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What is Topological Data Analysis (TDA) ?

Modern data carry complex, but important, geometric/topological structure !

[Sensors (Sysnav courtesy)]

[Cell population -
cytometry - MetaFora

courtesy]



What is Topological Data Analysis (TDA) ?

Topological Data Analysis (TDA) is a recent field whose aim is to :

• infer relevant topological and geometric features from complex data,
• take advantage of topological/geometric information for further Data

Analysis, Machine Learning and AI tasks :
- using topological features in ML pipelines,
- taking advantage of topological information to improve ML pipelines
(e.g. topological losses).

Data

Topol. features
(e.g. persistence)



Example : dimensionality reduction

Input : 2 sampled circles
in R9

Dim reduction in R2

without topol. constraint

Dim reduction in R2

with topol. constraint



Two related general questions

argmin f ( )?

1. How to minimize functions depending of persistence diagrams (e.g.
total persistence) ?

2. Can we understand the average behavior of random persistence dia-
grams ?



Two related general questions

argmin f ( )?

1. How to minimize functions depending of persistence diagrams (e.g.
total persistence) ?

2. Can we understand the average behavior of random persistence dia-
grams ?

→ Both need to understand the “differentiability of persistence”



Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.
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Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.

To σ ∈ K, one can associate Φσ = inf{r ∈ R : σ ∈ Kr}

⇒ A filtration of K is a |K|-dimensional vector

Φ = (Φσ)σ∈K ∈ R|K| s. t. τ ⊆ σ ⇒ Φτ ≤ Φσ

The set FiltK ⊂ R|K| of the vectors in R|K| defining a filtration on K is
semi-algebraic.



Simplicial complexes and filtrations

Given a set V , a simplicial complex K is a
collection of finite subsets of V s. t.
- {v} ∈ K for any v ∈ V ,
- if σ ∈ K and τ ⊆ σ then τ ∈ K.

Given K and R ⊆ R, a filtration of K is an in-
creasing sequence (Kr)r∈R of subcomplexes
of K with respect to the inclusion such that⋃
r∈RKr = K.

Definition : Let K be a simplicial complex and A a set. A map
Φ: A → R|K| is said to be a parametrized family of filtrations if
for any x ∈ A and σ, τ ∈ K with τ ⊆ σ, one has Φτ (x) ≤ Φσ(x).
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Persistent homology computation
Process the simplices according to their order of entrance in the filtration :

Case 1 : adding σi to Ki−1 creates a
new k-dimensional topological feature
in Ki (new homology class in Hk).
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Persistent homology computation
Process the simplices according to their order of entrance in the filtration :

Case 1 : adding σi to Ki−1 creates a
new k-dimensional topological feature
in Ki (new homology class in Hk).

Ki−1

σi

⇒ the birth of a k-dim feature is registered.

Case 2 : adding σi to Ki−1 kills a
(k− 1)-dimensional topological feature
in Ki (homology class in Hk−1).

Ki−1

σi

⇒ persistence algo. pairs the simplex σi to
the simplex σl(i) that gave birth to the killed
feature.

(σl(i), σi) : persistence pair

(Φσl(i) ,Φσi) ∈ R2 : point in
the persistence diagram

→
→

Key remark : the persistence pairs are
determined by the order on the simplices ;
the corresponding points in the diagrams
are determined by the filtration values.

Let k = dimσi and denote Ki−1 = ∪i−1
l=1σl



Persistent homology computation

Filtration Pairing of simplices Persistence diagram D(Φ)

p pairs (σl(i), σi)

q unpaired σl

|K| = 2p+ q

Φ = (Φσ)σ∈K ∈ R|K|
(Φσl(i)

,Φσi
)

(Φσl
,+∞)

Using lexicographical
order

D(Φ) ∈ R|K|

The persistence
map : Pers

(this is a “locally constant”
permutation of coordinates)



The persistence map is semi-algebraic

Proposition : Given a simplicial complex K, the map

Pers : FiltK ⊆ R|K| → R|K|

is semi-algebraic, and thus definable in any o-minimal structure. Moreover,
there exists a semi-algebraic partition of FiltK such that the restriction of
Pers to each element of this partition is a Lipschitz map.

Corollary : Let K be a simplicial complex and Φ: A → R|K| be a definable
(in a given o-minimal structure) parametrized family of filtrations. The map
Pers ◦ Φ: A→ R|K| is definable.



