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Chapter 1

Introduction

The problem in deformation quantization is to find an associative product,
called a ∗-product on C∞(M)[[t]], the space of formal power series in func-
tions on a manifold M, which is a deformation of the ordinary product
of functions, such that its commutator is a deformation of a given Poisson
bracket. For a general Poisson manifold existence is solved by Kontsevich’s
formality theorem. However, in the symplectic case there are more explicit
constructions available due to Fedosov ([6]). Moreover, there might be addi-
tional structure that one wishes to quantize, for instance a G-action induced
by a Hamiltonian map. One class of such examples arises from considering
coadjoint orbits of a Lie algebra, which is what we will be mainly concerned
about in this thesis. Also, any ∗-product possesses a canonical trace, that
is a cyclic linear functional with values in Laurent series. The Fedosov-
Nest-Tsygan index formula relates this trace to characteristic classes of the
∗-product and the underlying symplectic manifold. The goal of this thesis
is to find a representation theoretic formula for the terms appearing in the
case of a semi-simple coadjoint orbit.

In chapter 2, the basic notions of deformation quantization are recalled, to-
gether with some motivating examples. Chapter 3 is a quick summary of
Fedosov’s construction, together with some generalities about equivalences,
and a variation to Fedosov’s construction described in [2]. Then in chapter
4, the general theory is applied to the special case of a coadjoint orbit.

At this point, I would like to thank Prof. Damien Calaque for his patience
and all the interesting discussions we had.
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Chapter 2

Preliminaries

2.1 Deformation Quantization Problem

In the following let (M, ω) denote a symplectic manifold and {·, ·} the asso-
ciated Poisson structure.

Definition 2.1 (∗-Product) A ∗-product on M is an associative product on A :=
C∞(M)[[t]] which is t-linear and of the form

f ∗ g = f g + tB1( f , g) + t2B2( f , g) + · · · , where f , g ∈ C∞(M)

where

• The Bi are bidifferential operators.

• The constant function 1 is still the unit in (A, ∗) turning it into a unital
associative algebra.

Any ∗-product defines a Poisson structure on the underlying manifold by
means of its commutator

{ f , g} :=
1
t
[ f , g]∗ |t=0 = B1( f , g)− B1(g, f ), for f , g ∈ C∞(M)

A ∗-product on a given symlectic manifold (M, ω), such that the Poisson
structure induced by the ∗-product and the one induced by the symplectic
form coincide, is called a deformation quantization of (M, ω). It follows
from the definition of a ∗-product that B1 is thus always of order 1.

2.2 Polarized Deformation Quantization

A polarization of the symplectic manifold (M, ω) is an integrable Lagrangian
subbundle P of the complexified tangent bundle TCM. Let O denote the
sheaf of functions locally constant along P, it is in particular a subsheaf of
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2. Preliminaries

C∞, the sheaf of infinitely differentiable functions on M, where the Poisson
bracket vanishes. The corresponding quantized structure is roughly speak-
ing a ∗-product together with a deformation of O that is a commutative
subalgebra of (A, ∗). More precisely

Definition 2.2 A quantization of a polarized symplectic manifold (M, ω, P) is a
pair (A,O) sucht that

• A is a quantization of (M, ω).

• O is a commutative subsheaf ofA that comprises of functions vanishing along
a deformation P of P. That is, P is a locally free C∞[[t]]-module, such that
P0 = P and O the functions f ∈ A such that d f |P = 0.

2.3 Quantum Momentum Maps

2.3.1 Classical Momentum Maps

Assume that (M, ω) admits a Lie group G of symmetries. Taking differen-
tials this induces a map ρ : g→ X (M, ω) = {vector fields on M preserving ω }
of Lie algebras. Moreover, there is an exact sequence of Lie algebras.

0 → R → (C∞(M), {, ·, ·}) → X (M, ω) → H1(M, R) → 0
f 7→ { f , ·}

Definition 2.3 A lift of ρ to a Lie algebra map

µ : g→ C∞(M)

is called a momentum map.

Equivalently µ can also be defined as a map M → g∗ such that for µξ ∈
C∞(M), µξ(x) = 〈µ(x), ξ〉 the following holds{

µξ , µη

}
= µ[ξ,η] , for ξ, η ∈ g

and that the Hamiltonian vector fields Xµξ
, ξ ∈ g integrate to a G-action.

Remark 2.4 For connected manifolds such that H1(M) = 0 there is a well-defined
obstruction class νρ ∈ H2(g, R) to the existence of such a lift. Equivalence classes
of such lifts are controlled by H1(g, R). In particular, if we further assume that g is
semi-simple, there is always a unique lift.

2.3.2 Quantum Momentum Maps

Let now A = (C∞(M)[[t]], ∗) be a deformation quantization of (M, ω) that
is invariant under G, that is

(g · f ) ∗ (g · h) = g · ( f ∗ h) , where g ∈ G and f , h ∈ C∞(M)[[t]].
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2.3. Quantum Momentum Maps

In other words, there exists a group homomorphism from G to Aut(A), the
group of algebra automorphisms. Again taking derivatives yields a map

ρ : g→ Der(A), X 7→ LX.

Analogously to the classical case there is a map

1
t
A → DerA,

1
t
7→ 1

t
ad∗ f =

1
t
[ f , ·]∗

where DerA denotes the Lie algebra of t-linear derivations on A.

Lemma 2.5 Under the assumption that H1(M, R) = 0 and M is connected the
following sequence is exact

0 −→ R[[t]] −→ 1
t
A −→ DerA −→ 0

and a similar remark as in the classical case applies.

Proof Let ϕ = tk ϕ0 + tk+1ϕ1 + · · · ∈ DerA be a derivation on (A). In partic-
ular, looking at lowest order terms yields that ϕ0 is a derivation on C∞(M)
and hence a vectorfield. Furthermore, ϕ is also a derivation on the Lie
algebra (A, 1

t [·, ·]∗). Looking at lowest order terms one sees, that ϕ0 is a
derivation of the Poisson-bracket and hence a symplectic vector field. By
assumption, any symplectic vector field is Hamiltonian, and hence there
is a function f ∈ C∞(M) such that ϕ0 = { f , ·} =

[ 1
t f , ·

]
|t=0. Now set

ϕ′ = ϕ−
[ 1

t tk f , ·
]

whose lowest order term is now of order k + 1. Now the
claim follows by induction and taking the limit. �

Definition 2.6 A quantum momentum map is a lift of ρ to a map

µt : g→ A : ξ 7→ fξ

such that the composition g
µt→ A

1
t→ 1

tA is a homomorphism of Lie algebras. In
other words, that

f[ξ,η] =
1
t
[

fξ , fη

]
∗

In order to get a map into the Lie algebraAwe need to change the bracket on
g. In particular, define gt = g[[t]] as a k[[t]]-module and define the deformed
Lie bracket by

[X, Y]t = t [X, Y]g for X, Y ∈ g ⊂ gh̄

and extend linearly in t.

