study of elliptic moduli problems, proposition 5.1.3.25 allows one to reduce a number of local questions on moduli
stacks (Is a given map between moduli stack étale? When is the quotient of the derived manifold of solutions of
a certain PDE by a Lie group -which is a priori a derived Artin stack- actually a derived orbifold?) to pointwise
questions, which are often easy to handle by linear elliptic theory. In other approaches to moduli spaces of elliptic
equations that do not develop the geometry of the unperturbed derived moduli stacks, such questions usually have
to resolved before passing to the finite dimensional moduli spaces, which may involve heavier infinite dimensional
analysis.

Proposition 5.1.3.32. Let f ∶ A→ B be a morphism of fair simplicial C∞-ring such that π0(f) is finitely presented.
Then f is submersive if and only if f is formally submersive.
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Proof. Suppose that f is submersive; we wish to show that the perfect B-module LB/A is projective, or equivalently,
flat. This is local on SpecB, so we may assume after localizing on A and B that f is the canonical inclusion
A → A ⊗∞ C∞(Rn) for some n ≥ 0. Point (2) of remark 5.1.0.4 shows that LB/A ≃ g!LC∞(Rn) where g is the map
g ∶ C∞(Rn)→ A⊗∞ C∞(Rn). Thus, LB/A is finitely generated and free.
Conversely, suppose that f is formally submersive. The map π0(f) is finitely presented, so after localizing on A and
B, we may assume that LB/A is free and finitely generated. In particular, the module of relative smooth Kähler
differentials Ω1

π0(B)/π0(A) is a free π0(B)-module, say of rank k. We have an exact sequence

Ω1
π0(A) ⊗π0(A) π0(B)Ð→ Ω1

π0(B)

pÐ→ Ω1
π0(B)/π0(A)

where the map p admits a section s because Ω1
π0(B)/π0(A) is free. Choosing an isomorphism Ω1

π0(B)/π0(A) ≅ π0(B)k,

let {b1, . . . , bk} be the images under s of the canonical generators of π0(B)k. Choose a finite set of differentials
{ddRai}1≤i≤m with m ≥ k that generate Ω1

π0(B) and consider the matrix K whose entries are defined by the equation
bj = ∑iKijddRai. The collection of k × k-minors of this matrix coincides with the 0’th fitting ideal associated to the
presentation

π0(B)m KÐ→ π0(B)k Ð→ 0,

and therefore generates the unit ideal of π0(B) by the Fitting ideal lemma; thus, after replacing B by a localization,
we may assume that there are k functions {ai}1≤i≤k ⊂ π0(B) such that the differentials {ddRai} become generators
for Ω1

π0(B)/π0(A) after applying the map p. These functions determine a map A⊗∞ C∞(Rk)→ B so that point (1) of
remark 5.1.0.4 provides a fibre sequence

LA⊗∞C∞(Rk)/A ⊗A⊗∞C∞(Rk) B Ð→ LB/A Ð→ LB/A⊗∞C∞(Rk),

and using point (2) of remark 5.1.0.4 we can identify the first map in this fibre sequence with the map Bk → LB/A

determined by the differentials ddRai. This map is an equivalence by construction, which shows that LB/A⊗∞C∞(Rk)
vanishes. Now we conclude by invoking theorem 5.1.3.17.

Corollary 5.1.3.33. Let f ∶ SpecB → SpecA be a finitely presented morphism of affine fair derived C∞-schemes,
and suppose that for an R-point x ∶ B → R, the R-module LB/A ⊗A R is free. Then there exists some b ∈ π0(B) such
that x(b) ≠ 0 and the induced map SpecB[1/b]→ SpecA is submersive.

Proof. In view of proposition 5.1.3.32, it suffices to show at after localizing near x, the relative cotangent complex is
free. Using Nakayama’s lemma, we may choose after localizing near x a finitely generated free B-module N and a
map g ∶ N → LB/A such that the base change fib(g)⊗B R along x ∶ R→ B vanishes. Since fib(g) is a perfect complex,
proposition 5.1.3.25 implies that g becomes an equivalence after localizing near x once more.

Corollary 5.1.3.34. An affine derived manifold SpecA is a manifold if and only if LA is a projective A-module.

Corollary 5.1.3.35. An affine derived closed C∞-scheme is of the form SpecA for A a C∞-ring of Whitney
functions if and only if LA is a projective A-module.

Corollary 5.1.3.36. Let Y ⊂ Rm be a closed subset, viewed as a C∞-scheme equipped with the sheaf C∞
Rn/m∞

Y ∣Y .
Then for any affine derived C∞-scheme (X,OX) and any morphism (X,τ≤0OX) → N of C∞-schemes, there exists
an extension (X,OX)→ N fitting into a commuting diagram

(X,τ≤0OX) Y

(X,OX)

Proof. This is a reformulation of propositions 5.1.3.32 and 5.1.3.15 for the map R→ C∞(Y ;Rm).
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