The persistence map is semi-algebraic

Proposition : Let K be a simplicial complex and Φ: A → R|K| a definable
parametrized family of filtrations, where dimA = m. Then there exists a finite
definable partition of A, A = StO1t· · ·tOk such that dimS < dimA := m
and, for any i = 1, . . . , k, Oi is a definable manifold of dimension m and
Pers ◦ Φ: Oi → R|K| is differentiable.

This is an immediate consequence of finiteness and stratifiability properties of definable sets



o-minimal structures

An o-minimal structure on the field of real numbers R is a collection (Sn)n∈N,
where each Sn is a set of subsets of Rn such that :

1. S1 is exactly the collection of finite unions of points and intervals ;
2. all algebraic subsets of Rn are in Sn ;
3. Sn is a Boolean subalgebra of Rn for any n ∈ N ;
4. if A ∈ Sn and B ∈ Sm, then A×B ∈ Sn+m ;
5. if π : Rn+1 → Rn is the linear projection onto the first n coordinates

and A ∈ Sn+1, then π(A) ∈ Sn.

A ∈ Sn is called a definable set in the o-minimal structure.

For A ⊆ Rn, a map f : A→ Rm is a definable map if its graph is a definable
set in Rn+m.

Important property : Definable sets admit finite (Whitney) stratification.



Example : the Vietoris-Rips filtration

Φ: A = (Rd)n → R|∆n| = R2n−1

where ∆n is the simplicial complex made of all the faces of
the (n− 1)-dimensional simplex and, for any

x = (x1, . . . , xn) ∈ A and any simplex σ ⊆ {1, . . . , n},

Φσ(x) = max
i,j∈σ

‖xi − xj‖.



Example : sublevel sets filtrations

K a simplicial complex with n vertices v1, . . . , vn.

Any real-valued function f defined on the vertices of K can be represented as
a vector (f(v1), . . . , f(vn)) ∈ Rn.

Φ: A = Rn → R|K|

where for any f = (f1, . . . , fn) ∈ A and any simplex σ ⊆ {1, . . . , n},

Φσ(f) = max
i∈σ

fi



Functions of persistence

Definition : A function

E : R|K| = (R2)p × Rq → R

is a function of persistence if it is invariant to permutations of the points of
the persistence diagram : for any (p1, . . . , pp, e1, . . . , eq) ∈ (R2)p × Rq and
any permutations α, β of the sets {1, . . . , p} and {1, . . . , q}, respectively, one
has

E(pα(1), . . . , pα(p), eβ(1), . . . , eβ(q)) = E(p1, . . . , pp, e1, . . . , eq).
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the persistence diagram : for any (p1, . . . , pp, e1, . . . , eq) ∈ (R2)p × Rq and
any permutations α, β of the sets {1, . . . , p} and {1, . . . , q}, respectively, one
has
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If E is locally Lipschitz, then the composition E ◦Pers is also locally Lipschitz.

If E and Φ: A ⊆ Rd → R|K| are definable, then L = E ◦ Pers ◦ Φ: A → R
has a well-defined Clarke subdifferential ∂L(z) := Conv{limzi→z∇L(zi) :
L is differentiable at zi}.

Properties :



Examples

Total persistence.

E(D) =

p∑
i=1

|di − bi|, for D = ((b1, d1), . . . , (bp, dp), e1, . . . , eq).

E is semi-algebraic and Lipschitz.



Examples

Total persistence.

E(D) =

p∑
i=1

|di − bi|, for D = ((b1, d1), . . . , (bp, dp), e1, . . . , eq).

E is semi-algebraic and Lipschitz.

Bottleneck distance.

E(D) = dB(D,D∗) = min
m

max
(p,p∗)∈m

||p− p∗||∞

where denoting ∆ = {(x, x) : x ∈ R} the diagonal in R2, m is a partial
matching between D and D∗, i.e., a subset of (D ∪∆)× (D∗ ∪∆) such that
every point of D \∆ and D∗ \∆, appears exactly once in m.
E is semi-algebraic and Lipschitz.



Minimization via stochastic (sub-)gradient descent

Minimization of L through the differential inclusion

dz

dt
∈ −∂L(z(t)) for almost every t.

If E and Φ: A ⊆ Rd → R|K| are definable, then L = E ◦ Pers ◦ Φ: A → R
has a well-defined Clarke subdifferential ∂L(z) := Conv{limzi→z∇L(zi) :
L is differentiable at zi}.