With this notation we can reformulate the above definition to

5



2. Preliminaries

Definition 2.7 A quantum momentum map is a map of algebras µh̄ : Ugh̄ → A
such that

LX f =
1
t

adµh̄(X), X ∈ g, f ∈ A.

Setting t = 0 we see that such a quantum momentum map induces a classi-

cal momentum map g→ 1
tA

t=0→ (C∞(M), {·, ·}).

Definition 2.8 A quantum momentum map µh̄ is called strong if µh̄(X) ∈ C∞(M) ⊂
A, and thus

[µh̄(X), ·]∗ = t{µh̄(X), ·}.

In other words, that the classical and the quantum momentum map coincide.

2.4 Examples

2.4.1 Moyal-Weyl Product

Let (V, ω) be a symplectic vector space and let Π = ωij ∂
∂xi ⊗ ∂

∂xj ∈ V ⊗V ⊂
SV[[t]]⊗ SV[[t]] denote the associated Poisson bi-vector. Define a product
on C∞(V)[[t]] as follows

f ∗ g = me
t
2 Π( f ⊗ g) = ∑

n

1
n!

(
t
2

)n

ωi1 j1 · · ·ωin jn ∂n f
∂xi1 · · · ∂xi1

∂ng
∂xj1 · · · ∂xjn

where m denotes the multiplication of functions. This product is associative
since

f ∗ (g ∗ h) = me
t
2 Π( f ⊗me

t
2 Π(g⊗ h))

= m(1⊗m)((1⊗ ∆)e
t
2 Π)(1⊗ e

t
2 Π)( f ⊗ g⊗ h)

= m(1⊗m)e
t
2 Π1,2+

t
2 Π1,2 e

t
2 Π2,3( f ⊗ g⊗ h)

= m(1⊗m)e
t
2 Π1,3+

t
2 Π2,3 e

t
2 Π1,2( f ⊗ g⊗ h)

= m(1⊗m)((∆⊗ 1)e
t
2 Π)(e

t
2 Π ⊗ 1)( f ⊗ g⊗ h)

= me
t
2 Πm(e

t
2 Π f ⊗ g)⊗ h

= ( f ∗ g) ∗ h

where we used Dm = m(∆D) for a differential operator D, and where ∆
denotes the usual coproduct on SV, and ∆ex = e∆x.

It follows that this product defines a deformation quantization of (V, ω).

Remark 2.9 For f , g linear functions we have f ∗ g = f g + t
2 { f , g}.

Alternatively, the inclusion W := V∗ ⊕ k ↪→ C∞(V) turns W into a Lie alge-
bra. Namely, the central extension of the trivial Lie algebra V∗ by the cocycle
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2.4. Examples

c(X, Y) = {X, Y} ∈ k. Multiplying c by t we get a new Lie algebra structure
on W[[t]] = Wt. Moreover, the canonical map Wt → C∞(V)[[t]] is a map of
Lie algebras and further induces a map

UWt → C∞(V)[[t]]

that completely determines the ∗-product.

2.4.2 Cotangent bundles

Let (T∗M, dλ) be a cotangent bundle and let Diff(M) denote the algebra of
differential operators. Moreover, define

Diffh̄(M) = 〈OM, TM〉 /I

where the OM denotes the algebra of function on M and the ideal I is gen-
erated by

f ⊗ g = f g
f ⊗ X = f X

X⊗ f − f ⊗ X = tX( f )
X⊗Y−Y⊗ X = t [X, Y]

where f , g ∈ OM and X, Y are vectorfields on M. These relations are actually
the same as the ones coming from the deformed Poisson structure following
from

Lemma 2.10 Let f , g ∈ OM be viewed as functions on T∗M constant along the
fibers and let X, Y ∈ X (M) be vectorfields on M viewed as linear functions on
T∗M. Then

{ f , g} = 0
{ f , X} = X( f )
{X, Y} = [X, Y].

Furthermore, the symplectic transformation generated by the Hamiltonian vector
fields are given by translation by d f in the case of a function, and by the pushforward
of covectors via exp(εX) in the case of X.

Moreover, Diffh̄(M) is isomorphic to the Rees algebra of Diff(M) via

Diffh̄(M) → Rees Diff(M)

f 7→ f · 1
X 7→ X · t

7



2. Preliminaries

Now pick a torsionfree connection on M and use it to define a bijection
from the algebra of functions on T∗M which are polynomial along the fiber
to Diffh̄(M)

S(TM)[[t]] → Rees(Diff(M))

X1 · · ·Xn 7→ ( f 7→ tn∇n
X1,··· ,Xn

f )

This defines a deformed product on the space of functions that are polyno-
mial when restricted to a fiber. To show that this extends to a ∗-product,
namely that the product is given by bidifferential operators, it suffices to
show that at every point the product is continuous with respect to the topol-
ogy induces by the vanishing ideal. However, away from the zero-section,
where it follows from the grading that is respected, this is hard to show. One
aproach to show that it indeed defines a ∗-product, which is carried out in
[10], is to extend the map to pseudo-differential operators, and then show
that there is a complete symbol calculus.
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Chapter 3

Existence Results

3.1 Fedosov Quantization

In this chapter we describe Fedosov’s [6] construction for a quantization of a
symplectic manifold. The idea is roughly the following. If our manifold ad-
mitted Darboux charts where the transition maps are just affine symplectic
transformations, then we could use the standard Weyl algebra as a deforma-
tion since it is invariant under affine symplectic transformations. However,
in general symplectic manifolds are not of that simple structure and we have
to make the charts infinitesimally small and then use a connection to patch
them together.

Let now W = C[[x1, · · · , x2n, t]] denote the (completed) Weyl algebra as
constructed above where (x1, · · · , x2n) is a dual basis of the symplectic vec-
tor space (V, ω0). Assign furthermore degrees, such that deg(t) = 2 and
deg(xi) = 1, and thusly turning W into the completion of a graded algebra.
The symplectic group Sp(2n) = Sp(V, ω0) acts on W. Taking derivatives we
get a map of Lie algebras

ρ : sp(2n)→ Der(W)

which admits a lift along
1
t

W ad→ Der(W)

whose image is given by quadratic elements in W. Considering W as func-
tions on V with valus in C[[t]], the exterior derivative defines a derivation of

degree 1, that is a map W⊗Λ• d→W⊗Λ•, also given by d = 1
t ad∗(dxiω

ij
0 xj),

and a corresponding homotopy inverse d−1. Together they define a projec-
tion σ := id−

(
dd−1 + d−1d

)
: W → C[[t]]. Moreover, all those maps respect

the Sp(2n) structure.

Let now (M, ω) be a symplectic manifold. Now we want to attach all this
structure at every point of our manifold, using that the tangent space is

9



3. Existence Results

naturally a symplectic vector space. More precisely, let P denote the Sp(2n)-
principal bundle of symplectic frames in TM. Define the Weyl algebra bun-
dle as the following associated bundle

W = P×Sp(2n) W.

And the corresponding Fedosov algebra as W = W ⊗ Λ•. The operations
d, d−1, σ induce pointwise operations on W which we denote by δ, δ−1, σ
satisfying the following properties:

• δ2 = (δ−1)2 = 0

• δ defines a derivation on W

• σ = id−
(
δδ−1 + δ−1δ

)
Next, we want to describe connections on W . Originating from an Sp(2n)-
pricipal bundle, any principal connection on P induces a connection on W
via extension of structure group along Sp(2n)→ Aut(W) followed by taking
the associated covariant derivative on the Aut(W)-representation W. Owing
to the surjectivity of (3.1) such a connection can be represented locally by
section of 1

tW . More precisely, let ∂ be a symplectic connection on (M, ω).
Locally it is defined by a connection 1-form

α = Γi
jkdxj ⊗ ∂i ⊗ dxk

the associated Aut(W)-connection can then be represented by the connection
1-form

α̃ =
1
2

1
t

ωliΓi
jkxlxjdxk.

More precisely, we used the homomorphism

ρ : sp(2n)→ 1
t
{quadratic functions} ∈ 1

t
W (3.1)

to get a connection 1-form with values in the Lie algebra 1
t W. Since ρ is an

Sp(2n)-invariant homomorphism of Lie algebras one can define connections
with values in 1

t W via the usual local formulas. In particular, they induce
Aut(W)-connections. Now, any two 1

t W-connections differs by a section 1
t γ

of 1
tW .

Remark 3.1 Since ad is not injective, an addition of a section of T∗M[[t]] yields
the same Aut(W)-connection.

Let now ∂̃ denote the 1
tW-connection constructed above and consider

D̃ = ∂̃ +
1
t

γ

10



3.1. Fedosov Quantization

with associated covariant derivative onW

Da = ∂a +
1
t
[γ, a] , for a a section of W

The curvature is then given by the following 2-form with values in 1
tW

Ω = R + ∂γ +
1
t

γ2︸︷︷︸
1
2 [γ,γ]

and the corresponding curvature of D is then

D2 =
1
t
[Ω, ·]

Definition 3.2 A 1
tW-connection is called abelian if its corresponding covariant

derivative is flat, that is if and only if Ω is a central form.

By the second Bianchi identity DΩ = 0, which reduces to Ω being closed
2-form in the abelian case.

Theorem 3.3 (Fedosov) Let ∂ be a torsionfree symplectic connection and let ν ∈
Z2(M)[[t]] be a sequence of closed 2-forms. Then there exists an abelian connection
of the form

D = ∂− δ +
1
t
[r, ·]

for some r ∈ W ⊗Λ1 such that its curvature is given by −ω + tν. Furthermore, r
can be chosen uniquely such that δ−1r = 0 and such that it only contains terms of
degree more than 2.

Remark 3.4 By looking at the local transformation formula for a connection, one
notices that a 1

t W-connection transforms as a tensor up to a term in the image of ρ.
In particular, it makes sense to talk about the linear term. If it conincides with −δ
and the connections is furthermore abelian it is called a Fedosov connection.

Proof (sketch) The curvature of D is given by

Ω = R + ∂r +
1
t

r2 − δr−ω.

By assumption we have δ−1δr = r. Thus our prospective r satisfies

r = δ−1(R− tν) + δ−1(∂r +
1
t

r2), (3.2)

which can now be solved by the iteration method. �

Using such an abelian connection we can now construct a ∗-product.

11



3. Existence Results

Theorem 3.5 (Fedosov) LetWD denote the flat sections ofW . Then

i) WD is a subalgebra ofW .

ii) σ = id−(δδ−1 + δ−1δ) gives a 1-to-1 correspondence betweenWD and C∞(M)[[t]].

iii) σ induces a ∗-product on (M, ω)

Proof i) Follows from the fact that D is a derivation onW

ii) Given a function f ∈ C∞(M)[[t]] we want to construct a flat section
a ∈ W such that σ(a) = f . From Da = 0 it follows that

δa = ∂a +
1
t
[r, a] .

using the definition of σ and that δ−1a = 0 since it has no ”form” terms,
we get

a = σ(a) + δ−1(∂a +
1
t
[r, a]),

which is again an equation we can solve by the iteration method.

iii) Doing the first two iterations of solving the above equation we get

a = f + ∂i f xi +
1
2

∂i∂j f xixj + terms of degree ≥ 3.

From this is follows that the Poisson structure induced by the ∗-product
coincides with the one coming from ω. �

3.2 Obstruction Theory

In this section we introduce the main object controlling differentiable prod-
ucts, (infinitesimal) deformations and equivalences thereof, namely the Ger-
stenhaber algebra of (local) Hochschild cochains (see [3] for more details).
Let A denote the algebra (or sheaf of algebras) of C∞-functions on a Poisson
manifold (M, {·, ·}). Define the vector spaces

Ck(A) := Homdiff(A⊗k, A)

= {ϕ : A× · · · × A︸ ︷︷ ︸
k

7→ A| ϕ is a differential operator}.

Equivalently, we could ask that the maps ϕ be maps of sheaves, which im-
plies by Peetre’s theorem that they be differential operator. For f ∈ Ck(A)
and g ∈ Cl(A) we define the brace product

f {g}(x1, · · · , xk+l−1) :=

∑(−1)(i−1)(l−1) f (x1, · · · , xi−1, g(xi, · · · , xi+l−1), xi+l , · · · , xi+l−1)

12



3.2. Obstruction Theory

and finally the Gerstenhaber bracket

[ f , g] := f {g} − (−1)(k−1)(l−1)g{ f }.

Any differentiable product on A is given by an element µ ∈ C2(A), which
satisfies associativity if and only if

2µ{µ} = [µ, µ] = 0.

Theorem 3.6 The Gerstenhaber bracket satisfies the graded Jacobi identity with the
grading shifted by 1.

This implies in particular that any associative product µ induces a differen-
tial on C•(A), turning it into the Hochschild complex for the algebra (A, µ).

Now, assume that µ and µ′ are ∗-products on M and we try to show that they
are equivalent. For simplicity, assume that they agree up to order (k− 1) ≥ 1.
Namely,

µ′ = µ + tkB + O(tk+1).

By associativity we get

0 = [µ′, µ′]

= tk2[µ, B] + O(t2k)

In particular, looking at the two lowest order terms we get

[m, B] = 0
[Π, B] = 0

where m, Π denote ordinary multiplication and the Poisson tensor, respec-
tively.