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.



Minimization via stochastic (sub-)gradient descent

Minimization of L through the differential inclusion

dz

dt
∈ −∂L(z(t)) for almost every t.

If E and Φ: A ⊆ Rd → R|K| are definable, then L = E ◦ Pers ◦ Φ: A → R
has a well-defined Clarke subdifferential ∂L(z) := Conv{limzi→z∇L(zi) :
L is differentiable at zi}.

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.

Question : convergence of the algorithm ?



Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on
tame functions. Found. Comp. Math. 2020].

1. for any k, αk ≥ 0,
∑∞
k=1 αk = +∞ and,

∑∞
k=1 α

2
k < +∞ ;

2. supk ‖xk‖ < +∞, almost surely ;
3. denoting by Fk the increasing sequence of σ-algebras Fk =
σ(xj , yj , ζj , j < k), there exists a function p : Rd → R which is boun-
ded on bounded sets such that almost surely, for any k,

E[ζk|Fk] = 0 and E[‖ζk‖2|Fk] < p(xk).

Technical (but classical) assumptions :

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.



Convergence

Convergence follows from [Davis et al, Stochastic subgradient method converges on
tame functions. Found. Comp. Math. 2020].

Standard stochastic subgradient algorithm

xk+1 = xk − αk(yk + ζk), yk ∈ ∂L(xk),

where the sequence (αk)k is the learning rate and (ζk)k is a sequence of
random variables.

Theorem :
Let K be a simplicial complex, A ⊆ Rd, and Φ: A → R|K| a parametrized
family of filtrations of K that is definable in an o-minimal structure. Let
E : R|K| → R be a definable function of persistence such that L = E◦Pers◦Φ
is locally Lipschitz. Then, under the above assumptions 1, 2, and 3, almost
surely the limit points of the sequence (xk)k obtained from the iterations of
the algo. are critical points of L and the sequence (L(xk))k converges.



Numerical illustration
The differential of persistence map is obvious to compute→ easy implementation (soon
available in GUDHI)

Point cloud optimization

Input : a point cloud X sampled uni-
formly from the unit square S = [0, 1]2

Loss : L(X) = P (X) + T (X) where

T (X) := −
∑
p∈D

‖p− π∆(p)‖2∞

with D is the 1-dimensional persistence
diagram associated to the Vietoris-Rips
filtration of X, π∆ stands for the projec-
tion onto the diagonal ∆, and

P (X) :=
∑
x∈X

d(x, S)

is a penalty term ensuring that the point
coordinates stay in the unit square.

With T (X) only



The density of expected persistence diagrams
(The Vietoris-Rips case)



The Vietoris-Rips filtration

Let V be a point cloud (in a metric space (X, d)).

The Vietoris-Rips complex Rips(V ) is the filtered simplicial complex indexed
by R whose vertex set is V and defined by :

Φσ(V ) = max
v,v′∈σ

d(v, v′)

Rips



Statistical setting

∞

0
0
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D[X]

X is now a random
point coud (in some
metric space)

Φ is the (determi-
nistic) VR filtration
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random
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Statistical setting

∞

0
0

X Φ(X)

D[X]

X is now a random
point coud (in some
metric space)

Φ is the (determi-
nistic) VR filtration

D[X] becomes
random

What can be said about the distribution of diagrams D[X] ?

Understand the structure of E[D[X]] in the non asymptotic setting ( |X| = n
is fixed, or bounded)



Persistence diagrams as discrete measures

D
D :=

∑
p∈D

δp

• The space of measures is much nicer that the space of P. D. !
• In the general algebraic persistence theory, persistence diagrams

naturally appears as discrete measures in the plane.

• Many persistence representations can be expressed as

D(f) =
∑
p∈D

f(p) =

∫
fdD

for well-chosen functions f : R2 → H.

Motivations :

[C., de Silva, Glisse, Oudot 16]



The density of expected persistence diagrams

Theorem :
Fix n ≥ 1. Assume that :
• M is a real analytic compact d-dimensional connected riemannian ma-

nifold possibly with boundary,
• X is a random variable on Mn having a density with respect to the

Haussdorf measure Hdn,
• Φ is the Vietoris-Rips filtration and denote Ds[Φ] its s-dimensional

persistence diagram.
Then, for s ≥ 1, E[Ds[Φ(X)]] has a density with respect to the Lebesgue mea-
sure on ∆, the upper half-plane above the diagonal. Moreover, E[D0[Φ(X)]]
has a density with respect to the Lebesgue measure on the vertical line
{0} × [0,∞).