We try to find F ∈ C1(A)[[t]]tl such that

µ′( f , g) = µ1+F( f , g)
:= (1 + F)−1µ((1 + F) f , (1 + F)g)
= µ + [µ, F] + O(t2l). (3.3)

Thus we can easily add (that is by applying an equivalence) to B any cobound-
ary in the complex (C•(A), d = [m, ·]), that is the ordinary (differential)
Hochschild cohomology of C∞(M). Its computation goes back to [11] and is
given by

Proposition 3.7 Let ϕ ∈ Ck(A) be a Hochschild cocycle (i.e. [m, ϕ] = 0), then
there exists ϕ′ ∈ Ck−1(A) and a polyvector field τ such that

ϕ( f1, · · · , fk) = [m, ϕ′]( f1, · · · , fk) + τ(d f1, · · · , d fk).

This identifies HH(A, A) with Γ(Λ•(TM)). Moroever, the Poisson tensor Π in-
duces a derivation on HH(A, A).

13



3. Existence Results

Using this proposition we can assume that B is in fact a bivector field. Look-
ing again at equation (3.3) an equivalence of the form

1 + tk−1F

for an F such that [m, F] = 0, changes B by [Π, F].

Thus the first obstruction to this equivalence problem lies in the second
cohomology of the complex

(Γ(Λ•(TM)), d = [Π, ·])

which is called Poisson cohomology. In the symplectic case, polyvector-
fields can be identified with differential forms, and the Poisson differential
goes over to the ordinary exterior derivative on forms. All in all we get the
following

Proposition 3.8 Assume that H2(M; C) = 0. Then all ∗-products are equivalent.
In particular, all ∗-products are locally equivalent.

3.3 Classification

Using local equivalence and given one ∗-product A any other ∗-product
can be described by these local equivalences, and its equivalence class is
then uniquely defined by the corresponding 1-Čech cohomology class with
values in the sheaf AutA. Here, we take automorphisms to be differential
operators equal to the identity (mod t).

In more abstract terms, local equivalence shows that we have a gerbe of
∗-products over our manifold. And by Fedosov’s existence result we get
a global section A. In this case global sections (up to equivalence) are in
one-to-one correspondence with

Ȟ1(M, Hom(A,A)).

Since, the automorphisms considered here are equal to the identity (mod t),
this automorphism group is pro-unipotent. Hence, any automorhism can
be written as exp(ϕ) for a nilpotent derivation of A. Moreover, Lemma
2.5 shows that locally, any such derivation is inner. Therefore, we get the
following short exact sequence of sheaves of groups (and central extension)

0 −→ R[[t]] −→ A −→ AutA −→ 1

where A is equipped with the group structure given by the Campbell-Baker-
Hausdorff formula. This induces a boundary morphism in non-abelian co-
homology

Ȟ1(M, Aut(A))→ H2(M, R[[t]]).

14



3.4. Canonical Trace

In ordinary (abelian) cohomology it would follow that this is an isomor-
phism since A is soft being isomorphic to C∞[[t]] (only as sheaf in set) and
therefore acyclic. However, one can check (see [4]) that this is still true in
general.

Since Fedosov’s construction gives us indeed a canonical class of ∗-products,
namely the ones with curvature Ω = −ω, the dependence here being the
choice of symplectic connection, we get the following

Proposition 3.9 Equivalence classes of ∗-products on a symplectic manifold (M, ω)
are in 1-to-1 correspondence with

H2(M, R[[t]])

A similar picture emerges for ∗-products constructed by Fedosov’s method.
Namely, the pro-unipotent group

exp(F1(
1
t
W)),

where F1 denotes elements with terms of positive degree, acts on Fedosov-
connections. In [6] it is moreover shown, that the curvature defines a bijec-
tion between the resulting coset space and −ω + tH2(M)[[t]].

Using this [4] shows that the two classifications coincide.

Theorem 3.10 The equivalence class θ(A) of a Fedosov ∗-product with Fedosov
connection D is given by the cohomology class of its curvature via

θA = −1
t
[ΩD].

Furthermore, any ∗-product is equivalent to a Fedosov ∗-product.

3.4 Canonical Trace

On W, the Moyal-Weyl quantization of R2n, one can define the following
linear functional

Tr(a) =
1

(2πt)n

∫
a

ωn

n!
, for a ∈ C∞

c (R2n)[[t]]. (3.4)

It is easily checked to vanish on cummutators, and is unique upto normal-
ization with this property. This functional is hence calle the trace. Since all
*-products are locally equivalent to a Moyal-Weyl product, one can extends
this definition to global functions with compact support as long as it is in-
variant under autoequivalences of the Moyal-Weyl product. This follows
from the following
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3. Existence Results

Lemma 3.11 Let (W, BCH) denote the group induced by the pro-nilpotent Lie
algebra (W, [·, ·]∗) via the Baker-Campbell-Hausdorff formula and Aut+(W) the
group of autoequivalences of the ∗-product (= 1 mod t). Then the following map is
onto

(W, BCH) −→ Aut+(W)

f 7→ exp([ f , ·]∗)

Definition 3.12 The unique linear functional Tr : Ac → C((t)) that vanishes on
commutators and is locally given by (3.4) is called the canonical trace.

With this definition we can now cite the Fedosov-Nest-Tsygan theorem (see
[6], [8]).

Theorem 3.13 Let (A, ∗) be a deformation quantization of a compact symplectic
manifold (M, ω) with characteristic class θ, then

Tr(1) =
∫

M
e

θ
2π Â(TM, ω), (3.5)

where Â is the multiplicative genus induced by the power series
(

z/2
sinh(z/2)

) 1
2 , that

is

Â(TM, ω) = det
1
2

R/2
sinh(R/2)

for the curvature R of a symplectic connection on TM.

3.5 Polarized Fedosov Quantization

Following [2] there is the following variation of Fedosov’s approach if (M, ω)
admits a polarization. In the following let L ⊂ TCM be a Langrangian sub-
bundle of the complexified tangent bundle. In particular this induces a
reduction of structure group of the symplectic frame bundle to

Sp(2n, n) := {A ∈ Sp(2n)| A(Cn × {0}) ⊂ Cn × {0}}.

In this case there is a lift of the natural representation on W different from
(3.1). More precisely let pi, qi be canonical generator of W, then define

ρ0 : sp(2n, n) → 1
t

W

A 7→ 1
t ∑

i,j
(ω(qi, Apj)pi ∗ qj +

1
2

ω(qj, Aqi)pi ∗ qj)

= ρ(A) +
1
2 ∑

i
ω(Api, qi)
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3.5. Polarized Fedosov Quantization

Moreover the right ideal generated by the pi induces a filtration FL
•W on W,

and the image of ρ0 lies in FL
1 W. In analogue to the non-polarized case we

can define an operator d−1
L different from the d−1 that preserves this filtra-

tion (the d already does this). This also changes the definition of σL which
now annihilates everything with positive filtration. Again, we consider the
Fedosov algebra W which has now an additional filtration that is preserved
by the natural operations. The notion of a 1

t Wρ0-connection depends on ρ0
and therefore differs. Since the space of such connections is still an affine
space over sections of 1

tW ⊗Λ1, we can relate those two notions once a tor-
sionfree symplectic connection is fixed. The resulting covariant derivative
coincides in either case. Analogously one can define 1

t FL
1 Wρ0-connections.

Definition 3.14 A polarized Fedosov connection D̃ is a 1
t Wρ0-connection that

is abelian, is Fedosov (that is its linear term is given by −δ), and such that D̃ + δ
is a 1

t FL
1 Wρ0-connection.

Such a connection again induces a ∗-product. Let OL denote the algebra of
functions constant along L.

Proposition 3.15 The ∗-product induced by a polarized Fedosov connection satis-
fies the semi-separation of variables condition

f ∗ g = f g, for f ∈ OL, g ∈ C∞[[t]]

and is therefore polarized.

Proof (sketch following [2]) The usual iteration method yields that for f ∈
OL

σ−1
L ( f ) = f + f̂ ,

where f̂ ∈ FL
1 (W). And so for any g

f ∗ g = σL(( f + f̂ )σ−1
L (g))

= σL( f σ−1
L (g))

= f g. �

To get such a connection in question, equation 3.2 is used, where the δ−1 is
replaced by the polarized version, and the R which was to be interpreted
as ρ(R′) where R′ is the curvature 2-form for a torsionfree sysmplecic con-
nection, is now ρ0(R′). A sufficient condition for the resulting r to define a
polarized Fedosov connection, that is r ∈ FL

1 (
1
tW), is that ν = 0 in (3.2) and

the symplectic connection is polarized. The latter one can be interpreted as
a kind of integrability condition. Its existence in particular follows from the
following definition, where we use the same terminology as in [2].

Definition 3.16 A Lagrangian subbundle L is called a good polarization if lo-
cally there exists functions a1, · · · , an and f1, · · · , fn such that

17



3. Existence Results

• The Hamiltonian vector fields Xai form a local basis in L.

• This basis is completed by the Hamiltonian vector fields X fi .

• All the Xai , X fi commute pairwise.

In this local basis the canonical flat connection is a torsionfree sp(2n, n)-
connection. One can patch these together to a global connection. Now the
above discussion implies

Proposition 3.17 For a good polarization L there exists a polarized Fedosov con-
nection with curvature −ω.

To relate the resulting ∗-product to one in the unpolarized construction, we
use that for a fixed connection we can assign a 1

t Wρ-connection D̄ that in-
duces the same covariant derivative and has thusly the same subalgebra of
flat sections. Moreover, its curvature differs by ρ(R′)− ρ0(R′), whose coho-
mology class can be shown (see [2] Proposition 2.7) to be t 1

t c1(L), i.e. the
first Chern class of L. The last difference is the change of the projection σL to
σ, but since the underlying algebra is the same, both constructions will yield
equivalent ∗-products. In conclusion, we get that the constructed polarized
∗-product has characteristic class

1
t

ω +
1
2

c1(P).

3.6 Characteristic class of a polarized ∗-product

We cite a result from [2] which helps to compute the characteristic class
of a polarized ∗-product. Let (M, ω, L) be a symplectic manifold with La-
grangian subbundle. For the result in this section we assume the following
integrability condition, which in particular implies that L defines a good
polarization.

Definition 3.18 The complex subbundle L is called integrable if either L is analytic
or the following three conditions hold.

• L is involutive.

• L ∩ L̄ has constant rank.

• L + L̄ is involutive.

Let (A, ∗) be a polarized ∗-product. Then define the following objects.

O := { f ∈ C∞[[t]]| d f |L = 0},

F (O) := { f ∈ A| 1
t
[ f ,O]∗ ∈ O},

TO := HomO(Ω1
O/C,O).

Now [2] shows the following.

18



3.6. Characteristic class of a polarized ∗-product

Proposition 3.19 The sequence

0 −→ O −→ F (O) −→ TO −→ 0

is a locally split exact sequence of locally free O-modules and Lie algebras. Locally
(in a neighborhood U) there exists functions a1, · · · , an ∈ O ∩ C∞ and pairwise
commuting f1, · · · , fn ∈ A such that

• dai form a basis in L⊥.

• 1
t [ai, f j] = δij.

• 1, f1, · · · , fn form a local O-module basis of F (O).

• The map

F (O)|U →
n⊕

i=1

O|U

g 7→ (
1
t
[g, a1], · · · ,

1
t
[g, an])

descends to a local isomorphism of O-modules on TO.

Such a local splitting then forms a Čech-1-cocycle with values in Ω1,cl
O and via

the boundary homomorphism in cohomology of the short exact sequence

0 −→ C[[t]] −→ O −→ Ω1,cl
O −→ 0

it defines a characteristic class

cl(A,O) ∈ H2(M, C[[t]]).

Now we can cite one of the main results (Theorem 4.6) of [2]

Theorem 3.20

θ(A) = 1
t

cl(A,O)− 1
2

c1(L)
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Chapter 4

Quantization of Coadjoint Orbits

4.1 Classical structure

Let g be a Lie algebra and consider its dual g∗. The dual of the Lie bracket
is then a map g∗ → g∗

∧
g∗, which can be considered as a bivector field Π

on g∗ whose coefficients are linear functions. This indeed induces a Poisson
structure called the Kirillov-Kostant-Souriau Poisson structure.

Proposition 4.1 The skew-symmetric pairing {·, ·} on C∞(g∗) defined by

{ f , g} = Π(d f ∧ dg)

is indeed a Poisson bracket uniquely defined by the property that on linear functions
induced by an element in g the Poisson bracket coincides with the Lie bracket on g.

Proof Let x, y ∈ g induce the linear functions fx(λ) := λ(x) for λ ∈ g∗ and
fy analogously. Their differential one-forms are then given by the constant
covector fields given by x and y respectively. Thus

{ fx, fy}(λ) = Πλ(d fx ∧ dgy) = λ([x, y]) = f[x,y].

Now we use that differentials of linear functions generate the cotangent
space at every point to conclude unicity and the Jacobi identity since both
of those are tensorial on covector fields. �

Since Π is never non-degenerate everywhere (in particular at 0) it does not
define a symplectic struture on g∗. It does however define a symplectic form
on an involutive distribution as follows. Let now (M, Π) be any Poisson
manifold. Consider Π as a skew-adjoint map T∗M→ TM and denote its im-
age by E, which is not necessarily a vector bundle but still a C∞-submodule
of the tangent sheaf. Over C∞(M) it is generated by the image of

C∞(M) → Γ(TM)

f 7→ X f := { f , ·}.
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4. Quantization of Coadjoint Orbits

Since this map is a homomorphism of Lie algebras (where C∞ is equipped
with the Poisson bracket) it follows that E is involutive.