The density of expected persistence diagrams

Theorem :
Fix n ≥ 1. Assume that :
• M is a real analytic compact d-dimensional connected riemannian ma-

nifold possibly with boundary,
• X is a random variable on Mn having a density with respect to the

Haussdorf measure Hdn,
• Φ is the Vietoris-Rips filtration and denote Ds[Φ] its s-dimensional

persistence diagram.
Then, for s ≥ 1, E[Ds[Φ(X)]] has a density with respect to the Lebesgue mea-
sure on ∆, the upper half-plane above the diagonal. Moreover, E[D0[Φ(X)]]
has a density with respect to the Lebesgue measure on the vertical line
{0} × [0,∞).

Theorem [smoothness] : Under the assumption of previous theorem, if mo-
reover X ∈ Mn has a density of class Ck with respect to Hnd. Then, for
s ≥ 0, the density of E[Ds[Φ(X)]] is of class Ck.



Sketch of proof (s ≥ 1)

1. There exists a partition of the complement of a (subanalytic) set of
measure 0 in Mn by open sets V1, · · · , VR such that :

• the order of the simplices of Φ(x) is constant on each Vr,
• for any r = 1, · · · , R, and any x ∈ Vr,

Ds[Φ(x)] =

Nr∑
i=1

δri

with ri = (Φσi1
(x),Φσi2

(x)) where Nr, σi1 , σi2 only depends on Vr.
• σi1 , σi2 can be chosen so that the differential of

Φir : x ∈ Vr → ri = (Φσi1
(x),Φσi2

(x))

has maximal rank 2.



Sketch of proof (s ≥ 1)

2.The expected diagram can be written as

E[Ds[Φ(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[Φ(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]



Sketch of proof (s ≥ 1)

2.The expected diagram can be written as

E[Ds[Φ(X)]] =
R∑
r=1

E [1{X ∈ Vr}Ds[Φ(X)]] =
R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δri

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δri ]

3. Use the co-area formula :

µir(B) = P (Φir(X) ∈ B,X ∈ Vr)

=

∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=

∫
u∈B

∫
x∈Φ−1

ir (u)

(JΦir(x))−1κ(x)dHnd−2(x)du.

µir

Density of X

Density of µir



The Hausdorff measure and the co-area formula

Definition : Let k be a non-negative number. For A ⊂ RD, and δ > 0,
consider

Hδk(A) := inf

{∑
i

diam(Ui)
k, A ⊂

⋃
i

Ui and diam(Ui) < δ

}
.

The k-dimensional Haussdorf measure on RD of A is defined by Hk(A) :=
limδ→0Hδk(A).

Theorem [Co-area formula] : Let M (resp. N) be a smooth Riemannian
manifold of dimension m (resp n). Assume that m ≥ n and let Φ : M → N
be a differentiable map. Denote by DΦ the differential of Φ. The Jacobian
of Φ is defined by JΦ =

√
det((DΦ)× (DΦ)t). For f : M → N a positive

measurable function, the following equality holds :∫
M

f(x)JΦ(x)dHm(x) =

∫
N

(∫
x∈Φ−1({y})

f(x)dHm−n(x)

)
dHn(y).



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))



Persistence images
[Adams et al, JMLR 2017]

For K : R2 → R a kernel and H a bandwidth matrix (e.g. a symmetric
positive definite matrix), pose for u ∈ R2, KH(z) = |H|−1/2K(H−1/2 · u)

For D =
∑
i δri a diagram, K : R2 → R a kernel, H a bandwidth matrix and

w : R2 → R+ a weight function, one defines the persistence surface of D with
kernel K and weight function w by :

∀z ∈ R2, ρ(D)(u) =
∑
i

w(ri)KH(u− ri) = D(wKH(u− ·))

⇒ persistence surfaces can be seen as kernel estimates of E[Ds[Φ(X)]].



Persistence images

The realization of 3
different processes

The overlay of 40
different persistence

diagrams

The persistence images
with weight function
w(r) = (r2 − r1)3 and

bandwith selected using
cross-validation.



Thank you for your attention !
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Persistence and TDA in practice :

• GUDHI library C++ / Python : https ://gudhi.inria.fr/
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