Next we show that E is integrable by symplectic manifolds in the following
sense.

Proposition 4.2 Through any point x ∈ M there exists a submanifold, whose
tangent bundle coincides with E. Furthermore, Π restricts to a non-degenerate
Poisson structure, hence a symplectic form.

Proof We follow roughly [7]. Consider the one-parameter family of diffeo-
morphisms exp(tX f ) induced by a Hamiltonian vector field X f , for f ∈
C∞(M). The Jacobi identity translates to LX f Π = 0 which shows that
exp(tX f ) leaves E invariant, as would any other Poisson diffeomorphism.
Let dim(Ex) =: r and choose r functions f1, · · · , fr such that Xi := X fi gen-
erate Ex. Then define the map

(t1, · · · , tr) 7→
i=r

∏
i=1

exp(tiXi)(x).

It follows that this a submanifold whose tangent bundle lies indeed in E.
Since the dimension of E does not change under Hamiltonian transforma-
tions it is constant along this submanifolds, turning it into an integral sub-
manifold. �

In our case of M = g∗ we can choose the fi in the proof to be linear functions.
The associated Hamiltonian vector field Xi is then given by

λ 7→ (λ, λ([xi, ·]) ∈ g∗ × g∗ = Tg∗.

Therefore, the Xi integrate to the coadjoint action of G on g∗.

Lemma 4.3 Let G be connected and λ ∈ g∗. Then the coadjoint orbit through λ
coincides with the maximal symplectic leaf.

Proof Let Oλ denote the maximal symplectic leaf through λ. From the
above we see that we get a map G → Oλ. A point x lies in Oλ if it can
be connected to λ by a sequence of paths of the form t 7→ exp(tX)(xi) which
implies that x lies in the same coadjoint orbit. �

It then follows that Oλ = G/H, H = {g ∈ G : g.λ = λ} is endowed with a
G-invariant symplectic structure.

Lemma 4.4 The symplectic structure is given by

ω : g/h× g/h → R

(x, y) 7→ λ([x, y])
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4.1. Classical structure

Proof The map G → g∗, g 7→ g.λ has the differential at 1

g → g∗

x 7→ λ([x, ·]).

And thusly

ω(x, y) = ω(λ([x, ·])︸ ︷︷ ︸
{ fx ,·}

, λ([y, ·])

= { fx, fy}(λ)
= λ([x, y]).

Since the tangent bundle of Oλ is equivariant with fiber g/h it can be identi-
fied with

TOλ
∼= G×H g/h.

If follows from [9] (7.3) that for any splitting ι : g/h ↪→ g there exist local
vectorfields Xi whose Lie bracket is given by

[Xi, Xj](λ) = [ι(Xi), ι(Xj)] + h ∈ g/h.

In particular, any n ⊂ g/hC such that n+ hC is a subalgebra of gC induces an
involutive subbundle. Assume that we have such an n which is furthermore
a Lagrangian subspace of (g/h, λ([·, ·])). The resulting involutive subbundle
is then integrable by analyticity and thus defines a polarization. To construct
such an n we need some additional assumption.

For the rest of this section assume that g is semi-simple and that λ corre-
sponds to a semi-simple element Xλ ∈ g via the Killing form. Thus, we
can identify h with the centralizer of Xλ, that is the kernel of ad(Xλ). Since
ad(Xλ) is H-invariant and semi-simple, its image constitutes an H-invariant
complement to h, showing that Oλ is reductive. Since Xλ is semi-simple it
is contained in a Cartan subalgebra. We then get the root space decomposi-
tion of gC inducing one on g/hC. Let ∆ denote the set of roots α such that
α(Xλ) 6= 0.

g/hC =
⊕
α∈∆

Ceα.

To construct a polarization, we notice that the eigenvalues of ad(Xλ) occur
in pairs of opposite signs. Therefore there exists an ordering of all the roots
such that

∆ = ∆− ∪ ∆+,

{α(Xλ)| α ∈ ∆−} ∩ {α(Xλ)| α ∈ ∆+} = ∅.

In particular, n :=
⊕

α∈∆− Ceα is H-invariant and induces a polarization.
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4. Quantization of Coadjoint Orbits

Since we eventually want to compute the characteristic class of a ∗-product
on Oλ, we try to find a description of the cohomology, in particular H2(Oλ),
in terms of g. Since G and hence g acts onOλ we can consider the subcompex
of g invariant differential forms. This complex is moreover isomorphic to the
relative Lie algebra Chevalley-Eilenberg complex. Namely consider

Ck(g, h, R) := Homh(Λkg/h, R)

with its usual Chevalley-Eilenberg differential and denote the corresponding
cohomology by H•(g, h), then we have a map

Hk(g, h)→ Hk(Oλ, R). (4.1)

If G is compact, this can be shown to be an isomorphism, by averaging.

Let us now consider the map

(g∗)h → C2(g, h, R)

α 7→ −α([·, ·]).

Either by direct computation or by considering the five-term exact sequence
of a Hochschild-Serre type spectral sequence for relative cohomology it fol-
lows that

(g∗)h

((g/h)∗)h)
→ H2(g, h)

is an isomorphism. As was shown above, there exists an H-invariant comple-
ment to h in g and hence an H-invariant (in fact unique since Homh(g/h, h) =
0) projection

p : g→ h,

and hence we can identify

h

[h, h]

∗ ∼=−→ H2(g, h)

α 7→ −α(p([·, ·])). (4.2)

There is another description of this homomorphism. Consider G as a prin-
cipal H-bundle over Oλ. Then to any complex H-representation V, one can
assign the associated complex vector bundle G ×H V over Oλ. For a line
bundle, the representation is given by θ + iα for θ, α real characters on h.
Now the first Chern class of the associated bundle only depends on α. Thus
we get a mapping from analytically integral characters on h to H2(Oλ).

Proposition 4.5 The assignment

α 7→ c1(G×H Ce2π(θ+iα)) ∈ H2(Oλ)

for an analytically integral character α, coincides with the composition of (4.1) and
(4.2).
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4.2. ∗-product

Proof By considering left-invariant vector fields on G, p represents a con-
nection 1-form. Since p is H-invariant this defines a principal connection.
The usual formulas for the curvature Ω show that for X, Y left invariant
vectorfields on G

Ω(X, Y) = dp(X, Y) + [p(X), p(Y)]
= −p([X, Y]) + [p(X), p(Y)],

which is a closed G-invariant 2-form on Oλ, that is an element of

(Λ2(g/h)→ h)h.

To get the curvature for an associated bundle we compose with the charac-
ter. We see that the first Chern class is represented by the invariant 2-form
induced by α− iθ. The first Chern class being real valued implies that the
imaginary part is null-cohomologous in H2(Oλ) (even though it is not in
H2(g, h)). �

4.2 ∗-product

Let g be semi-simple and λ ∈ g∗ a semi-simple element. Following [1] we
construct a ∗-product on Oλ. Let h = {x ∈ gC| x.λ = 0} be the subalgebra of
the complexified g fixing λ. In case λ is regular, that is dim Fixλ is minimal
among all λ ∈ g∗, it follows that h is a Cartan subalgebra of gC. Otherwise,
there exists a Cartan subalgebra in h. Choose an ordering of the roots as
above. In any case we get a root space decomposition

gC = n− ⊕ h⊕ n+ =
⊕

α∈∆+

Ce−α ⊕ h⊕
⊕

α∈∆+

Ceα

where ∆+ is a subset of the positive roots (or all positive roots in case λ
regular). Furthermore, we can normalize the root vector eα such that

ω(e−α, eβ) = λ([e−α, eβ]) = δα,β

Set p± = h⊕ n± and define the generalized Verma modules

M± = U(g)⊗U(p±) C±λ

Now, M+⊗Ug M− can be uniquely identified with C, therefore there exists a
unique g-invariant bilinear pairing (·, ·) on M+×M− called the Shapovalov
pairing. More concretely, using the PBW decomposition Ug ∼= Un− ⊗Uh⊗
Un+ define the projection ϕ : Ug→ Uh. Thus we have for any x ∈ Ug

x = ϕ(x)︸︷︷︸
∈Uh

+ x−︸︷︷︸
∈n−U(g)

+ x+︸︷︷︸
∈U(g)n+
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4. Quantization of Coadjoint Orbits

Let νλ, ν−λ denote the generators of M+ and M−, respectively, and let x ∈
Un−, y ∈ Un+,

xνλ ⊗ yν−λ = S(y)xνλ ⊗ ν−λ

= (ϕ(S(y)x) + (S(y)x)− + (S(y)x)+)νλ ⊗ ν−λ

= ϕ(S(y)x)νλ ⊗ ν−λ + νλ ⊗ S((S(y)x)+)ν−λ

= λ(ϕ(S(y)x))νλ ⊗ ν−λ

where we S denotes the antipode on Ug which appears since we are pairing
two left-modules. Now it follows that

(xνλ, yν−λ) = λ(ϕ(S(y)x)).

By identifying Un− ∼= M+ and Un+
∼= M− we get a family of pairings

(·, ·)λ → C parametrized by characters on h. As is shown in [1] Proposition
3.1. , this pairing is non-degenerate for almost all λ even restricted to any
line Cλ. Moreover, it respects the grading in the root lattice, implying the
the inverse pairing is given by an element Fλ ∈ Un−⊗̌Un+ in the completed
tensor product. Furthermore [1] show that Fλ is holomorphic at infinity
enabling us to define

B := F1
t λ ∈ Un−⊗̌Un+[[t]]

This B now defines a ∗-product on Oλ as follows. Let π : G → Oλ denote
the cannonical projection and let g act on functions on G by right-invariant
vector fields, that is for f ∈ C∞(G) and X ∈ g

X f (g) =
d
dt
|t=0 f (getX).

Now for f , g ∈ C∞(Oλ) we define

f ∗ g = mB( f ⊗ g) ∈ C∞(Oλ)[[t]],

where m denotes the multiplication of functions.

Now we are ready to cite

Theorem 4.6 (Alekseev-Lachowska) This indeed defines a ∗-product on Oλ. In
particular,

• f ∗ g is H invariant and thus a function on Oλ.

• B satisfies the associativity condition

• B = 1 + t ∑α∈∆+ e−α ⊗ eα + O(t2) implying that [·, ·]∗ = t{·, ·}+ O(t2).

This ∗-product has the following additional properties
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4.2. ∗-product

Proposition 4.7 i) It is polarized with the commutative subalgebra

O = { f ∈ C∞[[t]]| eα f = 0 ∀α ∈ ∆+}

ii) It posesses a strong quantum momentum map.

The first part is obvious since B ∈ Un−⊗̌Un+[[t]]. And for the second part
we need the following

Lemma 4.8 ([1] Propostion 4.1) Let V be any Ug-module and w ∈ V . Let
furthermore λ be such that the Shapovalov pairing is non-degenerate. Assume
that there exists an element z ∈ V⊗̌M− that is Un−-invariant and of the form
z ∈ w⊗ ν−λ + V⊗̌(Un+)>0. Then such a z is unique.

Proof Let xs be a homogeneous basis of (Un+)>0. Since (·, ·)λ is assumed
to be non-degenerate and homogenous, we can find a basis yl ∈ Un− such
that (S(yl), xs) = δls. Now let z be of the form

z = w⊗ ν−λ + ∑
s

ws ⊗ xsν−λ.

By Un−-invariance we have for yl ∈ Un−

0 = ylw⊗ ν−λ + ∑
s

ylws ⊗ xsν−λ + ∑
s

ws ⊗ ylxsν−λ.
�

Write ylxs as ylxs ∈ S(ϕ(S(ylxs))) + Ugn− + n+Ug to get

−ylw = ∑
s
(−λ)(S(ϕ(S(ylxs))))ws

= ∑
s

λ(ϕ(S(xs)S(yl)))ws

= ∑
s
(S(yl), xs)λws

= ws.

Let now fH : Oλ → C , x 7→ x(H), for an H ∈ g be a classical Hamiltonian
function. Pull it back to a function on G and consider the action of X ∈ g,

X fH(g) =
d
dt
|t=0((getX).λ)(H)

= λ(−[X, g−1H])

= (X.λ)(g−1H).

From this is follows that the g-module generated by fH is isomorphic to the
g-submodule of g∗ generated by λ. Under this isomorhpism we can view
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4. Quantization of Coadjoint Orbits

the differential operator g 7→ fH ∗ g as an element in g∗ ⊗Un+[[t]] which is
given by the Taylor expansion in t of

Fλ
t
(λ⊗ ν−λ) ∈ g∗ ⊗M− ∼=Un+ g∗ ⊗Un+.

Since this is the image of the g-invariant Fλ
t

under the Un−-homomorphism

M+⊗̌M− ∼= Un−⊗̌M− → g∗ ⊗M−

it is clearly Un−-invariant.

Lemma 4.9

Fλ
t
(λ⊗ ν−λ

t
) = λ⊗ ν−λ

t
+ t ∑

α

e−αλ⊗ eαν−λ
t

Proof By Lemma 4.8 it is enough to show that the righthand side is n−
invariant. Let Φ denote the righthand side and compute e−βΦ.

e−βΦ = e−βλ⊗ ν−λ
t
+ t ∑

α

e−βe−αλ⊗ eαν−λ
t
+ t ∑

α

e−αλ⊗ e−βeαν−λ
t

= (e−βλ + t ∑
α s.t. [e−β,eα]∈h

(
−λ

t
)([e−β, eα])e−αλ)⊗ ν−λ

t

+t ∑
α

(e−βe−αλ + ∑
γ s.t. [e−β,eγ]=cα

βγeα

cα
βγe−αλ)⊗ eγν−λ

t
.

Now the first term vanishes by normalization of the root vectors. And using
that cα

βγ = λ([e−α, [e−β, eα+β]]) the coefficients in the second term reduce to

e−βe−αλ + λ([e−α, [e−β, eα+β]])e−(α+β)λ = 0 �

Proof (of Proposition 4.7) By Lemma 4.8 and the analogue for fH in the
second argument we get

fH ∗ g− g ∗ fH = t ∑
α

(e−α ∧ eα)( fH ⊗ g)

proving the condition for a strong quantum momentum map. �

This ∗-product satisfies something stronger than just having a polarization,
namely it admits separation of variables.

Definition 4.10 Let (M, ω) admit two transverse integrable Lagrangian P, Q sub-
bundles of TCM. More precisely, assume that the map

O ⊗ Õ → C∞(M)
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4.3. Characteristic class

O(U) := { f ∈ C∞
U | d f |P = 0}

Õ(U) := { f ∈ C∞
U | d f |Q = 0}

is onto on infinity jets at every point. A ∗-product is the said to have separation of
variables if

f ∗ g = f g, for f ∈ O and g ∈ C∞

f ∗ g = f g, for f ∈ C∞ and g ∈ Õ

The ∗-product constructed above obviously satisfies this condition. More-
over, we can deduce the following uniqueness statement

Proposition 4.11 There is a unique G-invariant ∗-product on Oλ with separation
of variables for given G-invariant polarization that furthermore has a strong quan-
tum momentum map.

Proof First of all, since the polarization is G-invariant, it is also h-invariant,
so is splits into one-dimensional root spaces. Thus, after a suitable choice of
positivity, the above construction applies. For uniqueness, since

Diff2
G(G/H) = ((Ug/Ugh)⊗2)H

and ∗ admits separation of variables, we can write

f ∗ g = B( f ⊗ g) for B ∈ Un−⊗̌Un+[[t]].

From this form it follows that the ∗-commutator determines the product it-
self. In particular, left multiplication by a Hamiltonian momentum function
is determined and concretely given by Lemma 4.9. Now uniqueness follows
from the fact that Hamiltonian momentum functions together with 1 gener-
ate a subalgebra in (C∞[[t]], ∗) that is dense in a formal neighborhood, that
is for any f ∈ C∞[[t]], x ∈ M and k ∈ N, there exists an element g ∈ Uh̄g
such that

f (x, t)− µ(g)(x, t) = tkh(x, t) + h′(x, t),

where h′ vanishes at x up to order k. �

4.3 Characteristic class

In this section we compute the characteristic class of the unique G-invariant
∗-product with separation of variable and strong quantum momentum map
using theorem 3.20.

Since the ∗-commutator with a Hamiltonian function is given by the Lie
derivative, and the polarization is assumed to be G-invariant, it follows that
the quantum momentum map has image in F (O).
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4. Quantization of Coadjoint Orbits

Proposition 4.12 The map of O-modules

O ⊗ g → F (O)
f ⊗ X 7→ f ∗ µ(X) = f µ(X),

where µ is the classical (and quantum) momentum map, is onto. Furthermore, there
is a local commuting basis of F (O) in C∞ (independent of t). Moreover, the Lie
bracket on F (O) coincides with the Poisson bracket.

Proof We apply proposition 3.19. That is, we consider the map

g →
n⊕

i=1

O|U

X 7→ (
1
t
[ν(X), a1], · · · ,

1
t
[ν(X), an]).

By the strong quantum momentum map property, we have

1
t
[ν(X), a1] = LXai = dai(X).

Now, after tensoring with C∞[[t]] which sends a vectorfield spanned by some
Hamiltonians to its evaluation on dai. Since the dai are independent and the
Hamiltonians span the entire tangent space, this map is onto. Now we have
a map of free finitely generated O|U modules that is onto after tensoring
with C∞[[t]]|U . It follows then that the original map is onto as well (by using
that a map of free modules is onto iff the appropriate minor is a unit, and
O× = O∩C∞[[t]]×). To get the statement about the Lie bracket we compute
for f , g ∈ O and X, Y ∈ g

[ f µ(X), gµ(Y)] = [ f ∗ µ(X), g ∗ µ(Y)]
= [ f , g] ∗ µ(X) ∗ µ(Y) + f ∗ [µ(X), g] ∗ µ(Y) +

g ∗ [ f , µ(Y)] ∗ µ(X) + g ∗ f ∗ [µ(X), µ(Y)]
= t f {µ(X), g}µ(Y) + gt{ f , µ(Y)}µ(X) + g f t{µ(X), µ(Y)}
= t{ f µ(X), gµ(Y)}.

Finally, by separation of variables, theO-module structure on F (O) is trivial,
and since the ai are independent of t, we can just take the t = 0 part of the
fi in proposition 3.19. �

Proposition 4.13 cl(A,O) does not depend on t.

Proof The last proposition show that there exists a local splitting indepen-
dent of t. This automatically induces a characteristic class independent of
t. �
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4.4. Tr(1)

Proposition 4.14

θ(A) = 1
t
[ω]− 1

2
c1(L)

Proof Follows with theorem 3.20 and the fact that the lowest order term is
given by the symplectic form. �

Let us view this under the isomorphism (4.2) in the case of a semi-simple
coadjoint orbit. For this, we use the same decomposition of gC as in the last
section. In particular,

g/hC = n− ⊕ n+

and thus
L = G×H n−.

As above we construct a G-invariant connection with curvature 2-form Ω
whose trace is given by

c1(L) = [tr(Ω)] = ∑
α∈∆+

α([·, ·]).

And thus under the homomorphism (4.2) the characteristic class corresponds
to

θ(A) = −1
t

λ + ρ.

4.4 Tr(1)

The only thing missing to compute Tr(1) using the index formula (3.5) is the
Â genus. Note that all the roots α ∈ h∗ square to zero under (4.2), and thus

Â(TM, ω) = ∏
α∈∆

(
α/2

sinh(α/2)

) 1
2

= ∏
α∈∆+

α/2
sinh(α/2)

= 1,

using that z/2
sinh(z/2) has no linear term.

Assuming that Oλ is compact we get the following

Proposition 4.15

Tr(1) =
1

(2π)n
1
n!

∫
Oλ

(
1
t

ω + ρ̃

)n

,

where ρ̃ is the image of ρ under (4.2).
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